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Sensory integration dynamics in a hierarchical
network explains choice probabilities in cortical
area MT
Klaus Wimmer1, Albert Compte1, Alex Roxin1,2, Diogo Peixoto3,4, Alfonso Renart3 & Jaime de la Rocha1

Neuronal variability in sensory cortex predicts perceptual decisions. This relationship, termed

choice probability (CP), can arise from sensory variability biasing behaviour and from

top-down signals reflecting behaviour. To investigate the interaction of these mechanisms

during the decision-making process, we use a hierarchical network model composed of

reciprocally connected sensory and integration circuits. Consistent with monkey behaviour

in a fixed-duration motion discrimination task, the model integrates sensory evidence

transiently, giving rise to a decaying bottom-up CP component. However, the dynamics of the

hierarchical loop recruits a concurrently rising top-down component, resulting in sustained

CP. We compute the CP time-course of neurons in the medial temporal area (MT) and find an

early transient component and a separate late contribution reflecting decision build-up. The

stability of individual CPs and the dynamics of noise correlations further support this

decomposition. Our model provides a unified understanding of the circuit dynamics linking

neural and behavioural variability.
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T
he neural basis of decision making has been studied
extensively in monkeys performing perceptual discrimina-
tion tasks1. One influential finding is that the response

variability of single neurons in visual areas such as MT is
predictive of the monkey’s choice. A common measure of this
correlation is ‘choice probability’ (CP)2, the probability that an
ideal observer can predict the monkey’s choice solely based on the
number of spikes fired by a neuron. CPs above chance level have
been found consistently across the visual system3,4, in a variety of
discrimination tasks2,5–10.

Two different interpretations of CP in sensory neurons have
emerged: in the bottom-up interpretation, variability in the choice
is partly caused by variability in the response of sensory neurons,
and CP quantifies this causal relationship2. This interpretation
can be formalized in a feedforward network model11, where (1)
the choice is determined by comparing the pooled activity of
noisy sensory neurons across two populations with opposite
stimulus preferences, and (2) neuronal variability within these
populations is positively correlated11,12. These noise correlations
have generally been observed experimentally10,13,14, but their
magnitude and spatio-temporal structure seem to vary across
areas, species and experimental conditions. In the top-down
interpretation9,15–17, the variability of sensory neurons that
correlates with choice arises due to trial-to-trial fluctuations in
top-down signals, which modulate the magnitude of the evoked
responses18–20. The nature of these top-down signals remains,
however, largely unknown: it is not clear on what time-scale they
operate16, what causes their variability, and whether they are
generated before the stimulus presentation, reflecting some kind
of bias or expectation, or they are instead recruited by sensory
inputs as some kind of bottom-up attentional signal. In any case,
CP due to top-down inputs reflects computations that escape the
control of the experimenter and cause trial-to-trial response
variability that is not necessarily noise.

To differentiate between bottom-up and top-down mechan-
isms, a recent study compared the dynamics of sensory evidence
integration and the time-course of CP in a disparity discrimina-
tion task9. They found that the impact of stimulus fluctuations on
the decision decreases over time, whereas CP increases and
reaches a plateau. This indicates that CP cannot be exclusively
due to the causal effects of sensory activity on the decision and
supports a non-causal relation through top-down signals.
However, top-down connections from associative to sensory
areas could give rise to recurrent loops across the cortical
hierarchy, questioning the rationale of establishing the direction
of causality. Whether this recurrent interaction exists and how it
may impact the dynamics of sensory integration remains to be
elucidated. A further challenge for interpreting CP is that it is
directly linked to the structure of noise correlations12, but the
sources of correlations are not well understood. On one hand, it
has become clear that correlations are not a fixed hard-wired
property of sensory circuits but depend on a number of factors
including the context of the task14 and attentional states18,21,22.
On the other hand, theoretical work has shown that shared inputs
do not necessarily cause correlations in recurrently connected
networks23, so that we currently lack a canonical network model
that can generate a structure of noise correlations as measured
experimentally. The emerging view is that correlations do not
have a unique origin but can be caused, in addition to hard-wired
connectivity, by feedforward (for example, eye movements24 or
stimulus fluctuations25), intrinsic (for example, stochastic global
fluctuations of ongoing activity26) and top-down sources14,20,
making CPs hard to interpret3,4.

Here, we present a hierarchical network model of spiking
neurons, representing a sensory and an associative cortical area
and carrying out the discrimination of two stimulus categories.

Noise correlations between sensory neurons together with
topographical top-down connections give rise to CP that is
generally composed of two contributions: a bottom-up compo-
nent, which peaks after stimulus onset and decreases as the
decision is being formed, and a top-down component, which
simultaneously increases until reaching a steady level. We analyse
single unit and paired unit recordings from a classic motion
discrimination experiment2,13 and show that CPs in MT have an
early bottom-up component (o500 ms after stimulus onset)
revealed by trial-to-trial stimulus fluctuations. Leveraging on the
heterogeneity exhibited by individual CP time-courses, we further
show the contribution of a late component, consistent with slowly
varying top-down signals that represent the upcoming choice.
This slow late component is also revealed by the rising time-
course of lagged spike count noise correlations. Thus, our model
elucidates how the emergent dynamics, developing across the
hierarchy during sensory integration, frames the relationship
between neuronal and behavioural variability in perceptual
decision tasks.

Results
Mechanisms underlying correlations and CP. We developed
a computational model of perceptual decision making that
allowed us to isolate and quantify the dynamics and the relative
contributions of bottom-up and top-down mechanisms to
spike count noise correlations and CP of sensory neurons. We
simulated a standard two-alternative forced-choice motion
discrimination task using fixed-duration random dot kinemato-
grams (RDKs)1–3,13. The spiking network consists of an
integration circuit (for example, LIP, FEF) and a sensory circuit
(MT), recurrently coupled via bottom-up feedforward
connections and top-down feedback connections (Fig. 1a). The
integration circuit accumulates sensory evidence and produces a
binary categorization due to winner-take-all competition between
two decision-encoding populations27. The sensory circuit
contains neural populations selective to opposite directions of
motion, the average responses of which vary approximately
linearly with the stimulus coherence. We primarily studied
responses to ambiguous, zero-coherence stimuli, which maximize
behavioural variability. We used stimuli that caused strong
temporal modulation of sensory population rates (Fig. 1b)
comparable to those produced by the temporal variations
in motion energy caused by RDKs in MT neurons28,29 (see
Methods). These time-varying rates are integrated by populations
D1 and D2 in the integration circuit until the network reaches the
attractor state associated with one of the choices27 (Figs 1b and
2a). Because we are interested in the relationship between
neuronal and choice variability, we set the sensory circuit to
operate in the balanced regime30,31 where neurons exhibit large
response variability32. We wanted to characterize the structure
of noise correlations, as it provides the link between single
neuron variability and behaviour11,12. We classified correlations
among sensory neurons as bottom-up or top-down, depending
on whether they were generated in the absence or by virtue of
top-down feedback connections, respectively.

To study the dynamics of CP caused by bottom-up correlations
only, top-down connections in the network were removed.
We first noticed that because the sensory circuit operated in
the balanced regime, average correlations were marginally small
despite the presence of anatomically shared inputs23. As a
consequence, the network did not give rise to substantial CP. We
therefore investigated two other potential sources of bottom-up
noise correlations in the model: (1) trial-to-trial stimulus
fluctuations and (2) the spatial arrangement of external
background inputs to the sensory populations. To generate
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trial-to-trial stimulus fluctuations, we used different realizations
of the time-varying zero-coherent stimulus in each trial. This
condition, generally used in experiments, was termed non-
replicate to distinguish it from repeated presentations of identical
replicate stimuli. As a consequence of the non-replicate condition,
neuronal pairs within the same population (E1E1 and E2E2)
showed positive trial-to-trial correlations (Fig. 2c) reflecting the
co-modulation of the evoked rates around the mean response
obtained over different zero-coherent stimuli (Supplementary
Fig. 1). Thus, these correlations should technically be termed
signal correlations instead of noise correlations. Across-
population correlations (E1E2) were negative due to
competition between E1 and E2 mediated by common
inhibition (Supplementary Fig. 2 and Methods). Thus, the
difference between correlations within the same population and
correlations across populations was large and constant
throughout the stimulus period (Fig. 2c), a necessary condition
to yield sustained CP12. Despite this, CP showed a fast rise
followed by a slow decay towards chance level (Fig. 2b). This CP

time-course is a direct consequence of the non-linear dynamics of
the integration circuit, which, as the trial progresses, approaches
an attractor causing a decrease of the impact of the sensory
activity fluctuations on the upcoming decision27,33 (Fig. 2a inset).
We call this effect transient evidence integration.

The same qualitative structure of bottom-up correlations was
generated by, instead of using non-replicate stimuli, modifying the
spatial arrangement of the external background inputs. In circuits
with strong global inhibition, spatially localized external inputs are
more effective in generating large amplitude fluctuations in
population rates than non-specific global background inputs34

(Supplementary Fig. 2). Thus, local background inputs specifically
targeting E1 and E2 were able to generate correlations with the
same magnitude and structure as stimulus fluctuations, leading to
virtually identical CP time-courses (Fig. 2b). In addition, the
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Figure 1 | Model architecture and single-trial response. (a) Network

model composed of a sensory circuit (MT) with two opposite stimulus-

selective excitatory populations E1 and E2 that are coupled to two choice-

associated populations D1 and D2 in an integration circuit27 (for example,

LIP, FEF). There are feedforward and top-down feedback connections

(strength bFB) between the two circuits as well as lateral excitatory and

inhibitory (population I) recurrent connections within each circuit

(connections are represented by lines with a width proportional to the

synaptic efficacy and connection probability). The stimulus is modelled as

time-varying input currents to neurons in E1 and E2 (red and blue traces

show two examples, s.d. s) mimicking temporal variations in the

momentary sensory evidence in favour of one or the opposite direction of

motion of an RDK. In addition, sensory neurons receive shared external

background Poisson inputs (population X) and decision neurons non-shared

Poisson inputs (not shown). (b) Response of the network to an example

zero-coherence stimulus (s¼ 1). Bottom traces show the population-

averaged stimulus currents into E1 and E2. Rastergrams show the spiking

activity of neurons in E1 and E2 (middle, 800þ 800 neurons) and in D1 and

D2 (top, 240þ 240 neurons), sorted by rate. Traces below the rastergrams

show the corresponding instantaneous population rates (count window

T¼ 50 ms). Top-down connections were set to zero (bFB¼0).
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Figure 2 | Impact of bottom-up and top-down correlations on choice

probability. (a–c) Network without top-down connections receiving

non-replicate zero-coherence stimuli that cause bottom-up correlations (see

Methods and Supplementary Fig. 1; bFB¼0, s¼ 1). Average population rates

for trials yielding the preferred (red) and the non-preferred choice (blue)

for the integration and sensory circuits (a). Time-courses of the average CP

(b; count window T¼ 100 ms) and average spike count noise correlations

(c; T¼ 250 ms) of sensory neurons. Correlations are shown for pairs of

excitatory neurons within (EiEi, pink) and across sensory populations (EiEj,

cyan), and of all pairs (EE, black). Average CP, obtained when bottom-up

correlations are generated by local background inputs and replicate stimuli,

is shown for comparison (grey trace in b; see Supplementary Figs 2 and 3

for details). Upper inset: after stimulus onset, the dynamics of the

integration circuit is described by a double-well energy landscape where

each minimum corresponds to a choice attractor. When approaching one of

the attractors, the impact of sensory activity fluctuations on the state of the

integration circuit decreases. (d–f) Same as a–c but using a network with

top-down connections (bFB¼ 1, s¼ 1). We eliminated bottom-up

correlations by using replicate stimuli and global background inputs

(Methods). The rates and CP obtained without top-down connections are

shown for comparison (dotted lines in d and e). Upper inset: the stability of

the choice attractor is increased (represented by an increase in well depth)

due to the bottom-up/top-down loop dynamics. Shaded areas represent the

stimulus interval.
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correlations produced by local background inputs caused a
substantial decrease in the accuracy of the categorization11,35

(Supplementary Fig. 3d), which was already suboptimal in the
absence of correlations due to transient evidence integration27

(Supplementary Fig. 3e).
Given the generality of transient integration, the same

qualitative CP time-course is obtained across a broad range of
correlation amplitudes (Supplementary Fig. 4), if correlations are
caused by other bottom-up sources (for example, inherited from
an upstream area), or if the integration circuit is replaced with a
bounded integrator29 (Supplementary Fig. 5b). Thus, given the
invariance of the CP dynamics to the exact origin of bottom-up
correlations, we used stimulus fluctuations to develop our
experimental predictions as they are easy to manipulate.

Next, we investigated the impact of top-down signals by
including weak feedback connections from the neurons in the
integration circuit to the corresponding sensory populations (D1
to E1, D2 to E2; Fig. 1a). To isolate the effect of top-down
feedback, we removed bottom-up correlations by using global
background inputs and by presenting replicate stimuli. As
evidence supporting one choice built up in the integration
circuit, top-down inputs projected this gradual increase in activity
and produced a small boost in the rate of the corresponding
sensory neurons, particularly towards the end of the stimulus
period (Fig. 2d). This choice-dependent increase in rate generated
both correlations between sensory neurons and a CP with a
ramp-and-plateau time-course mirroring the build-up of the
decision (Fig. 2e,f). The amplitude of the CP increased with the
strength of top-down connections (Supplementary Fig. 4e–g).

When taken in isolation, neither bottom-up correlations nor
top-down connections could account for the fast rise in CP
followed by a plateau that is observed experimentally2. However,
when taken together, the two mechanisms could reproduce this
time-course (Fig. 3a). The resulting CP was approximately the

sum of the CPs obtained due to either bottom-up or top-down
contributions alone, regardless of whether bottom-up correlations
were caused by one or several factors (Fig. 3d). The sustained CP
time-course was not a general feature of the model but depended
on the relative strength of these contributions (Supplementary
Figs 3b and 4a,e). However, the decaying bottom-up and the
rising top-down component were both governed by the dynamics
of sensory evidence integration and thus evolved with the same
time-scale. This made CP roughly invariant to changes in
decision dynamics (Fig. 3a,c). The network’s psychophysical
kernel, obtained from the difference between the average stimuli
yielding each choice9,29 (Fig. 3b), revealed that, despite the
sustained CP, the network performed transient integration of
sensory evidence. Finally, the decomposition of CP into bottom-
up and top-down components was also qualitatively unchanged if
the average correlation across all pairs, which was close to zero in
our model (Fig. 2c,f), was increased while maintaining the
difference corr(EiEi)—corr(EiEj) (Supplementary Fig. 6).

CP in MT during a motion discrimination task. We then asked
whether CP in MT neurons during a fixed-duration motion
discrimination task could also be decomposed, like in the model,
into (1) an early, bottom-up component, reflecting in part the
impact of stimulus fluctuations and (2) a late, top-down com-
ponent that reflects feedback from an integration circuit. We
reanalysed responses to zero-coherence RDKs from classical
monkey experiments2,13, which yield a sustained time-course of
the population-averaged CP2 (Supplementary Fig. 7a). However,
sustained CP could also be explained by perfect evidence
integration throughout the whole stimulus period (that is,
without a bound) in the absence of top-down signals
(Supplementary Fig. 5e). This is unlikely because perfect
integration weighs the evidence uniformly, yielding a sustained
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psychophysical kernel (Supplementary Fig. 5f), in contrast to the
decaying psychophysical kernels obtained in similar tasks9,29

and in two monkeys that we trained to perform the fixed-
duration motion discrimination task2,13 (Supplementary Fig. 7c,e;
Methods).

We first searched for evidence in the MT data of an early
bottom-up component of CP that could be revealed by
manipulating the magnitude of bottom-up sensory correlations.
To do this, we compared responses in the non-replicate and the
replicate conditions, as a way to assess the impact of bottom-up
correlations, caused by trial-to-trial stimulus fluctuations, on
CP2,10,25,28,36. We first confirmed that stimulus fluctuations had a
sustained impact on neuronal variability, as we found
substantially lower spike count Fano factors and correlations in
MT for the duration of the stimulus in the replicate condition25

(Fig. 4a,b). We then tested the prediction of our model, that
replicate stimuli should produce CP of smaller magnitude,
particularly early during the stimulus presentation, while the
network is integrating the sensory evidence, and not late, when
CP is mainly reflecting the impact of top-down inputs (Fig. 3a,d).
Indeed, we found that CP in the replicate condition was
significantly lower than for the non-replicate condition early
(epoch 0–1,000 ms), but not late (epoch 1,000–2,000 ms), in the
trial (Fig. 4c). Significance was assessed using a mixed-effects

ANOVA (with factors epoch (early/late), stimulus (repl./
non-repl.), and random factors monkey and neuron identity)
for T ¼250 ms, showing a significant interaction effect of
epoch� stimulus, F(1,317)¼ 4.75, P¼ 0.03, n¼ 41 (118) neurons
for repl. (non-repl.). One-tailed t-tests revealed
a significant difference of repl. versus non-repl. for early
(CP(repl.)¼ 0.512±0.008, CP(non-repl.)¼ 0.532±0.005, P¼
0.02, t(157)¼ � 2.07) but not late (CP(repl.)¼ 0.533±0.011,
CP(non-repl.)¼ 0.529±0.006, P¼ 0.72, t(157)¼ 0.353). Thus, a
substantial part of CP early in the trial can be attributed to
bottom-up correlations caused by stimulus fluctuations. The
higher impact of bottom-up correlations early in the trial is a
signature of transient integration of sensory evidence and rules
out the possibility that the monkeys performed perfect integration
(Supplementary Fig. 5e,f). The similar CP late in the trial is
consistent with the proposed top-down component, which is
present independently of the stimulus condition (replicate versus
non-replicate).

Stability of individual CPs increases through the trial. We next
searched for evidence of a separate contribution to CP caused by
late top-down inputs by investigating the heterogeneity of CP
profiles across MT neurons. We reasoned that if CP is generated
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by two separate mechanisms, individual neurons might not par-
ticipate equally in the two, particularly if they come from layers
with a different density of bottom-up versus top-down inputs. So
far, we used a homogeneous network, in which all sensory neu-
rons received a stimulus input with the same strength, and top-
down connections with equal probability. In the homogeneous
network, when the average CP was sustained, individual CP time-
courses caused by non-replicate stimuli were also sustained
(Fig. 5a), only showing heterogeneity in their amplitude due to
heterogeneous firing rates. This stability of CPs over time can be
captured by the rank correlation across neurons of the CP mea-
sured at two different time bins (CP correlation C(ti,tj); Fig. 5a
inset), which remains high for all time bin pairs (Fig. 5b). In
particular, the CP correlation between adjacent time bins
C(ti,tiþ 1) was constant through the trial (Fig. 5b, right). Intro-
ducing heterogeneity in the efficacies of stimulus and top-down
inputs in the circuit (Methods) can yield sustained average CP
and heterogeneous individual CP time-courses (Fig. 5c and
Supplementary Fig. 9). Individual profiles showed combinations
of fast-rise-and-decay and slow-ramp-and-plateau behaviour,
depending on whether they received stimulus and/or top-down

inputs (Fig. 5c). Consequently, CPs between adjacent time bins
were less correlated at the beginning of the trial (Fig. 5d) because
the impact of trial-to-trial stimulus fluctuations made the indi-
vidual CPs change rapidly (Fig. 3a). Correlations between adja-
cent bins increased towards the second half of the trial as
individual CPs became more stable (Fig. 5d). This analysis is
robust to small trial number (Supplementary Fig. 9).

Individual CP time-courses of MT neurons in response to non-
replicate stimuli also showed large heterogeneity (Fig. 5e) in spite
of yielding a sustained average CP (Supplementary Fig. 7a). As in
the heterogeneous network, CP correlations between adjacent
time bins were low at the beginning and increased significantly
through the trial (Fig. 5f; linear regression intercept¼ –0.05 and
slope¼ 0.25 s–1 significantly different from zero, Po0.001,
permutation test). Moreover, the average CP correlation
across time bin pairs within the first half of the trial was
significantly smaller than within the second half (mean of
C(ti,tj)¼ 0.096±0.026 for ti, tjo1 s, iaj, and 0.275±0.025 for ti,
tj41 s, iaj, respectively; Po0.001, n¼ 6 time bin pairs,
permutation test). Thus, individual CP time-courses in MT were
heterogeneous and showed increasing stability towards the end of
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estimated from 2,000 trials, count window T¼ 250 ms). Top inset: each dot is the individual CP of one neuron computed in two time bins ti and tj and

C(ti, tj) is the rank correlation coefficient across all neurons (Methods). The values shown correspond to the time bins shaded in a and marked with a white

square in b. Coloured dots correspond to the four cells shown in a. (b) CP correlation matrix C(ti, tj) shows uniformly high values capturing the maintenance

of the sorting of individual CPs across time. Right: Time-course of adjacent CP correlations C(ti, tiþ 1) (red diagonal in b) where CPs were estimated from

100 trials to compare with data. The solid line shows a linear fit. Increased number of trials increased the correlation values but did not change the results

qualitatively (Supplementary Fig. 9). (c,d) Same as a,b, for the heterogeneous network (Methods). The individual CP traces are from representative

neurons belonging to four different groups depending on whether they receive stimulus and/or top-down inputs (see Methods and Supplementary Fig. 9).

The matrix C(ti, tj) shows an elevated plateau towards stimulus offset reflecting late increased stability in individual CPs. (e,f) Same as a,b, for the MT

data2,13 (n¼ 143 neurons; variable trial numbers, range: 25–221, median: 59) recorded in the non-replicate condition (see Supplementary Fig. 9 for replicate

condition). Error bars indicate the s.e.m. Dotted lines in e indicate windows straddling stimulus onset or offset.
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the stimulus, consistent with the slow build-up of a top-down
contribution.

Lagged correlations predict late CP. Finally, we looked for
further evidence of a late and slow top-down contribution to CP
by analysing spike count correlations in MT simultaneous pair
recordings13,25. In the model, pairwise correlations produced by
stimulus fluctuations were short-lived (B50–100 ms; Fig. 6a),
mimicking fluctuations in motion energy at the speed of the
coherent motion produced by RDKs (Methods). In contrast,
correlations caused by top-down inputs were weaker, but as they
built up (Fig. 2f), they extended to time lags of a few hundred
milliseconds (Fig. 6b). This is because these correlations are
caused by trial-to-trial variations in the population rates of the
integration circuit that remain relatively stable during the late
part of the stimulus (Fig. 1b). When both sources are combined
(Fig. 6c), the model predicts large and sustained correlations at
zero lag (Fig. 6d) and weak lagged correlations with a rising time-
course (Fig. 6e). We tested this prediction in MT pairs and found
that both the instantaneous and lagged correlations averaged over
pairs resembled those predicted by the model (Fig. 6f,g).
Moreover, individual pairs with rising lagged correlations
tended to exhibit large values of late CP (Fig. 6h). This is
consistent with our heterogeneous model, where rising lagged

correlations and increasing CP time-courses were specific of
neural pairs receiving top-down inputs (Supplementary Fig. 10).
We thus divided MT pairs in two groups based on the sign of the
slope of lagged correlations (Fig. 6h). As predicted by the model,
neurons showing rising lagged correlations yielded a larger late
CP than neurons showing a decay (Fig. 6i,j). The difference in CP
specifically occurred late in the trial (Fig. 6i,j; mixed-effects
ANOVA with factors epoch (early/late), slope (positive/negative),
and random factor neuron identity, revealed a significant
interaction epoch� slope, F(1,129)¼ 4.14, P¼ 0.046, n¼ 22 (43)
for positive (negative) slope, and a significant difference of
negative versus positive for late but not early, P¼ 0.007,
t(63)¼ 2.55 and P¼ 0.33, t(63)¼ 0.443, one-tailed t-tests).
Neurons with rising lagged correlations also showed higher CP
at stimulus onset. We speculate that this difference could be due
to pre-stimulus expectation signals9, not implemented in the
model, that modulate sensory activity using the same top-down
pathway.

Top-down feedback enhances the stability of the categorization.
Functionally, top-down connections generated a positive feedback
loop across the hierarchy that modified the decision dynamics
and enhanced the stability of the categorization (Fig. 7). We
arbitrarily defined a non-absorbing bound in the firing rate that,
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model (c) shows large amplitude sustained instantaneous correlations (d; main diagonal in c), caused mainly by stimulus fluctuations (see a), and slowly

rising lagged correlations (e, blue dashed diagonal in c), caused by top-down inputs (see b). (f,g) MT correlations (n¼ 32 neuron pairs at coherences � 3.2,
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rate69 (not shown). (h) Slopes of lagged correlations rkk’(ti, tiþ 1) for individual MT pairs versus the mean late CP of the two corresponding neurons
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when reached by population D1 or D2, indicates strong
evidence in favour of motion in the corresponding direction.
After the first bound crossing, the attractor dynamics of the
integration circuit tended to maintain this state until the end of
the stimulus when the decision had to be taken27. This occurred
unless a large fluctuation in sensory activity reversed the
competition between D1 and D2 (ref. 27) (Fig. 7a). Adding
top-down connections altered the dynamics by preventing some
reversals observed in the network without top-down (Fig. 7b).
This occurs because, when approaching the bound,
top-down feedback generates a difference between the rates of
the two sensory populations (Fig. 2d) that enhances the stability
of the current state of the integration circuit (Fig. 7b and
Fig. 2d inset). Thus, stronger top-down feedback yielded fewer
reversals (Fig. 7d). Raising the bound decreased the fraction
of reversal trials but increased the fraction of trials without
threshold crossing (that is, weak-confidence trials37). Stronger
top-down feedback increased the difference between D1 and D2

rates at stimulus offset, resulting in fewer weak-confidence
trials (Fig. 7d,e). Consistent with fewer reversals (Fig. 7d),
stronger top-down feedback yielded shorter integration
windows and a weaker impact of late stimulus fluctuations on
the decision (Fig. 7f). Enhanced stability came at the cost of
decreased discrimination accuracy across a broad range of
stimulus coherences27 revealing a trade-off between stability
and accuracy (Fig. 7g). This trade-off can be portrayed as the
standard speed-accuracy trade-off: shorter integration windows,
resulting from stronger top-down inputs, yielded higher
discrimination thresholds (Fig. 7h). Comparing the network’s
performance with an optimal classifier shows that the decrease in
accuracy due to the increase in top-down strength can be
entirely attributed to the concurrent shortening of the integration
window (Fig. 7h). Thus, the strength of top-down feed-back could
be optimized to maximize reward rate depending on task details
such as stimulus duration and the cost of erroneous and
undecided trials.
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not in the network with top-down connections (b). (c) Population-averaged stimulus currents into sensory E1 neurons (red) and E2 neurons (blue).

(d) Percentage of reversal trials (solid) and no-bound-crossing trials (dotted) versus value of the non-absorbing bound for different top-down strengths
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(f) Psychophysical kernel shows that the integration window (interval containing 85% of the total area under the kernel; triangles) shortens with increasing

top-down strength. (g) Percentage of correct choices as a function of stimulus coherence. Simulation data (squares) were fitted using a Weibull

function (solid lines). (h) As the top-down strength decreases, the discrimination threshold, defined as the coherence yielding 82% of correct trials,

decreases as one over the square root of the integration window length (solid line is a fit of slope of �0.5 in the log-log graph). The network performance

is only slightly worse than the perfect integration of evidence during the integration window (dotted line). Different colours represent top-down strengths

(bFB=0, 1.5, 3, 4.5 and 6).
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Discussion
We have developed a hierarchical network model to investigate
how CP, the correlation between neuron response variability and
perceptual decisions, emerges from recurrent cortical network
dynamics. The model dissects CP into an early contribution,
dominated by the impact of bottom-up trial-to-trial neuronal co-
fluctuations on the decision, and a late contribution produced by
top-down inputs into sensory neurons, which reflects the decision
build-up in each trial. The time-courses of the two contributions
are determined by the non-linear integration of sensory activity
resulting from the dynamics of the hierarchical network: as the
stimulus comes on, sensory evidence is gradually accumulated,
until the integration circuit reaches a categorization state
that is then maintained by the reverberant activity of the local
circuit27 as well as across the hierarchy. As this categorization
state is much less sensitive to sensory fluctuations, bottom-up
contributions to CP are confined to the initial accumulation
phase and decay over time. Top-down contributions show a
complementary rising time-course because they reflect the build-
up and maintenance of the decision. When the two contributions
have comparable magnitude, CP can exhibit a sustained time-
course for a wide range of decision dynamics as observed in the
classical motion discrimination task2. The model, however,
predicts that if the magnitude of the two contributions is
different, CP should show a non-sustained time-course. We
implemented the integration circuit using a spiking attractor
network model27. However, the decomposition of CP into
complementary bottom-up and top-down contributions can be
obtained with a broad family of decision models, including a
firing rate attractor network model33,38 or a linear integrator with
absorbing bounds in combination with a post-decision feedback
signal, but not with a leaky29 or a perfectly linear integrator
(no bounds).

We used trial-to-trial stimulus fluctuations (‘non-replicate’
condition) as one way to generate bottom-up correlations, that is,
those generated in the absence of top-down connections, and to
establish predictions that could be easily tested experimentally.
While previous studies concluded that the impact of stimulus
fluctuations on CP and neuronal variability was small or
negligible10,25,36,39, we found that non-replicate RDKs caused a
substantial increase in spike count Fano factor and correlations
compared with replicate RDKs (they accounted for B35% of the
correlations for coherences in the range 0–50% in two pairs of
similarly tuned cells, T¼ 100 ms). The differences with previous
reports could be due to our smaller spike count windows25,36

and lower coherences39. We then compared CPs in MT for
replicate and non-replicate stimuli and verified a key model
prediction: while replicate stimuli caused a sustained decrease in
correlations compared with non-replicate, they generated a
decrease of CP only early and not late in the trial.

Strong local excitatory connections in combination with strong
and global inhibition in the sensory circuit gave rise to
competitive dynamics between the populations E1 and E2. These
local dynamics conferred the spike count correlations caused by
non-replicate stimuli or by local background inputs a distinctive
structure: pairs within one population (EiEi) were positively
correlated while mixed pairs (EiEj) were negatively correlated,
yielding a near zero average across all pairs. Although similarly
tuned MT neurons commonly exhibit larger correlations than
oppositely tuned ones13,14,39, only the correlations found in the
medial superior temporal cortex (MST) of trained monkeys
resemble the structure produced by the model, with negative
correlations among pairs with opposed tuning and near zero
average correlations across all pairs.40 Because in our network
CP depends on the difference in average correlations within
(EiEi) and across populations (EiEj)12, the decomposition into

bottom-up and top-down components is invariant to changes in
the correlation structure that maintain this difference (for
example, an increase in the average correlation across all pairs).
Bottom-up correlations caused by other types of stochastic
network dynamics such as switches between multiple discrete
attractors41,42 or diffusion in a continuous line attractor43–45

would in general also contribute to the early component of CP.
Bottom-up correlations with a very slow time-scale produced by
intrinsic network dynamics would generate CP that rises and
decays slowly, and they could eventually cause above chance CP
before stimulus onset46. In sum, even if our analysis cannot
identify the precise origin of bottom-up correlations, it succeeds
in showing that any mechanism causing bottom-up fast
correlations leads to a similar fast-rise-and-decay CP time-course.

Top-down inputs carrying decision-related or attentional
signals also contribute to CP9,17 and correlations14,20. We
designed a model-driven analysis that, based on the stability of
the single cell CP traces, provided evidence for a late top-down
contribution to CP. We defined the CP correlation as a measure
of the stability of individual CP traces: early CP produced by
bottom-up stimulus fluctuations caused temporally varying traces
that crossed frequently yielding low CP correlation. Late in the
stimulus, when CP is presumably dominated by slower top-down
inputs, CP traces were more stable yielding higher CP correlation.
Moreover, we found that lagged correlations between MT pairs
showed a rising time-course during the stimulus that was
predictive of the magnitude of late CP across cell pairs.
Together, these findings are consistent with the presence of a
top-down signal that, towards the end of each stimulus,
selectively boosts the rate of a subset of MT cells aligned with
the upcoming choice. Our analysis suggests why previous
reports25,39 might have missed lagged correlations: they are
weak, confined to the late part of the stimulus and could be
selectively expressed by a subpopulation of neurons receiving
top-down inputs, as in attentional studies in V1 (ref. 20).

The impact of noise correlations on how accurately
populations of neurons represent sensory information has
typically been assessed in settings where tuning curves and
correlation structure are treated as independent variables and
where the effect of the dynamics of the recurrent circuitry has
been mostly unexplored47–49. Our approach is different in
that our network function is not to accurately represent the
stimulus, but rather to perform a binary categorization.
This computation is implemented using strongly recurrent
connectivity that induces competitive dynamics27. Competition
is crucial for the categorization in the integration circuit,
but it also emerges in the sensory circuit via top-down feedback
and fluctuations in the external inputs affecting both the tuning
and the correlation structure. In particular, competition
induces negative noise correlations across the two oppositely
tuned sensory populations, a condition that impairs
discrimination accuracy11,50. Understanding how variability
ultimately constrains function will require a systematic
characterization of the relation between connectivity, dynamics
and correlations in networks designed to carry out specific
computations51,52.

Our analyses support the idea that late CP in MT cells reflects
the impact of top-down inputs on sensory evoked
responses8,9,15,17. Top-down inputs in this context have been
interpreted as selective attentional signals19 whose allocation
varies on multiple time-scales18, introducing co-variability in
sensory populations14,20 and biasing perceptual decisions17,18.
The specific nature and dynamics of these top-down inputs
remains largely unknown. They include pre-stimulus expectation
signals53, reflecting the animal’s ‘guess’ about the upcoming
stimulus, or attention signals recruited by the sensory activity
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produced by salient fluctuations at the beginning of the stimulus.
Both of these signals bias sensory activity towards one choice
before the subject commits to a decision9. Alternatively, they
could be post-decision signals, reinforcing the representation of
the chosen percept8,9 or reflecting the motor response plan
developing slowly during the stimulus interval54. A pure post-
decision signal could be implemented by replacing the integration
circuit in our network with a linear integrator with absorbing
bounds that sends a feedback signal to the sensory circuit once
the bound is reached. Such a phenomenological model would
yield similar bottom-up and a top-down CP components as our
model. However, the top-down signals in our model are not
purely post-decision but combine previous proposals of pre-
decision and post-decision top-down signals9. Because the
sensory and integration circuits are recurrently coupled and
evolve dynamically in parallel, feedback signals are effectively
recruited by activity of sensory circuits and impact the final
decision by altering the dynamics during both the accumulation
and the categorization maintenance periods55. As a consequence,
the top-down contribution to CP cannot be called ‘non-causal’ as
would be the case for a post-decision signal. The differences
between our mechanistic model and the phenomenological
integration-to-bound plus feedback model are revealed after the
first crossing of the categorization bound: while in our model it is
easy to investigate the dynamics of changes of mind, caused for
instance by stimuli with time-varying coherence56 or by external
stimulation57, the phenomenological model requires further ad-
hoc assumptions about the probability to escape the absorbing
bound58 and about when to switch the top-down input.

During fixed-duration motion discrimination task subjects
categorize RDKs and settle on one alternative before the end
of the stimulus, ignoring late evidence and performing sub-
optimally29,59. Perception appears categorical even for low-
coherence RDKs in a task that requires taking into account the
probabilities of both motion alternatives to perform optimally60.
A recent study has proposed that transient evidence integration
may arise from approximate inference using sequential
neural sampling61. Attractor dynamics produced by recurrent
lateral connections within integration circuits are a plausible
mechanistic implementation of perceptual categorization27.
Recurrent feedback through top-down connections in our
network strengthened this categorization dynamics and
increased its stability at the cost of decreased accuracy.
Although in our setting these two mechanisms seem to differ
only quantitatively, the distinctive features of a top-down
implementation would be revealed in tasks requiring the
binding of several stimulus attributes (for example, motion and
disparity), such as in the discrimination of the direction of
rotation of a perceptually bistable cylinder8. Our hierarchical
model pioneers the analysis of recurrent dynamics in bottom-up/
top-down loops, a mechanism that may play a crucial role in the
perceptual categorization of more complex stimuli.

Methods
Network model. The network model (Fig. 1a) consists of a sensory circuit
reciprocally connected to an integration circuit. A standardized description of
the model and all simulation parameters can be found in Supplementary
Tables 1–4 (ref. 62).

The sensory circuit is a balanced randomly connected EI-network23,30,31

(connection probability p¼ 0.2) with 1,600 excitatory (E) and 400 inhibitory (I)
leaky integrate-and-fire neurons. Model equations and parameter values are mostly
taken from ref. 23. Synaptic transmission mimics AMPA and GABAA receptor
conductance dynamics23 (mean efficacies gEE ¼ 0.76 nS, gEI ¼ 1.52 nS and
gIE ¼ gII ¼12.6 nS). Excitatory neurons are divided into two symmetric
populations, E1 and E2, preferring opposite directions of motion. Connections
within each population (Ei to Ei with i¼ 1, 2) are stronger (potentiating factor
wþ ¼ 1.3) than connections across populations (Ei to Ej with iaj; weakening
factor w� ¼ 0.7), capturing the stronger coupling among cells with similar

direction preference. The stimulus is modelled as a time-varying input current
Ibstim;kðtÞ into each neuron k in population b¼ E1 or E2 (see details below).
Neurons in E1 and E2 also receive weak top-down connections from populations
D1 and D2 of the integration circuit, respectively (Fig. 1a; connection probability
pFB¼ 0.2; synaptic weight gFB¼ 0.0668 nS � bFB, with bFB the dimensionless
feedback strength that takes values in the range 0-6). All sensory neurons receive
AMPA-like random connections from a external population (X) composed of
1,000 cells firing independent Poisson spike trains at a constant rate
next¼ 12.5 sp s� 1 (connection probability px¼ 0.32; efficacy gXE¼gXI¼1.71 nS; see
Supplementary Fig. 2a for a variant with local background inputs). Spike trains
from X cells were always different across trials. Thus, EiEi pairs share on average a
fraction of 0.2, 0.32 and 0.2 of their recurrent, external and top-down inputs,
respectively.

The integration circuit is a biophysical network model of decision-related
activity in LIP27, whose dynamics have been extensively studied33,38. It contains
1,600 excitatory and 400 inhibitory leaky integrate-and-fire neurons, that are all-to-
all connected. There are three populations of excitatory cells: D1 and D2 (240 cells
each) represent the two choices, and the non-specific population Dn contains the
rest of the E cells. Synaptic transmission mimics AMPA, NMDA and GABAA

receptor conductance dynamics27 (efficacies gDD
AMPA ¼ 0:05 nS, gDI

AMPA ¼ 0:04 nS,
gDD

NMDA ¼ 0:165 nS, gDI
NMDA ¼ 0:13 nS, gID

GABA ¼ 1:3 nS, and gII
GABA ¼ 1:0 nS).

Recurrent connections within D1 and D2 are stronger (factor wþ ¼ 1.6) than
connections within Dn. Cells in D1 and D2 receive the sensory evidence
via feedforward AMPA connections from neurons in E1 and E2, respectively
(Fig. 1a; connection probability pFF¼ 0.2; efficacy gFF

AMPA ¼ 0:09 nS). Each neuron
in the integration circuit receives an external independent Poisson spike train
via AMPA synapses (rate 2,392 sp s� 1 to D1 and D2 and 2,400 sp s� 1 to
Dn and I; efficacies gEXT;D

AMPA ¼ 2:1 nS, gEXT;I
AMPA ¼ 1:62 nS). External spike trains were

always different across trials.
Network dynamics. Although sensory and integration circuits followed the same

connectivity scheme (Fig. 1a), the connectivity strengths differed such that they
exhibited different dynamics. The sensory circuit generated weak competition
between E1 and E2 allowing the network to operate in an approximately linear
regime in which each population rate can track the stimulus input (Fig. 1b). This
weak competition shaped the structure of correlations34 generated by non-replicate
stimuli (Fig. 2c), local background inputs (Supplementary Fig. 3c) and top-down
signals (Fig. 2f): correlations between pairs within the same population (EiEi) are
positive, whereas in mixed pairs (EiEj) they are negative. The average correlation
across all pairs was near zero, a robust feature of balanced networks resulting from
the dynamic balance of excitation and inhibition23. In contrast, on stimulus
presentation, the integration circuit exhibited non-linear dynamics as a
consequence of strong winner-take-all competition and the existence of two
attractors representing the two possible choices27,33,38.

Stimulus model. The stimulus-driven input was modelled as an afferent current
Ibstim;kðtÞ into each sensory neuron k in population b¼ (E1, E2):

Ibstim;kðtÞ ¼ I0 sbðtÞþ sbk ðtÞ
� �

; ð1Þ

with I0¼ 0.08 nA, the mean input for zero-coherence stimuli. The term sb(t) is the
stimulus, representing sensory evidence for motion in the b-direction. It is
common to all neurons of population b and independent between the two
populations (except in Supplementary Fig. 6). The term sbk ðtÞ is independently
generated for each neuron k, mimicking heterogeneity in the afferent input.
Figure 1b, shows an example of sE1(t) and sE2(t) (bottom traces) and
Supplementary Fig. 1b,c compares sb(t) and sbðtÞþ sbk ðtÞ for two neurons (top
traces). The two terms are given by

sbðtÞ ¼ 1þ cgb þ sstimzbðtÞ ð2Þ
and

sbk ðtÞ ¼ sind;k zbk ðtÞ; ð3Þ

where c is the stimulus coherence and gb the average additional input at highest
coherence c¼ 1. Without loss of generality, we assume that the stimulus is moving
in the preferred direction of E1 neurons, that is, we use a positive gE1 and a
negative gE2 with gE2¼ � gE1, so that the firing rates of E1 (E2) neurons increase
(decrease) approximately linearly with c, as observed experimentally36. Temporal
modulations in sensory input generated by the specific realization of the dot
trajectories in RDKs are captured by the time-varying terms zb(t) and zbk ðtÞ
(independent Ornstein-Uhlenbeck processes with zero mean, s.d. equal one and
time constant tstim¼ 20 ms). The amplitude of the temporal modulations is set by
sstim¼ sind,k¼ 0.212 s, where s is the dimensionless strength of stimulus
modulations (s ¼ 1 except when otherwise indicated).

Repeated presentations of the stimulus over trials were done in two ways: (1) in
the replicate stimulus condition we injected the exact same realization of stimulus
currents Ibstim;kðtÞ into each cell in every trial, (2) in the non-replicate stimulus
condition we injected different realizations of the currents Ibstim;kðtÞ in every trial,
with different realization of both sb(t) and sbk ðtÞ, what caused trial-to-trial
fluctuations in the stimulus input. We modelled the stimulus as an injected
current instead of a barrage of pre-synaptic spikes so that sensory input per se
did not constitute an uncontrolled source of variability in the replicate stimulus
condition.
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Simulation details. The network model was implemented in Python using the
Brian simulator version 1.4 (ref. 63). The network model code is available at
ModelDB (https://senselab.med.yale.edu/ModelDB/). We used the Euler
integration method with a time step of 0.1 ms. We simulated fixed-duration trials
with a stimulus duration of 2 s, as in experimental settings2,9. Stimulus presentation
was preceded by a 3-s interval to prevent transient effects due to initial conditions.
The choice outcome of the network was determined by the population of the
integration circuit (D1 or D2) with a higher population firing rate over the last
50 ms of the stimulus period. Results for a given parameter set are based on 2,000
repeated trials of the same network (same connectivity matrix) with random initial
conditions as well as different realizations of the external background inputs into
each circuit.

For the replicate stimulus condition (see above) we generated 100 distinct
realizations of replicate stimuli and presented each of them over 100 repeated trials
(in total 10,000 trials). Replicate stimuli that led to overly consistent responses
(495 % choices in one direction) were excluded from the analysis because there
were too few trials yielding one of the choices to have a good estimate of CP (this
was the case for 23 of the 100 replicate stimuli).

Slower decision dynamics (Fig. 3c) was realized by decreasing the efficacy of
feedforward connections gFF

AMPA from the sensory to the integration circuit by 25%
and increasing the temporal modulations of the stimulus (s¼ 1.33). This led to a
longer ‘sensory integration window’ (1.057 s versus 0.675 s; see below).

The heterogeneous network (Figs 5 and 6 and Supplementary Figs 9-10) is
identical to the homogeneous network, but not all sensory neurons receive stimulus
and top-down inputs. We randomly split each sensory population in four neural
groups of equal size that receive (1) both stimulus and top-down feedback inputs
(Sþ FBþ ), (2) only stimulus (Sþ FB� ), (3) only top-down (S� FBþ ) and (4)
neither stimulus nor top-down (S� FB� ). This was achieved by using an
individual feedback strength bk

FB and an individual amplitude of input modulations
sstim, k for each neuron k. We set bk

FB ¼ 0 (no top-down) for neurons in FB� and
bk

FB ¼ 1:5 (strong top-down) for neurons in FBþ . We set sstim,k¼ 0 and sind;k ¼
0:212�

ffiffiffi
2
p
� s for neurons in S� , and sstim;k ¼ 0:212�

ffiffiffi
2
p
� s and sind,k¼ 0 for

neurons in Sþ . This yields different (identical) input currents into each cell in S�
(Sþ ), without changing the s.d. of input currents Ibstim;kðtÞ compared with the
homogeneous network (see equation (1)). All other parameters were left
unchanged.

Physiological data. Physiological recordings had previously been obtained by
K.H. Britten, J.A. Movshon, W.T. Newsome, M.N. Shadlen and E. Zohary.
Experimental details are described in refs 2,13,64. In brief, three adult macaque
monkeys (Macaca mulatta, two male and one female) performed a fixed-duration
motion direction discrimination task near psychophysical threshold while
responses of single neurons2,64 or pairs13 in MT/V5 were recorded. The stimuli,
RDKs at various motion coherences, were matched to each neuron’s preference for
stimulus size, speed and motion direction. The precise pattern of random dots of
the kinematograms at each coherence was either different (non-replicate RDK) or
the same across trials (replicate RDK). The experimental data sets are available in
the Neural Signal Archive (www.neuralsignal.org; single units: nsa2004.1 and
nsa2009.1; paired units: nsa2004.2 and nsa2012.1). Most single units were recorded
either in the non-replicate or replicate condition, but a subset of 22 neurons was
recorded under both conditions. For these neurons, the impact of stimulus
fluctuations on Fano factor and CP was consistent with the data shown in Fig. 4a,c:
the shift-corrected Fano factor was higher in the non-replicate than in the replicate
condition, and CP was higher in the non-replicate compared with the replicate
condition early (P¼ 0.05), but not late (P¼ 0.70) for a count window T¼ 250 ms.
Paired units were only recorded in the non-replicate condition, except for two
neural pairs (emu034 and emu035) that were obtained for both replicate and non-
replicate stimuli (Fig. 4b and Supplementary Fig. 8b).

We used recordings from two monkeys (E and W) and excluded data from a
third monkey (J) because the average CPs (T¼ 2 s) obtained in this monkey were
only marginally above chance level2 and were significantly smaller than for the
other two monkeys (one-way ANOVA, F(2,250)¼ 6.71, P¼ 0.0015; mean CP was
0.565±0.010 for monkey E with n¼ 117, 0.561±0.012 for monkey W with n¼ 67,
and 0.509±0.012 for monkey J with n¼ 67). Monkey J also had considerably
higher psychophysical and neuronal thresholds than E and W64. To be included in
the analysis, neurons had to fulfil the following criteria: (1) more than 20 trials are
available for the zero-coherence condition (2) in these trials there are at least five
preferred and five non-preferred choices, (3) the average firing rate is higher than
1 sp s� 1, and (4) the neuron fired at least 100 spikes across all trials. Outlier trials
in which the spike count deviated from the mean by more than 3 s.d. were
excluded. Neurons from the paired-unit data set nsa2004.2 whose preferred
direction differed by o35� were included in the single unit analysis (47 neurons
from monkey E, all with non-replicate stimuli). This ensured that the direction of
the stimulus did not differ from the preferred orientation of the neurons, causing a
decrease in the magnitude of CP10. For the analysis of pairwise correlations (Fig. 6)
we used 32 pairs (all from monkey E) whose preferred directions differed by o90�.

Spike count statistics and choice probabilities. After binning time using
dt¼ 1 ms, the spike train of neuron k in trial l is represented as a binary word yl

k tð Þ
that equals 1 if there is a spike in the interval (t, tþ dt) and zero otherwise.

The instantaneous spike count nl
k t;Tð Þof neuron k in trial l over a count window

(t–T/2, tþT/2) is defined as:

nl
k t;Tð Þ ¼ KT � yl

k

� �
tð Þ ¼

X
t0

KT t0 � tð Þyl
k t0ð Þ;

that is the discrete convolution of yl
k tð Þ with the kernel KT(t) which equals one in

(–T/2, T/2) and zero otherwise.
The individual trial-averaged rate of neuron k (Supplementary Figs 1a-c and 8a)

is defined as rk tð Þ ¼ nl
k t;Tð Þ

� �
l=T where the brackets �h il represent the average

over trials and T¼ 50 ms. The instantaneous activity of population b in trial l
(Figs 1b and 7a,b) is defined as rl

b tð Þ ¼ 1
TNb

P
k nl

k t;Tð Þ with the sum running
over the Nb cells of population b (T¼ 50 ms). The population rate averaged over
the trials yielding choice a (with a¼ 1,2) is defined as rb;a tð Þ ¼ hrl

b tð Þil2a . We label
rb,a(t) as preferred and non-preferred for a¼b and aab, respectively (Fig. 2a,d
and Supplementary Fig. 3a).

The instantaneous CP CPk(t;T) of neuron k is obtained by classifying the spike
counts across trials nl

k t; Tð Þ according to the choice yielded in each trial (that
is, nl

k t; Tð Þ
	 


l2CHOICE1 versus nl
k t;Tð Þ

	 

l2CHOICE2). The CPk(t; T) is defined as the

area under the receiver operating characteristic curve obtained from these two
distributions2.

The spike count Fano factor for neuron k (Fig. 4a) is defined as the ratio of the
spike count variance to the mean spike count:

FFk t;Tð Þ ¼ Var nl
k t;Tð Þ

� �
hnl

kðt; TÞil
; ð4Þ

where the variance is obtained over trials.
Spike count noise correlations were measured using the Pearson correlation

coefficient of the spike counts of neuron k and k0 at times t and t0:

rkk0 t; t0ð Þ ¼ Cov nl
k t;Tð Þ; nl

k0 t0 ;Tð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var nl

k t;Tð Þ
� �

Var nl
k0 t0 ;Tð Þ

� �q ; ð5Þ

with the covariance and the variance obtained across trials (we have dropped the
explicit dependence on T to ease the notation). The average over the population of
pairs (k, k0) was denoted as r(t, t0) (Fig. 6a–g). We defined the instantaneous (non-
lagged) correlation as rkk0 tð Þ ¼ rkk0 t; tð Þ. The correlation matrices r (ti, tj) in
Fig. 6a–c were obtained by evaluating r(t, t0) at ti¼ (i� 1/2) T and tj¼ (j� 1/2) T,
with i, j¼ 1y8 and T¼ 250 ms. Finally, we represented the diagonals of r(ti, tj),
defined as ti þ tj ¼constant, versus the time lag ti–tj as a way to visualize an
instantaneous cross-correlogram (Fig. 6a,b insets).

To remove a potential influence of differences in the average spike count on the
measured Fano factor65, correlation and the CP12,66, we used adjusted count
windows of variable length to compute FF(t), rkk0(t) and CP(t) (Fig. 4a–c). The
spike count window for each cell k centred at each time point t was adjusted to
(t�T0/2, tþT0/2) to contain exactly nk spikes on average (across trials). The
number nk¼ rkT, where rk is the trial-averaged rate over the stimulus duration
(2 s). The Fano factors FF(t) and correlations rkk0(t) were very similar for fixed and
adjusted count windows, as was the CP(t) in the non-replicate condition. For the
replicate condition, where the trial-averaged rate shows strong temporal
modulation28 (see Supplementary Fig. 8a), CP(t) was smoother for adjusted
windows. The finding that early CP(t) decreases in the replicate condition does not
depend on the count window T (Fig. 4c) or whether we used fixed or adjusted
count windows.

For the network model, we averaged CPk(t; T) and rkk0(ti, tj) over 100 randomly
chosen neurons from populations E1 and E2 (or over all the pairs formed by these
neurons) with a minimum firing rate of 1 sp s� 1. For the experimental data we
averaged CPk(t; T), FFk(t; T) and rkk0(t, t0) over a variable number of neurons and
pairs (see legends of Figs 4–6 and Supplementary Fig. 8). Data analysis was restricted
to trials with zero-coherence stimuli, except for the correlation measurements.
Correlations rkk0(t) of single pairs (Fig. 4b and Supplementary Fig. 8b) were
calculated separately for the available stimulus coherences ranging from –51.2% to
þ 51.2% and then averaged (negative coherences represent motion in the non-
preferred direction). Correlation matrices r(ti, tj) (Fig. 6) were obtained using low
motion coherences (–3.2, 0 and þ 3.2%) that yielded a comparable number of trials
for each choice. This gave a total of n¼ 64 conditions from the 32 cell pairs.

When analysing the experimental data, we modified equations (4) and (5) to
obtain Fano factors and correlations to remove the impact of slow variations in
firing rate across trials25. We used the shift-corrected spike count covariance and
variance defined as:

Cov nk t;Tð Þ;nk0 t0 ;Tð Þ½ � ¼ 1
L� 1ð Þ

XL

l¼1

nl
k t;Tð Þnl

k0 t0 ;Tð Þ� nl
k t;Tð Þnlþ 1

k0 t0 ;Tð Þ
� �

and

Var nk t;Tð Þ½ � ¼ Cov nk t;Tð Þ;nk t;Tð Þ½ �:
Results for Fano factors are shown using this correction. For spike count
correlations we did not use the correction because it did not affect the estimation at
small spike count window T (o250 ms) but yielded larger estimation errors for
large T. Results for Fano factors and correlations did not qualitatively change with
the application of the shift correction.
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In the analysis of the dependence of CPs, Fano factors and correlations on T
(Fig. 4, Supplementary Figs 4 and 8), we averaged CPk(t; T), FFk(t; T) and rkk0(t)
across the time points t¼T/2, 3/2 T, 5/2 T, y so that the statistics come from non-
overlapping spike count windows starting at stimulus onset (t¼ 0). We did this for
T¼ 15, 30, 60, 125, 250, 500, 1,000 and 2,000 ms.

The CP correlation matrix (Fig. 5 and Supplementary Fig. 9) is defined as the
Spearman’s rank correlation coefficient across neurons of the CP measured at two
different time bins:

C ti; tj
� �

¼ CorrCoef CPk ti ;Tð Þ;CPk tj ;T
� �� �

;

with CPk(t; T) evaluated at times ti¼ (i� 1/2) T and tj¼ (j� 1/2) T, with
i, j¼ 1y8 and T¼ 250 ms. The matrix C(ti, tj) was obtained for the network
(Fig. 5b,d and Supplementary Fig. 9) using a similar number of neurons and trials
as available in the MT data. We selected 160 neurons (40 of each group) and
computed their CP time-courses based on n randomly selected trials (with n¼ 100
in Fig. 5b,d; n¼ 100, 200 and 2,000 trials in Supplementary Fig. 9). We calculated
C(ti, tj) as the average across 1,000 different selection of trials from which s.e. values
were obtained. All data analyses were carried out in MATLAB (The Mathworks).

Psychophysical data. Two adult macaque monkeys (Macaca mulatta, male) were
trained to report with a reaching response the motion direction of a random dot
kinematogram (RDK, see Supplementary Methods) along the horizontal axis with
varying levels of motion coherence. On each trial we recorded both the monkey’s
choice and the presented stimulus (that is, the dots positions in each frame). These
data were used to compute average motion energy traces (Supplementary Fig. 7).
The task was very similar to the classical fixed-duration version2,13,64 (see
Supplementary Methods for details). All surgical and behavioural procedures
conformed to guidelines established by the National Institutes of Health and were
approved by the Institutional Animal Care and Use Committee of Stanford
University.

Psychophysical reverse correlation. We used psychophysical reverse correla-
tion9,67 to measure the amplitude and time-course of the impact of stimulus
fluctuations on the decision. The psychophysical kernels were computed as the
difference of the average stimulus leading to each of the two possible choices. For
the experimental data, stimulus fluctuations were estimated by computing the
motion energy contained in the RDKs using appropriate spatio-temporal
filters29,68. For details, see Supplementary Methods.
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