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Abstract

Summary: We have developed an algorithm for genetic analysis of complex traits using genome-wide

SNPs in a linear mixed model framework. Compared to current standard REML software based on the

mixed model equation, our method is substantially faster. The advantage is largest when there is

only a single genetic covariance structure. The method is particularly useful for multivariate analysis,

including multi-trait models and random regression models for studying reaction norms. We applied

our proposed method to publicly available mice and human data and discuss the advantages and

limitations.

Availability and implementation: MTG2 is available in https://sites.google.com/site/honglee0707/

mtg2.

Contact: hong.lee@une.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Previously, methods were developed to estimate genetic variance and

genetic correlations between complex traits explained by genome-wide

SNPs using linear mixed models (Lee et al., 2012; Maier et al., 2015;

Yang et al., 2011). As genetic relatedness among (conventionally) unre-

lated subjects could be estimated based on genomic information,

which replaces family studies with population studies, the model allows

estimation of the genetic effects to be much less confounded with fam-

ily environmental effects. For this same reason, the approach has

also been proposed as a more powerful tool to detect genotype–

environment interaction (G � E) (Lee et al., 2015). That is, in the

presence of G � E, the genetic correlation between genetic effects in

different environments is significantly lower than one (Falconer and

Mackay, 1996). In order to capture G � E across a trajectory of mul-

tiple environments, random regression models have been proposed

for evolutionary and livestock genetics (Kirkpatrick et al., 1990;

Meyer and Hill, 1997). The random regression model is also known

as the reaction norm model (Kirkpatrick and Heckman, 1989).

In estimating genetic variance explained by genetic markers, Lee

and Van der Werf (2006) introduced an efficient average informa-

tion (AI) algorithm to obtain residual maximum likelihood (REML)

estimates. As opposed to using Henderson’s mixed model equation

(MME) the algorithm was based on using the variance covariance

matrix of phenotypic observations directly, hence the term ‘direct AI

algorithm’. The algorithm is particularly advantageous when using a

dense covariance matrix, such as the genomic relationship matrix

(GRM), and with a large number of multiple variance components.

The direct AI algorithm has been implemented in GCTA-GREML

(Lee et al., 2012; Yang et al., 2011, 2013) and MultiBLUP (Speed

and Balding, 2014) that have been widely used in human, evolution-

ary and livestock genetics.

Here, we combine the direct AI algorithm with an eigen-decompo-

sition of the GRM, as first proposed by Thompson and Shaw (1990).

We apply the procedure to analysis of real data with univariate, multi-

variate and random regression linear mixed models with a single gen-

etic covariance structure, and demonstrate that the computational
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efficiency can increase by>1000-fold compared with standard REML

software based on MME.

2 Methods

2.1 Model
We used multivariate linear mixed models and random regression

models to estimate genetic variances and covariances across multiple

traits and among traits expressed in different environments. A linear

mixed model can be written as

yi ¼ Xibi þ Zigi þ ei

where yi is a vector of trait phenotypes, bi is a vector of fixed effects,

gi is a vector of additive genetic value for individuals and ei repre-

sents residuals for the trait or environment i. X and Z are incidence

matrices. More details can be found in the Supplementary Notes. To

model genotype-environment interactions, a random regression

model attempts to fit effects as a function of a continuous variable

(Kirkpatrick et al., 1990; Meyer and Hill, 1997) as

yi ¼ Xibi þ ZiaU
0
i þ ei

where a is a n (the number of records) by k matrix of genetic ran-

dom regression coefficients, Ui is the ith row in a p by k matrix of

Legendre polynomials evaluated for p points on the trajectory, and

k is the order of Legendre polynomials. This model is explicitly

described in the Supplementary Notes. The genetic covariance

structure was constructed based on genome-wide SNPs.

2.2 Algorithm
REML is often solved using the Newton–Raphson or Fisher’s

scoring method where variance components are updated based on

observed (Hessian matrix) or expected second derivatives of the

log likelihood (Fisher information matrix). In order to increase the

computational efficiency of obtaining REML estimates, Gilmour

et al. (1995) employed the average of the Hessian and Fisher infor-

mation matrix that was estimated based on Henderson’s MME.

The MME-based AI algorithm is particularly efficient when the gen-

etic covariance structure fit to the model is sparse. When using dense

covariance structures such as GRM, the computational efficiency of

the direct AI algorithm is substantially enhanced over the MME-

based AI algorithm (Lee and Van der Werf, 2006). Here, we extend

the direct AI algorithm by implementing an eigen-decomposition of

the genetic covariance structure as proposed by Thompson and

Shaw (1990).

In recent studies the eigen-decomposition technique has been

made use of with the Newton–Raphson algorithm in univariate

and multivariate linear mixed models (Zhou and Stephens,

2014). In the present work, we show that implementation in the dir-

ect AI algorithm is mathematically straightforward and is computa-

tionally more efficient, especially in multivariate linear mixed

models (Supplementary Notes). Moreover, we demonstrate how our

proposed algorithm can be efficiently applied to a random regres-

sion model (see Supplementary Notes).

2.3 Data
We used heterogeneous stock mice data (http://mus.well.ox.ac.uk/

mo-use/HS/) to estimate genetic variances and covariances of com-

plex traits explained by genome-wide SNPs. After a stringent QC of

the genotypic data, we used 9258 autosomal SNPs from 1908 indi-

viduals. We used phenotypes of four glucose values (taken at 0, 15,

30 and 75 min after intraperitoneal glucose injection in a model of

type 2 diabetes mellitus) as well as body mass index (BMI). We

analyzed this data in a five-trait linear mixed model. We also applied

a random regression model for the repeated glucose measures.

Second, we used human data from the Atherosclerosis Risk in

Communities (ARIC) cohort (psh000280.v3.p1) (Sharrett, 1992). A

similar stringent QC as above was applied to the available geno-

types. In addition, we randomly removed one of each highly related

pair of relatedness >0.05 to avoid bias because of population struc-

ture or family effects. After QC, 7263 individuals and 583 058 SNPs

remained. We used BMI, triceps skinfold (TS), waist girth (WG), hip

girth (HG), waist-to-hip ratio (WHR), systolic blood pressure (SP),

diastolic blood pressure (DP) and hypertension (HP) that were fitted

in an eight-trait linear mixed model.

Missing phenotypic values were less than 10% and 1% for each

trait for the mice and the human data, respectively. They were

imputed with their expected values from the univariate linear mixed

model, each trait being fit separately.

2.4 Software
We implemented the direct AI algorithm and the eigen-decomposition

technique with the MTG2 software. We compared MTG2

with GEMMA (Zhou and Stephens, 2014), ASReml (Gilmour et al.,

2006) and WOMBAT (Meyer, 2007). GEMMA uses the eigen-

decomposition technique with the Newton-Raphson algorithm. ASReml

and WOMBAT are well-known REML software that employed a

MME-based AI algorithm.

3 Results

When using the heterogeneous mice data (N ¼ 1908) for the multi-

variate linear mixed model with up to five traits, MTG2 only took a

Table 1. Computing time for each software run with a 2.7 GHz CPU when using the heterogeneous stock mice data (N ¼ 1908)

MTG2 GEMMA ASReml WOMBAT

# traits Multivariate linear mixed model

1 1 s 1 s 2 min 17 s

3 1 s 1 s 210 min 9 min

5 2 s 6 s 950 min 60 min

# order Random regression model

1 2 s NAa 4 min 3 min

2 2 s NA 82 min 30 min

3 2 s NA 310 min 54 min

For MTG2 and GEMMA, it took �4 s for the eigen-decomposition, which is only required to be done once per dataset then can then be reused for multiple

analyses.
aGEMMA does not have a function for the random regression model.
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few seconds, which was a few thousands times faster than ASReml

and WOMBAT and few times faster than GEMMA (Table 1).

Estimated SNP-heritability and genetic correlations between traits

are shown in Supplementary Table S1. REML parameters after con-

vergence were essentially the same between the different software

suites, as shown in Supplementary Tables S8 and S9.

When employing a random regression model, the computing

time for MTG2 was a few seconds, not changing with the higher-

order models (Table 1). However, the computational efficiency of

ASReml or WOMBAT was lower and the computing time increased

substantially with the higher-order models (Table 1). GEMMA does

not have a function for random regression models. The estimated re-

sults from the random regression model are described and depicted

in Supplementary Data (Supplementary Table S2 and Figure S1).

When using the ARIC cohort human data (psh000280.v3.p1),

the pattern of the computing time was similar to that for the hetero-

geneous mice in that MTG2 and GEMMA performed similarly al-

though MTG2 became relatively faster when increasing the number

of traits (Supplementary Table S4). ASReml and WOMBAT were

too slow to run for this dataset. Supplementary Table S6 outlines

the estimated SNP-heritability and genetic correlations between

obesity and blood pressure traits.

4 Discussion

There are two main limitations to MTG2 as well as GEMMA. The

eigen-decomposition technique cannot be used with more than one

GRM as also noted by Zhou and Stephens (2014) unless a special

condition is satisfied, i.e. one full-rank GRM and multiple low-rank

GRMs are provided (Speed and Balding, 2014). In models with mul-

tiple GRMs, GEMMA cannot be used and MTG2 becomes slow al-

though it is still considerably faster than ASReml and WOMBAT

(Supplementary Table S5). Second, the eigen-decomposition tech-

nique requires a balanced design (i.e. no missing phenotypes across

traits). Phenotypic imputation can be used for missing phenotypic

values. In this work, we used imputed missing phenotypes for the

mice data (<10% missing for each trait), although MTG2 without

the eigen-decompostion could still be used for the data, including

the missing values. We observed that the results from the data with

and without the imputed missing phenotypes were not very different

(Supplementary Table S2 and Figure S2). For the human data, miss-

ing phenotypes were less than 1%, therefore the results with and

without the imputed missing phenotypes were almost identical (re-

sults not shown). Finally, both MTG2 and WOMBAT are able to fa-

cilitate a parallel computation that further raises efficiency.

5 Implication

There are three novel aspects in this application note. The first and

foremost is estimating parameters for the random regression models

with the direct AI algorithm. The second and third is to utilize the

eigen-decomposition technique with the AI algorithm in the multivari-

ate models and the random regression models, respectively. MTG2 can

be used for a wider range of statistical models than GEMMA, includ-

ing multivariate linear mixed models, random regression models and

multiple variance components models. GEMMA can only be used for

a single genetic variance component in multivariate linear mixed mod-

els (Supplementary Table S7). For random regression models or/and

multiple variance components models, the computational efficiency for

MTG2 (even without the eigen-decomposition) is considerably higher

than that of ASReml or WOMBAT (Table 1, Supplementary Tables S5

and S7). Therefore, MTG2 can be a useful and efficient tool for com-

plex traits analyses including estimating genetic variance and covari-

ance and G � E.
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