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ABSTRACT

Phytoplankton consists of autotrophic, photosynthe-
sizing microorganisms that are a crucial component
of freshwater and ocean ecosystems. However, de-
spite being the major primary producers of organic
compounds, accounting for half of the photosyn-
thetic activity worldwide and serving as the entry
point to the food chain, functions of most of the
genes of the model phytoplankton organisms remain
unknown. To remedy this, we have gathered publicly
available expression data for one chlorophyte, one
rhodophyte, one haptophyte, two heterokonts and
four cyanobacteria and integrated it into our PlaNet
(Plant Networks) database, which now allows min-
ing gene expression profiles and identification of co-
expressed genes of 19 species. We exemplify how
the co-expressed gene networks can be used to re-
veal functionally related genes and how the compar-
ative features of PhytoNet allow detection of con-
served transcriptional programs between cyanobac-
teria, green algae, and land plants. Additionally, we
illustrate how the database allows detection of dupli-
cated transcriptional programs within an organism,
as exemplified by two putative DNA repair programs
within Chlamydomonas reinhardtii. PhytoNet is avail-
able from www.gene2function.de.

INTRODUCTION

While phytoplankton (used here in the broadest sense that
includes cyanobacteria) is often not visible by unaided
eye, it plays a crucial role in marine environments. These
photosynthesis-capable organisms form the foundation of
aquatic ecosystems and contribute to ∼50% of the global
carbon assimilation (1–3). Cyanobacteria are extant rela-
tives of the organisms that gave rise to plant chloroplasts

through endosymbiosis ∼1.5 billion years ago, and there-
fore are vital to understand the origin of plants (4). Further-
more, the phylogenetic position of green algae makes them
interesting outgroups for evolutionary studies focussed on
higher plants (5). Having often a simpler genetic makeup
than higher plants, various single-celled algae have been
hailed as a ‘green yeasts’, with potential applications rang-
ing from the production of biofuels to food supplements
(6,7). Finally, diatoms and coccolithophores, which con-
struct intricate shells from silica and calcium carbonate re-
spectively (8,9), have value for biotechnology and nanotech-
nology (10).

Despite their importance, the function of many algal
genes remains unknown, and gene function prediction ap-
proaches for algae rely mainly on sequence similarity anal-
ysis. These approaches thus lag behind when compared
to gene function prediction methods applied to model or-
ganisms in other branches of the tree-of-life (11). Online
resources focussed on algae are rare, and while a com-
parative genomics platform was established recently (12),
tools to study gene expression in algae are still lacking. As
genes with similar expression profiles across developmen-
tal stages, environmental perturbations and organs tend to
be functionally related, identification of co-expressed genes
has been used to reveal functionally related genes (13–17).
These co-expression relationships can be visualized as net-
works, where nodes (or vertices) correspond to genes and
edges (or links) connect genes that display similar expres-
sion profiles (18). Thus, by identifying groups of connected
genes in these networks, functional gene modules can be de-
tected and used to predict gene function. Furthermore, gene
modules conserved over large phylogenetic distances can re-
veal core components of shared processes, while duplicated
gene modules can reflect recent adaptations combined with
an increase in complexity (19–21).

Here, we present PhytoNet (www.gene2function.de), a
freely available extension to PlaNet, which allows studying
co-expression networks in nine algae through an online in-
terface.
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MATERIALS AND METHODS

Integration of nine phytoplankton species into the PlaNet
database

To make PhytoNet a complete platform to study gene
expression of phytoplankton, we screened ArrayExpress
database for expression data of photosynthesizing microor-
ganisms (22), with criteria: (i) the candidate organism must
be sequenced and (ii) at least 20 expression datasets must
be available (23,24). We arrived at nine species (Table 1,
Figure 1A, Supplementary Table S1), which include four
cyanobacteria (Synechocystis sp. PCC 6803, Nostoc puncti-
forme PCC 73102, Prochlorococcus marinus subsp. pastoris
str. CCMP1986, Cyanothece sp. ATCC 51142), two het-
erokonts (Ectocarpus siliculosus, Phaeodactylum tricornu-
tum), one rhodophyte (Cyanidioschyzon merolae), one hap-
tophyte (Emiliania huxleyi) and one chlorophyte (Chlamy-
domonas reinhardtii). Synechocystis, Cyanothece, Phaeo-
dactylum and Emiliania raw microarray data were down-
loaded and processed using the R-package limma (25),
Nostoc and Ectocarpus raw data were normalized using
Deva software (Roche, Nimblegen), Chlamydomonas raw
RNA sequencing data were downloaded and transcript per
million (TPM)-normalized using LSTrAP software (26),
while Prochlorococcus and Phaeodactylum processed data
were downloaded from ArrayExpress (Supplementary Ta-
ble S1). LSTrAP was used to detect and discard samples
that showed either (i) low mapping to the genome (< 65%),
(ii) low mapping to coding sequences (<40%) or (iii) with
too few useful reads (less than 8M reads mapping to the
genome). The remaining samples were used to construct
expression matrices and co-expression networks. Pfam do-
main labels were assigned to genes by blasting CDS se-
quences against Pfam database version 27 with an e-value
cutoff of 10−5 (21,27), while Gene Ontology terms and
gene families were obtained by using the CDS sequences in
TRAPID (28).

To assess the quality of the expression data, we first an-
alyzed the sample similarity dendrogram, with the assump-
tion that replicates and samples representing similar experi-
ments should group together. The sample similarity dendro-
grams showed an expected clustering of replicates and re-
lated samples (i.e. separate clustering of Synechocystis day
and night samples, Supplementary Figures S1–S9). Fur-
thermore, co-expression networks tend to show a scale-
free topology (also called power law behavior), where most
nodes have few connections, and few nodes have many
connections (29). The expression data of the nine species
produced the expected pattern on a line with a negative
slope (recommended Pearson Correlation Coefficient cutoff
>0.7, (30), Supplementary Figure S10), which is indicative
of scale-freeness of the co-expression networks (24,31,32).
Taken together, this indicates that the data is of sufficient
quantity and quality to produce co-expression networks
with correct topology.

The expression data were used to construct Highest Re-
ciprocal Rank (HRR) co-expression networks, and the clus-
ters of co-expressed genes were identified with Heuristic
Cluster Chiseling Algorithm (HCCA, (32)). To detect con-
served and duplicated modules, we applied the FamNet

pipeline, which identifies co-expression neighborhoods that
contain same gene families and Pfam domains (21). Briefly,
when two neighborhoods of sizes A and B are compared,
the number of Pfam domains and gene families (labels) in
common between the two neighborhoods is counted and
compared to an expected number of random neighbor-
hoods of these sizes (21). Finally, the data were uploaded
to the PlaNet database (33).

RESULTS

Identification of functionally related gene clusters

In order to have a clear overview of the biological pro-
cesses present in the co-expression networks, the networks
were clustered with the HCCA algorithm, which is opti-
mized to cluster HRR-based co-expression networks (32).
For the unicellular green algae Chlamydomonas reinhardtii,
173 clusters were identified (the number of clusters identi-
fied for each species is shown in Table 1). In order to eluci-
date the biological functions of these clusters, we computed
enriched MapMan gene ontology bins present in the clus-
ters (34). Sixty three of the clusters showed significant en-
richment in at least one of the 35 MapMan bins, and 14 of
them showed enrichment in more than one process (false
discovery rate-adjusted P-value < 0.05, Figure 1B). Pro-
cesses such as minor carbohydrate metabolism, fermenta-
tion, oxidative pentose pathway, nitrogen metabolism, hor-
mone metabolism, polyamine metabolism, micro RNA and
mineral nutrition were not enriched in any of the Chlamy-
domonas clusters, while the bin ‘protein’ was one of the
terms with highest enrichment (nine clusters), indicating the
presence of numerous bins involved in synthesis, modifica-
tion and degradation of proteins.

We demonstrate how these clusters can be used to identify
relevant genes with a stress-related cluster from Chlamy-
domonas. Abiotic stress can negatively affect biomass pro-
duction in all living organisms, but when applied to mi-
croalgae it can specifically lead to an increase of lipid
content, which is of great interest for biofuel production
(35–37). Numerous studies have investigated the transcrip-
tion profiles and physiological changes in Chlamydomonas
caused by abiotic stresses (38–40). Consequently, we de-
cided to explore cluster 72 (http://aranet.mpimp-golm.mpg.
de/responder.py?name=gene!cre!c72), which showed signif-
icant enrichment for the MapMan bin ‘stress’ (Figure 1B).
Within the cluster, we found three groups of genes in-
volved in three different processes (Figure 1C). The first and
largest group comprised chaperones belonging to Pfams
DNAJ (brown circle), HSP90 (beige square), HSP70 (vi-
olet square), chaperone activators AHSA1 (yellow circle,
activating HSP90) (41) and GRPe (gray square, activat-
ing HSP70) (42). The second group contained metallopep-
tidases M16 (brown square), M20 (red circle), M32 (blue
triangle) and a Clp ATPase involved in protein unfolding
(ClpB, purple circle) (43). The third group included pro-
teins involved in mitochondrial protein import, such as
Translocases s17 (red hexagon), 23 (purple triangle), s44
(purple diamond), inner membrane translocases belong-
ing to TIM17/22/23 families (yellow diamond, turquoise
hexagon), mitochondrial carriers translocating proteins
across membranes (red triangle) (44) and OXA1, which
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Figure 1. MapMan cluster analysis of Chlamydomonas reinhardtii. (A) An overview of species found in PhytoNet. (B) MapMan analysis of Chlamy-
domonas clusters. Rows represent MapMan bins (i.e. functional categories) while columns represent clusters. Red squares indicate that the specific term
is significantly enriched (FDR-adjusted P-value < 0.05) in a given cluster. Arrows indicate bins with no significant enrichment. The light blue rectangle
indicates the stress cluster 72. (C) Co-expression network representation of cluster 72 (stress). Nodes represent genes while edges connect genes which are
coexpressed. Colored shapes are used to indicate genes that belong to the same gene family and/or contain same Pfam domains. Colored edges indicate
the degree of co-expression between genes with green, orange and red edges denoting Highest Reciprocal Rank (HRR) of 10, 20 and 30, respectively. Note
that certain gene IDs can appear several times in the network, as several probes can exist for one gene. For clarity, only discussed genes are highlighted.
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Table 1. Description of the utilized expression data. The table indicates the number of expression measurements (samples), fraction of total protein-coding
genes captured by the expression measurement platform (microarray or RNA sequencing), fraction of interrogated protein-coding genes with assigned Pfam
domain and/or PLAZA gene family, types of experiments and the number of HCCA clusters

Organism Phylum
# Experi-
ments

# Interrogated
protein coding
genes / # in
genome

# Genes with
label / #
interrogated
genes Description of experiments

#
HCCA
clusters

Synechocystis sp. PCC
6803

Cyanobacteria 138 3412/3725 2827/3412
(82.8%)

Depletion (C, Cu, As, Mn,
Fe), diurnal and clock

35

Nostoc punctiforme Cyanobacteria 90 7151/7664 5586/7151
(78.1%)

Heterocyst and
hormogonium development

66

Prochlorococcus marinus Cyanobacteria 40 1942/2275 1482/1942
(76.3%)

CO2, O2 limitation time
course

17

Cyanothece sp. ATCC
51142

Cyanobacteria 69 5251/5304 3719/5251
(70.8%)

N2 and CO2 treatment time
series

99

Cyanidioschyzon merolae Rhodophyta 75 4586/5331 3670/4586
(80%)

Diurnal and cell cycle 46

Ectocarpus siliculosus Heterokontophyta 64 10658/16256 10263/10658
(96.3%)

Cu toxicity, hyposaline,
hypersaline, oxidative stress

156

Phaeodactylum
tricornutum

Heterokontophyta 58 10288/10402 7416/10288
(72.1%)

Blue, green, red light
response, light/dark cycles,
Cd toxicity

497

Emiliania huxleyi Haptophyta 42 27108/ 0569 9944/27108
(36.7%)

Haploid and diploid
growing in N and CO2
limitation, low / high light

268

Chlamydomonas
reinhardtii

Chlorophyta 605 17741/17741 -N, -S, -Cu, -Fe, UV-B,
H2O2 and rapamycin
treatment, Diurnal
expression

173

is involved in protein insertion into the inner mitochon-
drial membrane (grey diamond) (45). These results revealed
known components of protein folding, degradation and im-
port into mitochondria, and suggest that these processes
might be coordinated in Chlamydomonas. Taken together,
the functionally enriched clusters can serve as a rapid entry
point to identify genes involved in the biological process of
interest.

Detecting conserved gene modules

The combination of gene families, Pfam domains, and co-
expression modules allows detection and analysis of gene
modules that are present in multiple species (13,46,47), and
this property can be used to transfer functional knowledge
from one species to another (48–51). Such conserved mod-
ules indicate that the biological process captured is present
in the investigated species, and provides additional confi-
dence that the homologous genes present in these modules
are needed for the process and perform the same function
(48).

To illustrate how conserved modules can be detected
and analyzed, we used Synechocystis threonine synthase
gene sll1172 (http://aranet.mpimp-golm.mpg.de/responder.
py?name=gene!syn!3362). The expression profile of sll1172
showed that the gene is expressed in all conditions, and
co-expressed with other genes involved in amino acid
biosynthesis, glycolysis and nucleotide metabolism (the co-
expression network and gene ontology enrichment analysis
is found on the gene page). The database visualizes con-
served modules by using a gene module network (Figure
2A). The nodes in the network represent modules (groups
of co-expressed genes), blue edges indicate conserved mod-
ules (i.e. modules that contain same gene families and Pfam

domains), while the edge style indicates the number of gene
families and Pfam domains in common between two mod-
ules (52). Finally, modules that are overlapping (i.e. contain
same co-expressed genes) are connected by orange edges,
while green edges indicate duplicated modules (discussed in
the next section).

The gene module network for sll1172 indicated that
conserved modules were found in flowering plants (green
and orange nodes), cyanobacteria (blue nodes), early
land plants (moss Physcomitrella, yellow nodes), red
alga (Cyanidioschyzon, red nodes), green algae (Chlamy-
domonas, brown nodes), heterokonts (purple nodes) and
haptophytes (Emiliania, gray nodes), suggesting that the
module is conserved over large evolutionary distance. To ex-
emplify a typical analysis and to gain insight into the func-
tion of these conserved modules, we selected Synechocys-
tis sll1172, Arabidopsis At3g59760 and Physcomitrella
Pp1s370 61v6.1 from the table below the module network
and clicked on ‘Compare’ button. The output of the anal-
ysis indicated which common gene families and Pfam do-
mains were found in the three modules, by using colored
shapes to show presence or absence of a family (Figure 2B).
The database also provides a more detailed view of the mod-
ules, where individual genes are shown (Figure 2C). Closer
inspection of the Arabidopsis module revealed numerous
genes involved in ATP synthesis (indicated by a black box),
amino acid synthesis (blue box), steroid biosynthesis (red
box), glycolysis (green box) and adenylate salvage (purple
box, Figure 2C legend). To conclude, these results show that
the observed primary metabolic processes are transcription-
ally coordinated in cyanobacteria, plantae and species that
arose via secondary endosymbiosis, indicating that the ob-
served modules are ancient.

http://aranet.mpimp-golm.mpg.de/responder.py?name=gene!syn!3362
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Figure 3. Duplicated modules involved in DNA repair in Chlamydomonas reinhardtii. (A) Gene module network of Cre01.g048200 showing only Chlamy-
domonas modules sharing at least 10 label co-occurrences. Green edges indicate similarity of modules within the same species, whereas yellow edges
indicate overlapping modules. (B) Expression profiles of Cre01.g048200 and Cre03.g187950 during diurnal cycle (12h light/12h dark). The red line indi-
cates the shift from light to dark. Full expression profiles can be viewed on the respective gene pages. (C) Network comparer result showing the similarity
of Cre01.g048200 and Cre03.g187950 networks, with the query genes nodes enlarged. The legend provides label names and their corresponding functions
in brackets. The corresponding full modules can be viewed at the respective gene pages at PhytoNet.

Duplicated gene modules

We have previously shown that duplication of co-expression
modules is a widespread phenomenon in flowering plants
and in early land plants, such as mosses (20,48,53).
We exemplify such duplicated transcriptional mod-
ules in algae with Chlamydomonas reinhardtii gene
Cre01.g048200.t1.1 as a bait gene (http://aranet.mpimp-
golm.mpg.de/responder.py?name=gene!cre!10456). This
gene is annotated as a putative RNA helicase and contains

‘AAA’ Pfam domains, which correspond to ‘ATPases
associated with diverse cellular activities’. The gene module
network for this gene revealed six highly similar modules
that were overlapping with each other (Figure 3A). Of these
six modules, we selected Cre03.g187950 for comparison
with Cre01.g048200, as this showed the highest number
of gene families and Pfam domains (expressed as label
co-occurrences) (21) in common with our bait gene.

The expression patterns of these two genes are distinct, as
Cre03.g187950 is expressed during the whole diurnal cycle,

http://aranet.mpimp-golm.mpg.de/responder.py?name=gene!cre!10456
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whereas Cre01.g048200 is induced at the end of the day with
again decreasing expression during the night (Figure 3B).
The network comparison of these two genes revealed com-
mon Pfam domains, such as ‘DNA ligase A’, ‘DNA pol A’,
‘Helicase C’, and ‘DNA pol A exo’ (Figure 3C), which are
associated to DNA repair, replication and proofreading,
as well as several DNA/chromatin-associated Pfam do-
mains, such as ‘Bromodomain’, and ‘SNF 2’. To discover
the putative function of the two modules, we further ana-
lyzed the GO term enrichment of their respective individ-
ual gene networks. Interestingly, we found significant en-
richment for genes involved in DNA repair in both mod-
ules and for DNA replication in the module that is induced
at the end of the day (Supplementary Tables S2 and S3,
highlighted in yellow). In synchronized cell cultures under
a 12 h light/dark regime, Chlamydomonas reinhardtii cells
divide with the onset of the night (54). As the DNA repli-
cation occurs shortly before, the module that is induced at
the end of the day might be involved in DNA mismatch re-
pair during DNA replication. Conversely, the constitutively
expressed module might function as a general DNA repair
module. Taken together, our analyses identified putatively
duplicated DNA repair modules with distinct expression
patterns and specialized functions. It is important to note
that further experimental testing is required to verify the
involvement of these modules in DNA repair. This exam-
ple thus illustrates how hypotheses on functions of modules
can be generated as a starting point for additional analyses.

CONCLUSION

To remedy the lack of transcriptome analysis tools for phy-
toplankton, we introduce PhytoNet, an extension of the
PlaNet database which adds cyanobacteria and eukary-
otic algae to the web server, thus increasing the number of
species to 19. The web server contains gene expression pro-
file plots, gene co-expression networks and Gene Ontology
enrichment analyses for gene neighborhoods and clusters,
which can be used to predict gene functions. Furthermore,
the comparative features of PlaNet allow detection of con-
served and duplicated gene modules, allowing rapid iden-
tification of functionally related gene modules across and
within phytoplankton and land plants. Therefore, PhytoNet
is a versatile and easy to use hypothesis generation server
for phytoplankton researchers who study gene functions in
these organisms.
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