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Abstract: In this study, effective solutions for polyethylene terephthalate (PET) recycling based on
hyperspectral imaging (HSI) coupled with variable selection method, were developed and optimized.
Hyperspectral images of post-consumer plastic flakes, composed by PET and small quantities of
other polymers, considered as contaminants, were acquired in the short-wave infrared range (SWIR:
1000–2500 nm). Different combinations of preprocessing sets coupled with a variable selection
method, called competitive adaptive reweighted sampling (CARS), were applied to reduce the
number of spectral bands useful to detect the contaminants in the PET flow stream. Prediction models
based on partial least squares-discriminant analysis (PLS-DA) for each preprocessing set, combined
with CARS, were built and compared to evaluate their efficiency results. The best performance result
was obtained by a PLS-DA model using multiplicative scatter correction + derivative + mean center
preprocessing set and selecting only 14 wavelengths out of 240. Sensitivity and specificity values in
calibration, cross-validation and prediction phases ranged from 0.986 to 0.998. HSI combined with
CARS method can represent a valid tool for identification of plastic contaminants in a PET flakes
stream increasing the processing speed as requested by sensor-based sorting devices working at
industrial level.

Keywords: PET; sensor-based sorting; plastic recycling; hyperspectral imaging; SWIR; variable
selection; circular economy

1. Introduction

Plastics represent one of the most used materials, in daily life, in a wide range of
applications, due to their peculiar characteristics and low production costs [1]. As a con-
sequence, there has been an uncontrolled growth of large quantities of plastic waste [2],
especially from packaging, still creating a series of challenges for industrialized countries
at a political, economic, social, and environmental level [3]. In order to achieve circular
economy and recycling targets, set by European and national legislation, to prevent the
environmental impacts of plastic packaging waste, it is essential to implement efficient
plastic waste recovery strategies [3–5]. Several actions can be taken to improve plastic
recycling processes, thus allowing to bring high-quality recycled products to the market.
In this context, the on-line sorting step of the mechanical recycling process plays a preemi-
nent role in order to improve processing performance, increasing recycled plastic quality.
Contaminants, i.e., other materials and other types of polymers, inside the post-consumer
stream of a specific recycled polymer, can degrade the final properties of the secondary
raw material [6–8]. A correct recognition and separation of materials in recycling plants is,
thus, crucial.

Optical-based sorting of polymers is one of the key points in order to produce high-
quality plastics as secondary raw materials [9,10]. Many spectroscopy- based approaches
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can be applied for plastic classification, including near-infrared (NIR) and short-wave
infrared (SWIR) spectroscopy [10,11], Raman spectroscopy [12], and laser induced break-
down spectroscopy (LIBS) [13]. Compared with other spectroscopic techniques, NIR/SWIR
spectroscopy has the advantage of rapid detection, little sample preparation and low
cost [14]. NIR/SWIR spectroscopy can, thus, be profitably utilized to perform automatic
plastic sorting or to implement quality control strategies in recycling plants [14]. In fact, use-
ful information about polymers can be obtained in the NIR/SWIR range, as their molecules
absorb light by overtone or combination vibrations [10].

Hyperspectral imaging (HSI), operating in the NIR or SWIR range, represents an
attractive solution to characterize, identify, and classify various materials, thanks to its
ability to provide information on spectral features and spatial distribution [15–21]. The
selection of SWIR range, being characterized by a greater number of wavelengths, can
allow to recognize many different polymers, even with slight spectral differences, reducing
the misclassification errors [10,22–25]. HSI is based on the use of an integrated hardware
and software architecture able to acquire and process data, useful to obtain spatial and
spectral information of the investigated object. This information is contained in a three-
dimensional dataset (i.e., two spatial dimensions and a spectral dimension), the so-called
“hypercube” [9,10]. As the hyperspectral image is characterized by high-dimensional data,
its spectral information is often affected by multicollinearity [26] and requires some data
processing time. In fact, not all variables (i.e., wavelengths) are useful (i.e., presence of
noise) or necessary (i.e., redundancy of information) to build the prediction models [27,28].
Thus, a variables selection approach could optimize classification logics of plastic waste,
improving the efficiency and speed of optical sorting machines working at industrial level.
The goal of variable selection is to obtain a small set of variables offering the best or at
least comparable generalization or simplification capacity compared to the original set
of variables [29,30]. Therefore, the variable selection can play an important role in HSI
analysis before modeling in order to extract the most relevant and sensitive information.

The proposed study was carried out to develop efficient strategies for sensor-based
sorting of plastic waste in recycling plants, based on hyperspectral imaging (HSI) and
variable selection approach, in particular for the production of a high-quality recycled
polyethylene terephthalate (PET) flakes stream. The use of variable selection methods to
reduce processing time in optical sensors-based sorting is a current goal [31,32]. In more
detail, the purpose is to reduce the number of variables to be used without losing quality
in the recognition during the sorting process. For this reason, the use of new techniques for
variable selection can be profitable improve the quality of sorting process.

In this study, HSI based analysis, working in the SWIR range (1000–2500 nm), was
applied as a fast and non-destructive detection technique useful to obtain high predictive
results. Different preprocessing strategies, among the most used in literature on NIR
data [33–43], were evaluated to select the most efficient set or sequence, able to emphasize
PET and contaminant spectral differences.

Competitive adaptive reweighted sampling (CARS) method, which performs by
simulating the Darwinian “survival of the fittest” theory of evolution [44,45] was applied
to eliminate the useless or irrelevant variables, and to select an optimal combination of
effective wavelengths useful to recognize contaminants in a PET stream. Partial least
squares discriminant analysis (PLS-DA) models were built for each preprocessing set, in
order to evaluate the one showing the best efficiency to identify classes of polymers, i.e.,
PET and other polymers considered as a single class of contaminants.

2. Materials and Methods
2.1. Samples Overview

Plastic samples, representative of a flow-stream of PET flakes contaminated by other
polymers, were collected from a recycling plant. In this scenario, the contaminants have
limited and finite variability sources [46], allowing the possibility to create a representative
prediction model with defined wavelengths.



J. Imaging 2021, 7, 181 3 of 16

Plastic flakes of PET and other polymers were selected and divided into calibration
and prediction datasets for the evaluation of the PLS-DA models (Figure 1). In detail, the
calibration dataset (CAL) was created from an individual image containing 36 samples
divided into 18 PET and 18 contaminant flakes (Figure 1a). Principal component analysis
(PCA) was used to set classes and defining the calibration set. The calibration dataset
was pre-processed and cross-validated (CV) for building a PLS-DA model to detect the
presence of contaminants on PET stream. The prediction image (PRED) was created from
a set of plastic samples external to the model, characterized by 18 PET and 18 flakes of
contaminants randomly arranged (Figure 1b).
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Figure 1. Source images of calibration dataset showing PET (red square) and contaminant (green square) flakes (a) and
source image of the prediction dataset showing PET and contaminant flakes (the latter marked by green circles) (b).

2.2. Data Acquisition and Analysis

Hyperspectral images acquisition was carried out at the Raw Materials Laboratory
(RawMaLab) of the Department of Chemical Engineering, Materials and Environment
of Sapienza University of Rome by the Sisuchema XLTM Chemical Imaging Workstation
(Specim Ltd., Oulu, Finland) (Figure 2). The HSI platform is based on a push-broom
acquisition architecture, with a camera operating from 1000 to 2500 nm (SWIR range).
The selected configuration of the device covers a maximum field of view of 20 cm with a
pixel resolution of 625 µm. The HSI platform is equipped with a diffuse line illumination
unit, consisting of quartz halogen lamps producing dual linear light, covering a spectrum
range of 920 to 2514 nm, thus optimizing the imaging of various surfaces [47]. The
working distance between the spectrograph lens and the sample tray plan was 30 cm. The
device technical specifications are summarized in Table 1. Reflectance of hypercube was
automatically set up by an internal standard reference target. A total of 240 wavelengths
were collected and analyzed for each dataset. The number of pixels collected for the
calibration dataset was 3420 for the PET class and 2089 for the contaminant class, while
the number of pixels of the prediction dataset was 3594 for the PET class and 2836 for the
contaminant class.
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Figure 2. Sisuchema XLTM chemical imaging workstation (Specim Ltd.).

Table 1. SISUCHEMA XLTM details (SWIR range).

Optical Characteristics

Spectrograph Imspector N25E

Spectral Range 1000–2500 nm ±

Spectral resolution 10 nm (30 µm slit)

Spectral sampling/pixel 6.3 nm

Spatial resolution Rms spot radius <15 µm (320)

Aberrations Insignificant astigmatism, smile or keystone <5 µm

Numerical aperture F/2.0

Slit width options 30 µm (50 or 80 µm optional)

Effective slit length 9.6 mm

Total efficiency (typical) >50%, independent of polarization

Stray ligth <0.5% (halogen lamp, 1400 nm notch filter)

Field of view (mm) 15 mm lens

200

Pixel dimension (mm) x 0.625

y (y dimension in mm × 0.03)/9.6

Scanning speed (mm/s) 72.50

Scanning rate 100 hyperspectral line images/s (max), corresponding to
−60 mm/s with 600 micron pixel

Electrical Characteristics

Camera MCT camera

Pixels in full frame 320 (spatial) × 256 (spectral)

Active pixels 320 (spatial) × 240 (spectral)

Pixel size on sample Scalable from 30 to 300 µm

Cooling 4-stage Peltier for detector array, additional Peltier for active cooling of the
detector package

Camera output 14-bit LVDS

Signal to noise ratio 800:1 (at max signal level)

Frame grabber National Instruments PCL-1422
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PLS_toolbox (ver. 8.8 Eigenvector Research, Inc., Wenatchee, WA, USA) running in
the Matlab environment (version R2020a, The Mathworks, Inc., Nertick, MA, USA) was
used to analyze the acquired hyperspectral images.

2.3. Data Preprocessing

Different preprocessing strategies, according to the most applied to infrared spectral
data [33–43], including those related to plastic samples [10,15,17,48–53], were selected to
build each pretreatment sequence, that is:

• Standard Normal Variate (SNV): SNV was applied to reduce the scattering effects
in the spectral data and to obtain a general linearization of the relationship between
signal and concentration [10,33–39];

• Savitzky–Golay (SG) derivative: Derivatives are a common method used to remove
unimportant baseline signal from data. SG first derivative filter was applied to
emphasize the spectral differences with second polynomial order and 15 points win-
dow [10,33–37,40];

• Multiplicative Scatter Correction (MSC): MSC is widely used for infrared data (such
as SNV and derivation). MSC was useful to remove artifacts or imperfections from
data, such as undesirable scatter effect [32–37];

• Smoothing: Smoothing (Savitzky–Golay routine) was used as low-pass filter (15 points)
for removing high-frequency noise due to the derivation process [10,40–43];

• Detrend: Detrend was applied on spectra to remove the effects of baseline shift and
curvilinearity [34,35,39];

• Mean Center (MC): Centering is one of the most common types of preprocessing,
usually applied. MC has the effect to include an adjustable intercept in multivariate
models [10,38,41–43].

2.4. Principal Component Analysis (PCA)

PCA is often applied for HSI data exploration, useful to provide an overview of
multivariate data and to evaluate the selected preprocessing combinations [54]. PCA
allows the decomposition of preprocessed spectral data into linear combinations of the
original spectral data, called principal components (PCs), collecting the spectral variations
in reduced set of factors. The first PCs were used to analyze the common characteristics of
samples and their grouping, as the samples characterized by similar spectral signatures
tend to aggregate in the score plot of the first two or three components [54].

2.5. Competitive Adaptive Reweighted Sampling (CARS)

CARS is an innovative and useful wavelength selection approach [44] used in NIR
spectroscopy to select variables (i.e., significant wavelengths) [45]. CARS has the potential
to select an optimal combination of the useful wavelengths from the full spectrum, com-
bined with PLS regression [54]. In CARS method, regression coefficients (RC) absolute
values of PLS model are used to evaluate the weight of each wavelength. Based on the
importance of each wavelength, CARS sequentially selects N subsets of wavelengths by N
Monte Carlo sampling run in an iterative and competitive manner. First, in each sampling
run, samples are randomly selected in a fixed ratio (e.g., 80%) to build a calibration model.
Then, based on RC, exponentially decreasing function (EDF) and adaptive reweighted
sampling (ARS) procedures are applied to select the key wavelengths. Finally, the subset
with the lowest root mean-square error of cross validation (RMSECV) is chosen.

2.6. Partial Least Square Discriminant Analysis (PLS-DA)

PLS-DA was used to identify predefined classes of materials (i.e., PET and contam-
inants), by forming discriminant functions from input variables (i.e., wavelengths) to
produce a new set of transformed values useful to provide a more accurate discrimination
than any single variable [55]. Venetian blind (number of data splits = 10) as cross-validation
method was used, in order to evaluate the complexity of the models and to select the
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appropriate number of latent variables (LVs) (Figure S1). The optimal number of LVs was
also determined by the smaller difference between RMSEC and RMSECV [56–58].

PLS-DA Performances

The classification performances obtained by PLS-DA models were evaluated in terms
of statistical parameters: sensitivity, specificity and efficiency (Equations (1), (2), and (3)).

Sensitivity =
True Positive

(True Positive + False Negative)
(1)

Specificity =
True Negative

(True Negative + False Positive)
(2)

Efficiency =
√
(sensitivity× specificity) (3)

3. Experimental Results and Discussion
3.1. Average Raw Reflectance Spectra

The average raw reflectance spectra and the standard deviation of the two classes of
polymers are shown in Figure 3. PET average spectrum was characterized by absorption
bands of C-H2 and C-H of the third harmonic region (1131 and 1182 nm), C-H of the second
harmonic region (1402, 1665, 1723, 1825, 1910, and 1960 nm) and C-H stretching vibrations
+ C-H deformation of first combination region (2090, 2136, 2161, 2186, and 2261 nm). The
average spectrum of contaminants showed a complex fingerprint due to the presence of
different types of polymers, with the main absorption bands located around 1220, 1402,
1735, and 2317 nm.

3.2. Preprocessing Sets and Variables Selection

In order to emphasize the spectral differences between PET and contaminants, three
sets of preprocessing techniques were used, that is:

• Set 1: Detrend + Smoothing + MC;
• Set 2: SNV + MC;
• Set 3: MSC + Derivative + MC.
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Subsequently, for each preprocessing set, the CARS method [44] was applied, in order
to reduce the number of wavelengths useful to discriminate the spectral characteristics
between PET and contaminants. The selected wavelengths for each adopted preprocessing
sets are shown in Table 2.

Table 2. Different preprocessing sets and corresponding selected wavelengths, using CARS method.

Set Preprocessing Selected Wavelengths (nm) Number of
Wavelengths

1 Detrend + Smoothing + MC

1000, 1018, 1024, 1030, 1308, 1314,
1320, 1327, 1333, 1339, 1723, 1729,
1905, 1911, 1917, 2086, 2092, 2099,
2105, 2249, 2255, 2261, 2442, 2448

and 2454

25

2 SNV + MC

1000, 1018, 1024, 1030, 1131, 1207,
1308, 1314, 1320, 1327, 1333, 1339,
1346, 1346, 1654, 1723, 1911, 1917,
1923, 2249, 2255, 2261, 2448, 2454,
2479, 2486, 2492, 2498 and 2500

29

3 MSC + Derivative + MC
1049, 1055, 1062, 1119, 1291, 2217,
2224, 2274, 2280, 2286, 2292, 2299,

2411 and 2417
14

3.3. PCA Results of Preprocessing Set 1 (Detrend + Smoothing + MC)

PCA score and loadings plots are shown in Figure 5. Most of the variance was captured
by the first two PCs, as shown in the score plot (Figure 5a), where PC1 and PC2 explained
about the 74.09% and 21.07% of the variance, respectively. The PCA score plot showed two
clouds corresponding to the two analyzed classes (i.e., PET and contaminant). The cluster
separation was acceptable with a low overlapping of clouds in the fourth quadrant. In more
detail, the PET scores, due to the low spectral variance and high uniformity detected in PET
samples, were more grouped than the contaminant scores. The variance of the contaminant
was greater than the PET class, as it was influenced by the spectral combination of different
polymers, as shown in the PCA score plot. The loadings plot of PC1 and PC2 was shown in
Figure 5b. The main PC1 variance was given by the wavelengths around 1240 and 1720 nm
for positive values, while for negative values it was mainly given by the wavelengths
around 1320 and 2100 nm. PC2 was mostly influenced by wavelengths around 1730, 1910,
and 2100 nm for positive values, whereas negative values were highlighted by wavelengths
about 1005 and 2450 nm.
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3.4. PCA Results of the Preprocessing Set 2 (SNV + MC)

PCA score and loadings plots are shown in Figure 6. The PCA model showed a
captured variance of 95.07% with 3 PCs. The best separation between PET and contaminant
clusters was allowed by PC1 vs. PC2, as shown in the PCA score plot (Figure 6a). Cluster
separation was very noticeable with few overlapping pixels compared to the previous
preprocessing sets. PET cluster was mainly located in the first and second quadrant,
while the distribution of the contaminant scores was mainly localized in the third and
fourth quadrant. Both clusters showed a similar variance distribution. Therefore, the
preprocessing Set 2 (SNV + MC) approach allowed to minimize the intra-class variance,
emphasizing the differences between PET and contaminant classes. The loadings plots
of PC1 and PC2 are shown in Figure 6b. The PC1 variance was mainly given for positive
values by the wavelengths around 1720, 2250, and 2480 nm, and for negative values by the
wavelengths around 1020, 1130, and 1326 nm. PC2 was mostly marked for positive values
by wavelengths around 1206, 1720, and 1920 nm, and for negative values by wavelengths
around 1650 and 2255 nm.
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3.5. PCA Results of Preprocessing Set 3 (MSC + Derivative + MC)

PCA scores and loadings plots are shown in Figure 7. The PCA model showed a
captured variance of 95.59% with 3 PCs. The best separation between PET and contaminants
was allowed by PC1 vs. PC2. The PCA score plot showed two clusters related to PET
and contaminant classes. The score plot showed a cluster separation and a low cluster
overlap in the central zone (Figure 7a). PET cluster was mainly located in the first quadrant,
while the class of contaminants was mainly localized in the second quadrant. Therefore,
preprocessing Set 3 (MSC + Derivative + MC) allowed to minimize the intra-class variance,
and to preserve the spectral differences between the two classes. The loadings plot of PC1
and PC2 is shown in Figure 7b. The PC1 variance was mainly given, for positive values,
by the wavelengths around 2274 nm, and for negative values by the wavelengths around
2300 nm. PC2 was mainly influenced for positive values by wavelengths around 1050 nm,
and for negative values by wavelengths around 1060 nm.

3.6. Classification Performances
3.6.1. PLS-DA Models Constructed for a Limited Set of Spectral Variables

Starting from the characteristics detected by the PCA of each preprocessing set with
selected variables, a PLS-DA model was constructed. The correct number of LVs was
chosen based on the smallest difference between the root mean square error for calibration
(RMSEC) and cross-validation (RMSECV) values (Table 3). PLS-DA model of preprocessing
Set 1 (Detrend + Smoothing + MC) showed a variance captured of 96.66% with 4 LVs; the
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PLS-DA model of preprocessing Set 2 (SNV + MC) showed a variance captured of 98.64%
with 3 LVs and, finally, PLS-DA model of preprocessing Set 3 (MSC + Derivative + MC)
showed a variance captured of 93.68% with 3 LVs. The PLS-DA models prediction results
are shown in Figure 8. In general, in all models, PET and contaminant flakes samples
were properly recognized using the PLS-DA model, with the presence of a few pixels
not correctly classified. The only exception was related to the results achieved based
on preprocessing Set 1 (Detrend + Smoothing + MC), showing a sample with multiple
misclassified pixels (highlighted with a yellow circle in Figure 8) and border-effect in
some flakes. The results obtained by PLS-DA models related to preprocessing Set 2
(SNV + MC) and 3 (MSC + Derivative + MC) showed a similar prediction quality, with few
misclassification pixels mainly due to border-effect. However, the few pixels not correctly
assigned, do not significantly affect the correct class recognition.
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Table 3. Root mean square error for calibration (RMSEC) and cross-validation (RMSECV) for the
three PLS-DA models constructed for preprocessing Set 1, 2, and 3.

Preprocessing Set Classes RMSEC RMSECV LVs Number

Set 1
(Detrend + Smoothing + MC)

PET 0.247965 0.248336
4

Contaminant 0.247965 0.248336

Set 2
(SNV + MC)

PET 0.237705 0.237803
3

Contaminant 0.237705 0.237803

Set 3
(MSC + Derivative + MC)

PET 0.126412 0.126612
3

Contaminant 0.126412 0.126612

The classification performances obtained by the different preprocessing sets, shown
in Table 4, revealed sensitivity and specificity values in calibration, cross-validation, and
prediction ranging from 0.957 to 0.999. Efficiency values in prediction ranges from 0.969
to 0.991 confirming the positive quality of all PLS-DA models combined with variables
selection. Based on the measured performance parameters, Set 2 (SNV + MC) and Set
3 (MSC + Derivative + MC) show a similar result in terms of specificity, sensitivity, and
efficiency. However, Set 3 (MSC + Derivative + MC) is better because it uses a smaller
number of wavelengths (14 for Set 3 vs. 29 for Set 2). Therefore, the best PLS-DA model
was the one obtained starting from preprocessing Set 3 (MSC + Derivative + MC).
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Figure 8. Prediction maps as resulting from the preliminary utilization of the 3 different preprocessing strategies (i.e.,
Set 1: Detrend + Smoothing + MC, Set 2: SNV + MC and Set 3: MSC + Derivative + MC) applied to the reduced set
of wavelengths, resulting from CARS processing, and the further PLS-DA modeling. Prediction maps related to the
utilized wavelengths as resulting from preprocessing Set 1: Detrend + Smoothing + MC (a), Set 2: SNV + MC (b) and
Set 3: MSC + Derivative + MC (c).

3.6.2. Comparison of Full Spectrum and Reduced Wavelength PLS-DA with Preprocessing
Set 3 (MSC + Derivative + MC)

Finally, the performances of full spectrum PLS-DA using preprocessing Set 3 (MSC +
Derivative + MC) were compared with those obtained in variables selection mode with
the same preprocessing set. In details, the full spectrum PLS-DA model showed a cap-
tured variance of 99.39% with 5 LVs. The LVs number was chosen based on the smallest
difference between the RMSEC and RMSECV values (Table 5). Full spectrum PLS-DA
prediction results are shown in Figure 9. In particular, PET and contaminant classes were
well predicted, with sensitivity and specificity values in calibration, cross-validation and
prediction phases and efficiency (Table 6) ranging from 0.986 to 1.000 for both classes.
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Table 4. PLS-DA classification performances in variables selection mode, for calibration (CAL), cross-validation (CV) and
prediction (PRED) phases.

PLS-DA Model Classes Sensitivity Specificity Efficiency (PRED)

Set 1
Detrend + Smoothing + MC

(4 LVs)

CAL
PET 0.974 0.989

0.969

Contaminant 0.989 0.974

CV
PET 0.974 0.988

Contaminant 0.988 0.974

PRED
PET 0.983 0.957

Contaminant 0.957 0.983

Set 2
SNV + MC

(3 LVs)

CAL
PET 0.992 0.999

0.987

Contaminant 0.999 0.992

CV
PET 0.992 0.999

Contaminant 0.999 0.992

PRED
PET 0.995 0.979

Contaminant 0.979 0.995

Set 3
MSC + Derivative + MC

(3 LVs)

CAL
PET 0.986 0.998

0.991

Contaminant 0.998 0.986

CV
PET 0.986 0.998

Contaminant 0.998 0.986

PRED
PET 0.994 0.988

Contaminant 0.988 0.994

Table 5. Root mean square error for calibration (RMSEC) and cross-validation (RMSECV) for the full
spectrum PLS-DA model using preprocessing Set 3 (MSC + Derivative + MC).

Preprocessing Set Classes RMSEC RMSECV LVs Number

Set 3
(MSC + Derivative + MC)

PET 0.105549 0.105695
5

Contaminant 0.105549 0.105695
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Table 6. Full spectrum PLS-DA (Set 3: MSC + Derivative + MC) classification performances for calibration (CAL), cross-
validation (CV), and prediction (PRED) phases.

PLS-DA Model Classes Sensitivity Specificity Efficiency (PRED)

Full spectrum
PLS-DA

(Set 3: MSC + Derivative + MC)

CAL
PET 0.986 0.998

1.000

Contaminant 0.998 0.986

CV
PET 0.986 0.998

Contaminant 0.998 0.986

PRED
PET 1.000 1.000

Contaminant 1.000 1.000

The comparison of the prediction results based on the PLS-DA-Set 3 (MSC + Derivative
+ MC) applied to the full spectrum hypercubes (Figure 9) and to the 14 selected wavelengths
(Figure 8c) showed as they are similar. In detail, analyzing the sensitivity, specificity and
efficiency values of the two models, it can be noticed a slight increase in misclassified
pixel/spectra in the PLS-DA in variable selection model. However, the misclassified pixels
were mainly located along the boundary of the samples, not affecting the correct attribution
of the class.

4. Economic and Environmental Impact

The systematic implementation of the HSI detection and classification-based logic
could have important effects both at commercial-industrial and at economic-environmental
level. The proposed approach can produce not only a better separation efficiency, but also
a product of better quality. The fulfilment of these two goals generates social, economic,
and environmental benefits [59]. In fact, in an economic viability context, a stronger and
widespread PET recycling sector generates employment and contributes to reduce the
volume of municipal solid waste [60]. In addition, high-quality recycled PET contributes to
reduce the consumption of energy and non-renewable raw materials, [61], according to the
sustainable development goals (SDGs) of UN Agenda 2030, and in particular to SDG 12,
and to the principles of circular economy.

5. Conclusions

The application of HSI in the SWIR region was investigated to evaluate the feasibility
of a rapid and non-destructive method for the identification of plastic contaminants in a
recycled PET flakes stream, producing a high-quality secondary raw material. CARS was
tested as variable selection method after the application of three different preprocessing
sequences to identify the best combination for the recognition of contaminants in PET
stream with a limited number of wavelengths. The results of the variable selection obtained
by CARS were evaluated by a PLS-DA model for each set of selected wavelengths. The best
prediction results in calibration and cross-validation were provided by the combination of
CARS and the preprocessing Set 3 (MSC + Derivative + MC), reducing the spectral dataset
from 240 to 14 wavelengths. In addition, a comparison was made between the performances
of the full spectrum PLS-DA model using preprocessing Set 3 (MSC + Derivative + MC)
and those obtained in variable selection mode with the same preprocessing set. The results
demonstrated that the correctness of the classification was similar, further highlighting
the possibility to identify plastic contaminants in the recycled PET flakes stream using a
limited number of key wavelengths, useful for online sorting applications.

The current study supplied an effective procedure for variable selection from hyper-
spectral images, reducing data redundancy and obtaining a prediction efficiency close
to that obtained by the full spectrum PLS-DA model. The obtained results enable the
possibility to build a multispectral detection system based on filters analyzing selected
spectral regions, with a significant reduction in costs compared to a conventional full
spectrum hyperspectral camera and ensuring a high quality of recycled PET stream.
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