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Abstract: The Yellow River Economic Belt (YREB) performs an essential function in the low-carbon
development of China as an important ecological protection barrier, and it is of great importance to
identify its spatio-temporal heterogeneity and key influencing factors. In this study, we propose a
comprehensively empirical framework to conduct this issue. The STIRPAT model was applied to
determine the influencing factors of carbon emissions in the YREB from 2006 to 2019. The results show
that the carbon emissions in the YREB had significant clustering characteristics in the spatial auto-
correlation analysis. In addition, the estimation results of the spatial panel analysis demonstrate that
the carbon emissions showed a distinct spatial lag effect and temporal lag effect. Moreover, the three
traditional factors including population, affluence, technology are identified as the key influencing
factors of carbon emissions in the YREB of China. Furthermore, the spatio-temporal heterogeneity is
illustrated vividly by employing the GTWR-STIRPAT model. Finally, policy implications are provided
to respond to the demand for low-carbon development.

Keywords: spatio-temporal heterogeneity; carbon emissions; Yellow River Economic Belt; spatial
spillover effect

1. Introduction

With the rapid growth of carbon dioxide emission in the process of urbanization,
greenhouse gases are skyrocketing and triggering knock-on effects across ecosystems [1].
For instance, the melting sea caused by carbon sinks diminishing and climate warming
has reduced the amount of land and threatened the survival of organisms [2]. Against
this background, climate change has become a global dilemma, and the carbon emission
of China becomes a hot spot for academia since it is the greatest emitter in the world [3].
To comply with the global trend of low-carbon development, the Chinese government
announced that China will reach its carbon peak before 2030, which not only contributes to
highlighting China’s reputation of shouldering international responsibility but also benefits
China’s sustainable development strategy [4,5]. In particular, the Chinese government has
implemented several well-designed measures, such as establishing seven regional pilot
emissions trading schemes (ETS) since 2013 and launching the online trading of the national
carbon market in July 2021, which can not only mitigate the cost of carbon change but also
promote the efficiency of carbon productivity [6].

Carbon emissions in China have emerged as a hot spot for academia, in recent years, a
number of studies on the influencing factors of it have been published [7–9]. Nevertheless,
the spatio-temporal heterogeneity of carbon emissions was often ignored in the empirical
analysis, which to some extent restricted the practical value of those studies. Hence, identi-
fying the spatio-temporal heterogeneity and key influencing factors of carbon emissions
simultaneously is critical and necessary for realizing China’s emission reduction and energy
saving strategy [10]. With the development of the industrial chain in the new era, urban
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agglomeration has become the major carrier of carbon emissions in space [11,12]. As for the
scale of the Chinese mainland, most studies focus on exploring the carbon emissions in the
Beijing-Tianjin-Hebei [13], the Yangtze River Delta [14], and the Pearl River Delta [15,16],
while few have paid attention to the Yellow River Economic Belt (YREB), which used to be
the political and cultural center and related to the long-term revival of China [17]. However,
compared with the BTH, YRD, and PRD, the economic development level of the YREB lags
behind, with its industrial structure dominated by secondary industries [18]. Therefore,
against the background of ecological civilization, the YREB becomes an essential ecological
barrier and has an important strategic position, controlling its carbon emissions is crucial
for green development in China [19,20].

Therefore, this study attempts to identify the spatio-temporal heterogeneity and key
influencing factors of carbon emissions in the YREB of China. Specifically, local Moran’s I
(LISA) was employed to verify the spatio-temporal distribution features of carbon emissions
in the YREB of China. Moreover, an integrated method of the spatial Durbin model (SDM)
and the extended Stochastic Impacts by Regression on Population Affluence and Technology
model (STIRPAT), that is, the SDM-STIRPAT model, was employed to investigate the key
influencing factors of carbon emissions in the YREB of China. Furthermore, integrated
methods of Geographically and Temporally Weighted Regression (GTWR) and the extended
STIRPAT model, that is, the GTWR-STIRPAT model are employed to investigate the spatio-
temporal heterogeneity of carbon emissions in the YREB of China.

The rest of this study is organized as follows. Section 2 provides materials and
methods, including the development process of the STIRPAT and variables selection, data
sources, and models specification. Section 3 gives empirical results and analysis. Section 4
concludes the main findings, delivers the policy implications, and points out the research
prospects.

2. Materials and Methods
2.1. Development Process of the STIRPAT and Variables Selection

The I = PAT formulation was first put forward in the 1970s to analyze the environ-
mental stress of anthropomorphic factors [21,22]. Then, in the 1990s, Dietz and Rosa
reformulated the IPAT model into a stochastic form (STIRPAT), which solved the limita-
tion on the proportionate relationship between environmental pressure index and driving
factors [23,24]. The IPAT model was mathematically defined as follows:

I = aPb AcTde (1)

where I denotes the environmental press indicator, and represents carbon emissions in
this study [25]. P denotes the population scale; A denotes the affluence; T denotes the
technology; a is the coefficient of model; b, c and d represent the parameters to be estimated
respectively; e denotes the error term.

In order to further detect the drivers of carbon emissions in the YREB, additional
factors had been added to the formulation. Moreover, on the basis of previous studies, the
STIRPAT model was formulated as the logarithmic form, which not only weakened the
heteroskedasticity but also converted the model into linear form to facilitate estimation.

ln I = a + b1 ln P + b2 ln A + b3 ln T + b4 ln SI + b5 ln TI
+b6 ln FAI + b7 ln UR + b8 ln OP + ln e

(2)

where P, A, T, SI, TI, FAI, UR, and OP denote population, affluence, technology, second
industry, tertiary industry, fixed assets investment, urbanization, and openness, respec-
tively. Specifically, population denotes the demographic influence; affluence and fixed
assets investment represent the socioeconomic situation; technology denotes the techno-
logical progress; second industry and tertiary industry denotes the industrial structure;
urbanization denotes the city condition; openness denotes the scale of foreign trade. The
definition of the above variables is presented in Table 1.
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Table 1. Definition of the variables.

Variables Definition Unit Symbol

CO2 emission Energy-related carbon emission accounting 104 Ton I
Population End year total population 104 Persons P
Affluence GDP per capita 104 Yuan A

Technology Energy consumption per million GDP Ton/104 Yuan T
Second Industry The proportion of secondary industry output in GDP % SI
Tertiary Industry The proportion of tertiary industry output in GDP % TI

Fixed Assets Investment Total fixed asset investment 108 Yuan FAI
Urbanization Ratio of urban population to total population % UR

Openness The share of total imports and exports to GDP % OP

Considering the shortage of direct statistical data, the carbon emissions can be derived
from both direct and indirect sources [26]. The direct sources include fossil energies, such
as coal, liquefied petroleum gas (LPG), natural gas, etc., while the indirect sources mainly
include thermal power generation. The direct carbon emissions (Idirect) can be calculated on
the basis of the 2006 IPCC National Greenhouse Gas inventories as follows:

Idirect = ∑
i

Ei × Cali × Cci × Oi ×
44
12

(3)

where Ei denotes the consumption of various energies, including natural gas, liquefied
petroleum gas (LPG), and raw coal; Cal refers to the net calorific value; Cc refers to carbon
content; Oi refers to the carbon oxidation rate. Moreover, 44/12 denotes the coefficient of
carbon transforming to carbon dioxide.

The indirect carbon emissions (Iindirect) can be measured as follows:

Iindirect = Electricity × Felectricity (4)

where electricity refers to the electricity consumption; Felectricity refers to the CO2 emissions
coefficient of indirect energy.

Therefore, the total carbon emissions can be demonstrated as:

I = Idirect + Iindirect (5)

2.2. Data Resource

Scanning from 2006 to 2019, the panel data including carbon emissions and various
independent variables are obtained from the China Energy Statistical Yearbook, China
City Statistical Yearbook, China Regional Statistical Yearbook, and Statistical Yearbooks
of individual provinces and cities. The descriptive statistics of the data are presented in
Table 2.

Table 2. Descriptive Statistics.

Variable Obs. Mean S.D. Min Max

CO2 emission (I) 784 930.069 965.348 14.865 4496.780
Population (P) 784 375.482 235.013 48.060 1083.800
Affluence (A) 784 3.464 2.845 0.395 16.424

Technology (T) 784 1.640 1.820 0.090 9.760
Second Industry (SI) 784 50.883 11.766 20.660 74.690
Tertiary Industry (TI) 784 38.674 10.373 18.260 65.420

Fixed Assets Investment (FAI) 784 5506.764 5533.943 268.830 29,515.300
Urbanization (UR) 784 48.699 17.409 12.377 94.544

Openness (OP) 784 8.783 10.616 0.045 54.263
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2.3. Models Specification
2.3.1. Spatial Auto-Dependence Model

It is widely known that global Moran’s I could merely identify the whole distribution
characteristic of CO2 emissions, while the identification of the spatial auto-dependence
between individual cities could be conducted by the local Moran’s I and illustrated by
the LISA diagram [27]. Specifically, the formula of the local Moran’s I can be calculated
as follows:

Ii =

(xi − x)∑
j

[
wij
(
xj − x

)]
∑
i
(xi − x)2/n

(6)

where i and j denote two different cities, xi denotes carbon emissions in the city i, denotes
the annual average carbon emissions, Wij denotes the 0–1 adjacency weight matrix in this
study [28].

Wij =

{
1, when the city i and j are adjacent
0, when i = j or they are not adjacent

(7)

Five spatial aggregation types are present in the LISA diagram, including “High-
High” agglomeration, “Low-High” agglomeration, “High-Low” agglomeration, and “Low-
Low” agglomeration, and not significant, respectively [29]. In particular, the “High-High”
agglomeration and the “Low-High” agglomeration suggest that the sample city is positively
associated with surrounding areas, that is, the spatial homogeneity of carbon emissions.
While “High-High” agglomeration and “Low-High” agglomeration suggest that the sample
city is negatively associated with surrounding areas, that is, the spatial heterogeneity of
carbon emissions.

2.3.2. Spatial Econometric Models

Traditional spatial regression models usually concern the space features, while tempo-
ral series analysis models only concern the trend features. Spatial panel models, neverthe-
less, focus on the temporal trend and the spatial distribution of the sample simultaneously,
which mainly include the spatial lag model (SLM), the spatial error model (SEM), as well as
the spatial Durbin model (SDM) model. Regarding the model comparison, the SDM model
integrates the spatial spillover effects from explanatory variables and the lagged explained
variable simultaneously, which can comprehensively capture the direct and indirect effects
generated by various samples during the investigation period [30,31]. In this study, con-
sidering the potential existence of both the direct and indirect effects, the spatial Durbin
model (SDM) under the space and time fixed effect was introduced to explore the relevance
between carbon emissions and their driving factors in 56 cities in the YREB from 2006–2019,
and the corresponding formula was taken as follows.

ln Iit = ρW ln Iit + β1 ln P + β2 ln A + β3 ln T + β4 ln SI + β5 ln TI + β6 ln FAI

+β7 ln UR + β8 ln OP + θ1W ln P + θ2W ln A + θ3W ln T + θ4W ln SI

+θ5W ln TI + θ6W ln FAI + θ7W ln UR + θ8W ln OP + µi + τi + εit

(8)

where β refers to the coefficient of direct effects, θ refers to the indirect coefficient of
independent variables, while ρ refers to the indirect coefficient of the dependent variable; t
denotes the t-th year and i denotes the city t; W denotes spatial weight matrix (equals to
Equation (7)); µi represents the space fixed effect, τi represents the time fixed effect, and
εit represents the random error term. In addition, other parameters are equivalent to the
meanings in the Formula (2).

Nevertheless, except for the explanatory variables’ impacts on CO2 emissions, the
explained variable may also have indirect or spatial spillover impacts on itself. Therefore,
the dynamic spatial Durbin model was also applied for further analysis, with the consider-
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ation of both temporal and spatial factors. Specifically, the dynamic spatial Durbin model
is presented as follows:

ln Iit = τ ln Iit−1 + λW ln Iit−1 + ρW ln Iit + β1 ln P + β2 ln A + β3 ln T + β4 ln SI
+β5 ln TI + β6 ln FAI + β7 ln UR + β8 ln OP + θ1W ln P + θ2W ln A
+θ3W ln T + θ4W ln SI + θ5W ln TI + θ6W ln FAI + θ7W ln UR
+θ8W ln OPµi + τi + εit

(9)

where τ denotes the temporal lag auto-regressive coefficient of the explained variable, and
λ denotes the spatial lag auto-regressive coefficient of the explained variable. In addition,
other parameters are equivalent to the meanings in the Formula (8).

2.3.3. Geographically and Temporally Weighted Regression Model

In order to further analyze the spatial and temporal heterogeneity of the driving factors
in the YREB, the Geographically and Temporally Weighted Regression (GTWR) model
was applied in this research, which extends and refines the GWR model by incorporating
arbitrary functions of the geo-location and time into the linear regression model [32].
Specifically, the GTWR model is described as follows:

Yi = β0(ui, vi, ti) + ∑
k=1

βk(ui, vi, ti)Xik + εi (10)

where Yi denotes the logarithmic value of carbon emissions of city i, and Xik denotes
the logarithm of each independent variable of city i; βk (µi, vi, ti) denotes the regression
coefficient of the k-th independent variable of city i, which is a function of spatio-temporal
coordinates; β0 (µi, vi, ti) denotes the spatio-temporal intercept term; denotes the error term
and obeys the N (0,σ2) distribution.

To measure the intercept term and the independent variable coefficients, the Gaussian
kernel function is used to calculate the spatio-temporal weight matrix.

β̂(ui, vi, ti) =
[

XTW(ui, vi, ti)X
]−1

XTW(ui, vi, ti)Y (11)

The spatial-temporal distance from point i to point j can be described as:

dij =

√
λ
[(

ui − uj
)2

+
(
vi − vj

)2
]
+ µ

(
ti − tj

)2 (12)

where λ and µ represent scale variables to counterbalance the spatial effects and tem-
poral effects, respectively. Since the units of measurement for time and space are often
inconsistent, a direct and easy modeling approach used in this case is to incorporate the
temporal and spatial distances into the spatio-temporal distance formulas. In particular, the
space-time distance dST is combined with the spatial distance dS and the temporal distance
dT as follows:

dST = λdS + µdT (13)
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It should be noted that the spatio-temporal weight matrix WST is constructed by
employing a decay function based on Euclidean distance and Gaussian distance as:(

dST
ij

)2
= λ

[(
ui − uj

)2
+
(
vi − vj

)2
]
+ µ

(
ti − tj

)2

WST = exp

{
−
(

λ
[
(ui−uj)

2
+(vi−vj)

2]
+µ(ti−tj)

2

h2
ST

)}

= exp
{
−
(
(ui−uj)

2
+(vi−vj)

2

h2
S

+
(ti−tj)

2

h2
T

)}

= exp

{
−
( (

dS
ij

)2

h2
S

+

(
dT

ij

)2

h2
T

)}

= exp

{
−
(

ds
ij

)2

h2
S

}
× exp

{
−
(

dT
ij

)2

h2
T

}
= WS × WT

(14)

where ti and tj denote the observation times at positions i and j, respectively. hST, hS,
hT denote the specifications of the spatio-temporal bandwidth, spatial bandwidth, and
temporal bandwidth, respectively. Meanwhile, this study adopts AIC and R2 to determine
the fitness of this model.

3. Empirical Analysis
3.1. Spatial Auto-Correlation of Carbon Emissions in the YREB

In order to visualize the spatial distribution characteristics of the carbon emissions
in YREB, this paper employs the LISA diagram (Figure 1) drawn by Geoda software to
present agglomerations. Figure 1 demonstrates the clustering features of urban carbon
emissions in the YREB under the 5% significance level. In general, both the High-High
and Low-Low clusters were dominant in the sample period, which suggests that there
is remarkable spatial positive dependence in these regions. Specifically, the High-High
clusters were mainly concentrated in the Shandong Peninsula, such as Dongying, Jinan,
linyi, Zibo, and Binzhou. However, the High-High clusters spread to Hohhot and Baotou
in 2019, one possible reason is that local officials tend to glorify their political performance
by focusing on economic growth rather than pollution reduction, and this leads to the
“race to the bottom” in the High-High clusters [33]. While the Low-Low agglomerations
were mainly distributed in the upstream and midstream cities, including Qingyang, Yan’an,
Yulin, Linfen, Pingliang, Tianshui, Tongchuan, Longnan, Zhongwei, Baiyin, and Dingxi,
highlighting the spatial heterogeneity of carbon emissions in the YREB.

Moreover, the scale of the High-High and Low-Low agglomerations expanded from
2006 to 2019, indicating the increasing trend of spatial dependence between neighboring ar-
eas. In addition, both the High-High and Low-Low clusters are relatively stable, indicating
the “local club effects”. As for the High-Low agglomerations, Lanzhou was located in the
surrounding of the Low-Low agglomerations, while Dezhou and Bayannur were located
in the surrounding of the High-High agglomerations. Therefore, to avoid the expansion
of high carbon pollution in the YREB, overall coordination rather than local incentives is
more necessary.
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Figure 1. Spatial clustering of carbon emissions.

3.2. Identifying Key Influencing Forces of Carbon Emissions in the YREB
3.2.1. Static Spatial Panel Analysis

Before estimation, a series of diagnostic tests are conducted to verify the fitness of
the SDM, and they are reported in Table 3. For instance, the LM test indicates that the
original hypothesis of “no spatial autocorrelation” is refused at the 1% significance level;
the Hausman test based on the SDM indicates the random effect model is unavailable at
the 1% significance level. In addition, the combined LR tests suggest that the SAR and
the SEM cannot be nested in the SDM at the 5% significance level and the 1% significance
level, respectively, and the time fixed effect SDM and space fixed effect SDM cannot be
nested in the space-and-time fixed effect SDM at the 1% significance level. Furthermore, the
R_squared of the SDM under the space-and-time fixed effect is 0.943 (Table 4), suggesting
this model has a good fitting effect. Therefore, after a series of diagnostic tests, the SDM
under the space-and-time fixed effect is identified as reasonable for this experiment.

Table 3. Diagnostic tests.

Test Statistic Test Statistic

Moran’s I-error 3.467 *** Hausman 53.83 ***
LM-error 10.968 *** LR-test(Assumption: sar nested in sdm) 19.74 **

Robust LM-error 15.503 *** LR-test(Assumption: sem nested in sdm) 40.47 ***
LM-lag 7.780 *** LR-test(Assumption: sdm_time nested in sdm_both) 718.78 ***

Robust LM-lag 12.315 *** LR-test(Assumption: sdm_ind nested in sdm_both) 85.32 ***

Note: t statistics in parentheses; ** p < 0.05, *** p < 0.01.

Due to the existence of spatial feedback effects among various variables, the direct
and indirect coefficients of the variables are not fully consistent with the effect coefficients
of the variables. First, from the transmission mechanisms, the direct coefficient of lnP
is remarkably positive at the 1% significance level, which suggests that the expansion
of population scale would exaggerate local carbon emissions. This is due to the higher
population density of YREB, in other words, the incompatibility between the extent of
population concentration and environmental carrying capacity leads to the increase in local
carbon emissions [34]. However, the indirect and total effects coefficients of lnP have not
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been approved by the significance test, indicating that the spillover effects of the population
have not been exerted.

Table 4. Estimation results based on the SDM.

Variables Main W·X Direct Effect Indirect Effect Total Effect

lnP 0.725 *** −0.119 0.734 *** −0.003 0.732
(3.022) (−0.371) (2.958) (−0.007) (1.545)

lnA 0.939 *** −0.243 ** 0.934 *** −0.122 0.813 ***
(9.590) (−1.977) (9.970) (−0.963) (5.786)

lnT 0.917 *** −0.107 * 0.920 *** 0.008 0.928 ***
(28.239) (−1.859) (29.454) (0.234) (16.968)

lnSI 0.158 −0.096 0.152 −0.102 0.050
(1.222) (−0.351) (1.186) (−0.351) (0.147)

lnTI 0.144 * −0.168 0.138 * −0.179 −0.040
(1.869) (−0.926) (1.913) (−0.866) (−0.191)

lnFAI 0.074 0.061 0.073 0.073 0.146
(1.008) (0.690) (1.050) (0.781) (1.319)

lnUR 0.096 ** −0.016 0.095 ** −0.009 0.087
(2.561) (−0.244) (2.559) (−0.129) (1.093)

lnOP −0.026 *** −0.090 *** −0.029 *** −0.102 *** −0.131 ***
(−2.628) (−3.319) (−2.950) (−3.381) (−4.048)

Spatial rho 0.122 **
(2.523)

sigma2_e 0.013 ***
(19.556)

Observations 784
R-squared 0.943

Note: t statistics in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

Second, the direct coefficient of lnA is highly positive at the 1% significance level,
demonstrating that there is a positive correlation between affluence and local carbon
emissions in the YREB. According to the Carbon Kuznets curve (CKC) theory, the carbon
emissions resulting from the economic growth in the YREB have not yet reached the
inflection point, which is due to the agglomeration effects and positive externality of
economic growth have not been realized in the YREB [35]. However, the indirect coefficient
of lnA has not passed the significance test, indicating that the spatial spillover effect of
affluence has not been exerted.

Third, the direct coefficient of lnT is positive at the 1% significance level, indicating
that the technological process has increased local carbon emissions in the YREB. However,
the indirect coefficient of lnT has not passed the significance test, indicating that the spatial
spillover effect of affluence has not been exerted. This is because of backward and inefficient
production methods, energy consumption and carbon emissions per unit GDP have risen
significantly in the YREB.

Fourth, the direct coefficient of lnSI is positive but insignificant, hence it is difficult
to define the impact of the secondary industry on carbon emissions in the YREB. While
the direct coefficient of lnTI is positive at the 10% significance level, which demonstrates
that the increase in the tertiary industry promotes carbon pollution, which is related to the
massive carbon emissions generated by transportation and postal industries. However,
the indirect coefficient of lnSI and lnTI have not passed the significance test, indicating
that the spatial spillover effects of the secondary industry and tertiary industry on carbon
emissions are relatively weak.

Fifth, the direct coefficient of lnFAI is positive but insignificant, that is, no clear
proof supports the positive impact of fixed assessment investment on carbon emissions
in the YREB. In addition, the indirect and total coefficients of lnFAI have not passed the
significance test, indicating that the spatial spillover effect of fixed asset investment has not
been exerted.
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Sixth, the direct coefficient of lnUR is positive at the 5% significance level, indicating
that urbanization has increased local carbon emissions, one possible reason is that with
the increase in urban population, the rapidly developing infrastructure leads to excessive
energy consumption and enhanced emissions; therefore, urbanization can greatly contribute
to carbon emissions in transportation and building sectors. On the other hand, the indirect
and total coefficients of lnUR all failed the significance test, implying the spatial effect of
urbanization on carbon emissions is relatively weak in the YREB.

Seventh, the direct coefficient of lnOP plays a relatively minor but negative effect at the
1% significance level, indicating that foreign trade has hindered local carbon emissions in
the YREB. Meanwhile, both the indirect and total coefficients of lnOP are negative at the 1%
significance level, indicating that the development of foreign trade in neighboring cities has
contributed to carbon emissions reduction in the particular city; therefore, the “Pollution
Halo” hypothesis rather than the “Pollution Heaven” hypothesis is supported in the YREB,
which means that the development of foreign trade introduces clean technologies to YREB
and thus reduces carbon emissions to a certain degree [36].

Last but not the least, the value of spatial rho is remarkably positive at the 1% signifi-
cance level, which demonstrates that the spatial spillover effect of carbon emissions among
different cities is supported in the YREB.

3.2.2. Dynamic Spatial Panel Analysis

The estimation results of the dynamic SDM under the space-and-time fixed effect
are presented in Table 5. Compared with the static estimation results reported in Table 4,
several novel findings can be drawn here.

Table 5. Estimation results based on the dynamic SDM.

Variables Main W·X
Short-Term Long-Term

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

lnIt-1 0.116 ***
(3.440)

W·lnIt-1 0.064 **
(2.028)

lnP 0.626 *** −0.175 0.645 *** −0.132 0.512 0.729 *** −0.092 0.636
(2.826) (−0.550) (2.992) (−0.404) (1.161) (2.955) (−0.226) (1.160)

lnA 0.846 *** −0.262 ** 0.843 *** −0.206 0.637 *** 0.952 *** −0.161 0.791 ***
(7.472) (−2.061) (7.219) (−1.535) (3.587) (7.175) (−0.965) (3.537)

lnT 0.847 *** −0.115 ** 0.846 *** −0.058 0.788 *** 0.958 *** 0.020 0.978 ***
(18.017) (−2.248) (18.046) (−1.418) (9.903) (17.768) (0.360) (9.603)

lnSI 0.104 −0.075 0.106 −0.086 0.020 0.118 −0.095 0.023
(0.904) (−0.291) (0.896) (−0.320) (0.064) (0.874) (−0.286) (0.061)

lnTI 0.068 −0.072 0.070 −0.083 −0.014 0.077 −0.094 −0.017
(0.928) (−0.422) (0.949) (−0.480) (−0.077) (0.933) (−0.447) (−0.077)

lnFAI 0.086 0.081 0.088 0.079 0.168 0.102 0.106 0.208
(1.123) (0.959) (1.166) (0.905) (1.605) (1.190) (0.999) (1.606)

lnUR 0.058 * −0.040 0.061 * −0.035 0.026 0.068 * −0.037 0.032
(1.686) (−0.724) (1.791) (−0.607) (0.387) (1.773) (−0.516) (0.385)

lnOP −0.027 *** −0.078 *** −0.028 *** −0.084 *** −0.112 *** −0.033 *** −0.106 *** −0.139 ***
(−2.628) (−3.058) (−2.903) (−3.303) (−3.894) (−3.018) (−3.391) (−3.891)

Spatial rho 0.070
(1.359)

sigma2_e 0.012 ***
(5.420)

Observations 728
R-squared 0.952

Note: t statistics in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.
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First, the temporal lag coefficient of lnI is positive at the 1% significance level, and
the spatial lag coefficient of lnI is positive at the 5% significance level, implying that
the previous carbon emissions in the particular city would increase the present carbon
emissions in both local and surrounding cities. Thus, the carbon emissions have a snowball
effect, consistent with previous speculations.

Second, the direct coefficients of lnP imposed by the short-term and the long-term
are positive at the 1% significance level, while the value of the coefficient imposed by the
long-term is greater than it imposed by the short-term, demonstrating that the direct effect
of the population over the long term is stronger than it over the short term. Similarly,
the direct coefficients of lnA and lnT in the short-run and the long-run are positive at
the 1% significance level, while the value of the coefficients imposed in the long-run is
both greater than those imposed in the short-run, demonstrating that the direct effect of
influence and technology, in the long run, is stronger than in the short run. Moreover, the
direct coefficients of lnOP imposed by the short-term and the long-term are negative at the
1% significance level, while the absolute value of the coefficient imposed by the long-term is
greater than it imposed by the short-term, indicating that openness has negatively enhanced
carbon emissions in the YREB. However, the indirect coefficients of all other independent
variables failed the significance test, showing that these indirect effects have failed to exert
a stronger effect on carbon emissions in the long-term.

Furthermore, the total coefficients of lnA and lnT are positive in the long-term and in
the short-term, and the value of the coefficients is greater in the long-term than that in the
short-term, which highlights the establishment of spatial decomposition in estimation. In
addition, the total coefficients of lnOP imposed by the short-term and the long-term are
both negative at the 1% significance level, and the total effect of it is more powerful in the
longer run, indicating that there is a temporal lag effect of this factor.

Last but not least, compared with the absolute value of the coefficients including
second industry, tertiary industry, fixed assets investment, urbanization, and openness, the
three traditional factors including population, affluence, and technology are identified as
the key influencing factors of carbon emission in the YREB under the empirical framework
of DSDM-STIRPAT. However, since openness does not belong to the key influencing factors,
its negative effect on reducing carbon emissions in the YREB also highlights the importance
and necessity of an open economy.

3.3. Spatio-Temporal Heterogeneity Analysis

To further analyze the spatio-temporal heterogeneity of the key influencing factors, the
corresponding results of the GTWR model are mapped in Figures 2–4. First, the value of
AIC (Akaike information criterion) is −851, and R_squared is 0.9912, indicating the GTWR
model fits well. In addition, most coefficients of lnP, lnA, lnT have passed the significance
test, implying the GTWR model is valid. As for the remaining five variables, the results in
the sample cities do not fully pass the significance test, thus the fact that they are not the
key influencing factors is proved once again.

In terms of population (Figure 2), generally speaking, the expansion of population scale
increases carbon emissions in the YREB, that is, all sample cities would generate carbon
emissions owing to the increasing population. However, the heterogeneous influence of
the population on carbon emissions in space should not be ignored. Specifically, the effect
coefficients in Taiyuan, Yangquan, Jinan, Dongying, Zibo, Jining, Linyi, Taian, Liaocheng,
Luoyang, Sanmenxia, and Xining are relatively high, while the effect coefficients in Wuhai,
Bayannur, Ordos, Baoji, Xianyang, Tianshui, Baiyin, and Shizuishan are relatively low.

Furthermore, the influence of the population on promoting carbon emissions is het-
erogeneous in different periods. For instance, the cities performing a stronger promoting
effect over time are mostly concentrated in Linfen, Lvliang, Yuncheng, Ulanqab, while the
cities performing a weaker driving effect over time are distributed in Jinan, Zibo, Binzhou,
Dongying, Dezhou, Zhengzhou, Xinyang, and Xinin.
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With respect to affluence (Figure 3), the impact of economic growth is similar to
population, since the coefficients are positive for all sample cities during the sample period.
Similarly, the coefficients of different cities also vary spatially. Cities with strong driving
forces from affluence include Ordos, Jinan, Zibo, Jining, Linyi, Tai’an, Liaocheng, Heze,
Dezhou, Binzhou, Dongying, Jiaozuo, Sanmenxia, and Anyang, with fast-growing economy
and good industrial base. Cities with weak driving forces from affluence include Lanzhou,
Baiyin, Dingxi, and Longnan, which are located in the west region, with a relatively
backward economy, low urbanization and less energy consumption.

In addition, the coefficients of different cities also vary temporally. For instance, the
cities with increasing effects of influence on carbon emissions during the sample period
include Xining, Shizuishan, Baoji, Linfen, Lvliang, Tianshui, and Jinzhong; while the cities
enjoying decreasing effects of affluence on carbon emissions during the sample period
include Weinan, Tongchuan, Sanmenxia, Xi’an, Luoyang, Kaifeng, and Puyang.

In the case of technology (Figure 4), all sample cities show promoting effects on carbon
emissions in the YREB. Specifically, the cities enjoying relatively high driving forces include
Weinan, Xianyang, Tongchuan, Xi’an, Sanmenxia, Zibo, Dongying, and Luoyang; while the
cities with relatively weak driving forces include Guyuan, Zhongwei, Wuzhong, Baiyin,
Lanzhou, Taiyuan, Yangquan, and Jinzhong.

Furthermore, the coefficients of different cities also vary temporally. For example,
Tongchuan, Xi’an, Sanmenxia, Xianyang, and Weinan show an increasing trend, while
Yulin, Zhongwei, Pingliang, Dingxi, Tianshui, Lanzhou, and Baiyin show a decreasing
trend oppositely.

In short, the spatio-temporal heterogeneity of the key influencing factors is proved,
and the importance of suiting measures to local conditions in terms of space and time
involved should be highlighted in further research.

4. Conclusions, Policy Implications, and Research Prospects
4.1. Conclusions

The purpose of this study is to identify the spatio-temporal heterogeneity of carbon
emissions and their driving forces in the YREB of China. Specifically, this study employed
the LISA diagram to identify the spatial distribution characteristics of carbon emissions
in the YREB. In addition, this paper used both the spatial Durbin model (SDM) and the
dynamic spatial Durbin model (DSDM) under the space-and-time fixed effect to investigate
the key influencing factors. Third, the spatio-temporal heterogeneity was further investi-
gated based on the application of the GTWR model. The conclusions can be summarized
as follows:

(1) In terms of spatial characteristics, in the carbon emissions in the YREB significant
clustering characteristics appeared. The Low-Low clusters were mainly distributed
in the midstream of the YREB, while the High-High clusters were mainly located in
the Shandong Peninsula, and compared with other cities, the carbon emissions of
Jinan, Linyi, and Dongying were greater, which is related to the fact that the economic
growth of Shandong Peninsula mainly benefited from heavy industries with high-
energy consumption and high emissions. Despite the rapid economic growth in the
Shandong Peninsula, the deterioration of the ecological environment is accompanied
by increased carbon emissions [37]. In addition, the High-High clusters exhibited an
apparent high-carbon spillover effect, specifically reflected in the spatial expansion of
the high-carbon emission areas over time, and the transformation of the Low-High
clusters and insignificant clusters into High-High clusters, which should be examined
by local governments. Whereas the low-carbon lock-in effect mainly appeared in
the Low-Low clusters, such as Yan’an, Pingliang, Tianshui, Tongchuan, Longnan,
Zhongwei, Baiyin, and Dingxi, where the spatial pattern is more solid.

(2) The estimation results of the spatial panel analysis demonstrated that the carbon
emissions showed a distinct spatial lag effect and temporal lag effect. In addition,
population, affluence, technology, tertiary industry, and urbanization possessed signif-
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icantly direct effects, while only openness played a negative direct effect and indirect
effect. Meanwhile, affluence and technology all had remarkably positive total effects
on carbon emissions, while openness exerted a negative total effect on carbon emis-
sions. The economic development model of the YREB which relies only on inputs of
production supplies including capital and labor to enhance outputs could result in an
increment in carbon emissions. While the tertiary industrial structure and technology
contribute to the suppression of carbon emissions in the YREB; the restraint effect
is so weakened that it cannot offset the growth of carbon emissions caused by their
stimulating factors. Moreover, the result that urbanization is one of the contributors
to promoting carbon emissions is consistent with previous studies [38]. Urbanization
has a huge clustering effect on economic development, and there are intensive con-
struction activities, extensive transportation systems and high population density in
urban areas, which will increase energy consumption and carbon emissions. Thus,
the governments of the YREB ought to change their economic development models
to intensive production and realize the de-coupling association between economic
growth and carbon emissions [39]. In general, the effects in the long-term are stronger
than those in the short-term, which highlights the existence of the circular cumulative
effect and the rationality of the findings in this study.

(3) The influences of different variables on carbon emissions exhibit remarkable spatio-
temporal heterogeneity. Even in the same basin, there is significant spatio-temporal
heterogeneity among key influencing factors including affluence, population, and
technology, for example, the three main drivers are stronger in the middle and down-
stream cities and relatively weaker in the upstream cities of the YREB; simultaneously,
in the middle and downstream cities of the YREB, the influence of technology is
increasing but the influence of affluence is decreasing. This heterogeneity seems
to be driven by the segmentation of regional economic and social development sta-
tus, certificating that geographical location and temporal factors are essential when
investigating the driving factors of carbon emissions.

4.2. Policy Implications

In the light of the above conclusions, the integrated policy implications are stated
as follows:

First, considering the spatial agglomeration of carbon emissions, the cities in the
High-High agglomeration, such as the cities in the Shandong peninsula, should take a
pioneering act in environmental regulation to curb the high-carbon spillover effect, and
the potential “race to bottom” effect ought to be controlled while the “race to top” effect
ought to be promoted according to the “common but different” guidelines of pollution
management [40]. In addition, cities in the Guanzhong City Cluster should strive to pro-
mote technology innovation and clear production, to play radiation effects on surrounding
High-Low clusters, such as Lanzhou. Similarly, cities in the Low-High cluster, such as
Bayannur and Ulanqab, should leverage spatial spillover effects and improve the carbon
lock-in situation, with industrial structure optimization and openness trade expansion.

Second, as affluence, population and technology contribute significantly to carbon
emissions, governments should adopt a high-quality development strategy and aim to
pursue a low-carbon economy to decouple the economy from carbon emissions [41]. Fur-
thermore, the adjustment of population inflow and the introduction of advanced technology
should be combined with the national strategy of “One Belt, One Road” [42]. In addition,
to reduce the carbon emissions in the progress of technological and economic development,
clear producing technology ought to be a priority for technological innovation strategy.
To realize these goals, the governments of YREB need to change the existing extensive
economic model to an intensive economic model, specifically, governments should apply
economic stimulus measures more efficiently, such as encouraging low-carbon companies
to research and develop new technologies and lessening their trouble in obtaining loans [43].
Simultaneously, considering the “pollution heaven” effect of foreign trade in the YREB,
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enhancing the reduction effect of openness on carbon emissions is essential for both the
local and surrounding areas in the YREB, and as the urbanization rate is another contributor
to carbon emissions; it is recommended to enhance the efficiency of the urbanization efforts
in the YREB. Since the tertiary industry is also a factor to increased carbon emissions in
the YREB, the policies should focus on restructuring industries, particularly promoting the
eco-friendly tertiary industries including commerce, services, tourism and retail.

Third, the temporal lag effect and spatial spillover effect should be taken into account
when formulating policies, and the efficient management of carbon emissions depends on
the joint efforts of local governments and the sustainability of policy implementation. Fur-
thermore, to release the power of industrial upgrading on reducing carbon emissions in the
long-term, the integration and updating of industrial structure should be put into the perfor-
mance evaluation of local government [44,45]. Moreover, to strengthen the spatial spillover
effects of green economy policies, a regional collaboration system based on geographical
relevance should be developed, designed to establish a long-term functioning mechanism.

Last but not least, to respond to the demand for spatio-temporal heterogeneity, the
formulation of carbon policies should be conducted according to local conditions, and
cross-regional cooperation among local governments should be promoted [46]. Meanwhile,
the transformation of the development model from energy oriented, cleaner production
and technology innovation of energy-intensive industries ought to be optimized. Further-
more, local authorities must foster high-tech and eco-friendly industries, to reduce energy
consumption and curb carbon pollution based on their resource endowment. In addition,
to reduce the space of vicious competition, the realization of carbon emission reduction
and energy saving at the national level should be combined with the unified planning of
the central government’s top-level design.

4.3. Research Prospects

Although this study has comprehensively investigated the spatio-temporal heterogene-
ity and key influencing factors of carbon emissions in the YREB of China, some potential
directions still deserve further exploration. For instance, the natural conditions including
smoke, dust, temperature, and humidity also had a significant impact on carbon emissions,
further research may include them under the availability of data. In addition, a comparison
with the spatio-temporal heterogeneity and key influencing factors of carbon emissions in
the Yangtze River Economic Belt and the Yellow River Economic Belt may lead to more in-
teresting findings, and more spatial econometric models, such as the Geographical Detector
and the Standard Deviation Ellipse, which may be employed in the near future.
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