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Introduction
Hereditary retinal diseases, such as retinitis pig-
mentosa (RP), or degenerative conditions, includ-
ing age-related macular degeneration (AMD), 
can lead to loss of photoreceptor (PR) cells, while 
generally preserving the inner retinal neurons.1,2 
In both cases, there are no current treatment 
options to reverse the profound visual disability 
associated with advanced disease. RP is thought 
to affect around 1/4000 people, and in the United 
Kingdom, inherited retinal disorders are the com-
monest reason for certification of blindness in 
working age people.1,3 The estimated prevalence 
of geographic atrophy is 1.3% of the general UK 
population and is forecast to rise with the aging 
population.4

Recent advances in biotechnology have seen the 
first in-human trials, and in some cases market 
approval, of stem cell and gene therapies as well 
as retinal prostheses.5–10 In terms of ocular and 

especially retinal treatments, it is retinal prosthe-
ses that have had the longest period of develop-
ment to date.

The first notion of electrical-induced visual per-
cepts or ‘phosphenes’ came about in 1755, when 
Charles Le Roy applied an electrical current 
across the ocular surface of a blind patient, who 
reported seeing flashes of light. Later, in 1929, 
Foerster11 showed that acute external stimulation 
of the exposed occipital pole could also elicit sub-
jective phosphenes. In 1968, Brindley and Lewin 
exploited this phenomenon, using an 80-elec-
trode chronically implanted prosthesis to deliver 
electrical stimulation to the visual cortex and 
elicit phosphenes that coordinated with the reti-
notopic map previously described by Holmes in 
war-wounded patients.12,13 Shortly afterward, 
Potts and Inoue14 demonstrated that electrical 
current across the globe of patients with RP could 
elicit subjective phosphenes and evoke recordable 
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responses from electrodes placed over the occipi-
tal scalp.

In the 1980s, advances in materials and micro-
electronics fabrication, combined with develop-
ments in vitreo-retinal surgery, allowed for the 
emergence of the field of retinal prosthetics. 
Since then, several groups have formed around 
the world, with a range of approaches, but with 
the common goal of developing a device that 
can restore some form of vision in the context of 
profound vision loss. As well as retinal prosthe-
ses, other approaches include intracranial stim-
ulation devices, which act on the cortical or 
thalamic visual pathways and optic nerve pros-
theses.15 Another very different approach is to 
couple visual input to another functioning sen-
sory system. Devices including lingual stimula-
tion from a visual input, harnessing touch on 
the tongue, as well as auditory-based systems 
have been described.16

In this review, we have focused on those devices 
that are intended to deliver direct stimulation to 
the residual retinal neurons and, in particular, 
those that have progressed to the stage of human 
trials. It is not intended as an exhaustive list, but 
instead an update, and an overview of future 
directions.

Epiretinal prostheses
Epiretinal prosthesis systems are placed on the 
surface of the neurosensory retina, adjacent to the 
nerve fiber and ganglion cell layers. Surgical 
delivery of these devices is usually transvitreal 
through a pars plana sclerotomy. The microelec-
trode array is secured to the retinal surface with a 
tack. The advantage of this technique is that the 
surgical approach and field are more familiar to 
surgeons carrying out routine vitreo-retinal sur-
gery, while revision of the device placement and 
explantation can be less complex. Furthermore, 
locating a device in the vitreous cavity can facili-
tate safe heat dispersion. Functionally, it may be 
disadvantageous to have stimulation applied to 
the retinal ganglion cells (RGCs) directly, as this 
bypasses the residual intraretinal processing sys-
tem, limiting the ability to recreate the physiologi-
cal retinal topographic organization. On the other 
hand, it has been reported that the upstream 
remodeling of bipolar or amacrine cells, following 
PR degeneration, may necessitate a device that 
circumvents this.17 Also, due to the proximity of 
epiretinal devices to the passing axonal nerve  
fibers, ectopic visual percepts from inadvertent 

axonal stimulation could occur, thus reducing 
spatial resolution and obfuscating the intended 
stimulation pattern.

Argus II Retinal Prosthesis System
The Argus II epiretinal prosthesis (Second Sight 
Medical Products Inc., Sylmar, CA, USA) was 
the first device to receive CE marking, in 2011, 
and subsequently FDA approval, in 2013. It is 
the most widely used retinal prosthesis world-
wide, with over 250 patients estimated to have 
undergone implantation to date.

The Argus II system is made up of an external and 
an implantable component (Figure 1). The external 
component consists of a glasses-mounted camera 
linked to a portable visual processing unit, which 
processes the image for transmission to an external 
communication coil (also glasses mounted). This 
coil provides power induction and data transmis-
sion via wireless radiofrequency (RF) telemetry to 
an internal matching coil, which is fixed to the sclera 
with a silicone scleral buckle. Once received, the RF 
signal is decoded back to an electrical signal and an 
application-specific internal circuit (ASIC) sets the 
output command, which passes directly to the intra-
ocular retinal stimulator, comprising a 60-microe-
lectrode array, each 200 µm in diameter, covering a 
20° field of vision. The internal circuit is hermeti-
cally sealed and shown to have over 10 years’ lifes-
pan on accelerated aging tests.18

The Argus II phase II multicenter trial involved the 
implantation of 30 subjects to evaluate safety and 
effects on functional visual and real-world task per-
formance. Overall, subjects performed better on 
grating visual acuity, square localization, and direc-
tion of movement tasks with the device on than 
off.19–22 The proportion of subjects reaching signifi-
cant differences in these tests was maintained over 5 
years’ follow-up,7 with a best recorded acuity of 1.8 
logMAR (20/1262 Snellen equivalent).23 Similarly, 
orientation and mobility tasks were consistently bet-
ter performed with the device on than off during the 
5-year review period.7,22 The 10 years’ study follow-
up will be completed in 2019. Other measures such 
as letter reading, grasping task performance, real-
world functional tasks, and generation of repro-
ducible phosphenes have all shown a significant 
difference with the device turned on in patients  
with Argus II retinal implants.24–28 In 2012,  
Stanga and colleagues29 demonstrated that different  
combinations of colors could be perceived simulta-
neously during paired electrode stimulation in three 
out of four Argus II recipients.
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At 5 years postimplantation, there were 24 reported 
serious adverse events (SAEs) in 12 patients (40%), 
all of which were treatable with standard 
approaches.7 These were, for the most part, 
restricted to the early to mid postoperative period, 
including conjunctival erosion, dehiscence, and 
hypotony. There were three cases of presumed 
endophthalmitis, although these all occurred prior 
to the introduction of intravitreal antibiotics into the 
surgical protocol, since when there have been no 
further reported cases.7,19,22 Since the 3-year time 
point, there has only been one further reported SAE 
– a rhegmatogenous retinal detachment, which was 
successfully treated. Three devices were removed at 
the request of the patients, following conjunctival 
erosions, while two devices failed due to gradual loss 
of the RF link at 4 years.7,22 The precise cause of late 
device failure due to interrupted RF connection is 
not clear, but may represent exposure of the 
implanted electronics or receiver coil, possibly dam-
aged during implantation. The devices have 
remained implanted to monitor the long-term safety 
in the context of this potential complication.7

The Argus II underwent NICE assessment and 
it was felt that more data were required to 
ascertain patient benefit in terms of quality of 
life and activities of daily living. Further implan-
tation of 10 patients is planned later this year 
with a program of focused rehabilitation. A 
Functional Low-Vision Observer Rating 
Assessment (FLORA) has been refined to 
assess patient-reported functional vision and 

well-being following partial visual restoration 
with Argus II.30,31

Intelligent Medical Implants learning device/
Intelligent Retinal Implant System II
An acute implantation study demonstrated that 
phosphenes could be elicited in 19 of 20 subjects, 
leading to the development of the Intelligent 
Medical Implants (IMI) Learning Device.32,33 
This device consisted of a microfabricated polyim-
ide array, with 49 platinum microelectrodes, each 
with a diameter of 250 µm, spaced 120 µm apart, 
which was chronically implanted in seven patients. 
Results showed a good safety profile and reasona-
ble longevity, with patient-reported phosphenes 
and patterns during stimulation.34,35 The implant 
connected directly to an electronics module fixed 
to the external eye, which could only be stimu-
lated in the clinical setting.

Since acquiring IMI in 2007, Pixium Vision S.A. 
has further refined the device, now known as the 
Intelligent Retinal Implant System (IRIS) II. The 
IRIS II prosthesis comprises a glasses-mounted 
visual interface transmitting to a pocket processor, 
which creates stimulation commands, which are 
transmitted to an extra- and intra-ocular implanted 
component, containing a 150-microelectrode array 
(Figure 2). Although this system is similar to the 
Argus II, the IRIS system differs in a number of 
ways. First, it uses a neuromorphic image sensor to 
respond in a continuous mode to the visual input, 

Figure 1. The Argus II Retinal Prosthesis System.
Source: Adapted from Second Sight Medical Products, Inc., Sylmar, CA, USA.
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providing both the coordinates of changing pixels 
and their light intensities. The visual information 
encoded in this output can be divided into transient 
and sustained components, which can be processed 
using algorithms to enhance image quality and to 
reduce the visual scene to the most important ele-
ments. This process is designed to mimic the tem-
poral resolution of the retina while reducing the 
volume of redundant visual information presented 
during stimulation calculation. Second, the com-
mands generated by the pocket processor travel to 
the visual interface and are transferred optically via 
an infrared (IR) array directly to the implant, per-
mitting higher data transfer rates and miniaturiza-
tion of the implant itself. A high data transfer rate is 
essential for stimulating greater numbers of elec-
trodes at a higher refresh rate while accommodat-
ing for the data communication overhead.36 Power 
is supplied through a separate transmitter coil sys-
tem, at a lower frequency, using RF telemetry in a 
similar fashion to the Argus II. Finally, and perhaps 
most uniquely, the device includes a learning reti-
nal encoder, which allows for individualized cali-
bration, following as few as 100 iterations, to assign 
areas as excitatory or inhibitory, thus mimicking 
the retinal ON/OFF pathways.37,38

The IRIS II obtained CE approval in 2016 and 
early results were promising; 6-month data for the 
initial 10 subjects implanted as part of a clinical 
trial were presented at the International Eye and 
Chip Conference in 2017, reporting improvements 
demonstrated in square localization, direction of 
motion, picture recognition, and visual field test-
ing, with a rate of 0.4 SAEs per subject. However, 
having conceded that the lifespan of the device was 
found to be shorter than expected, Pixium have 
postponed the trial pending further refinement of 
the device and surgical method.39

EPI-RET3 Retinal Implant System
The EPI-RET3 differs from the Argus and IRIS 
implants in that the internal components are entirely 
intraocular. It comprises a receiver coil and chip, 
that is positioned in the aphakic capsular bag and a 
retinal stimulator connected directly to the epireti-
nal stimulation array. This technology negates the 
need for a physical transscleral cable, instead pro-
viding the implant with energy or data via inductive 
links, thus reducing the risk of complications, such 
as infection or erosion. As with other epiretinal 
devices, the EPI-RET3 comprises an external cam-
era and visual processor, which wirelessly transmits 
the calculated spatiotemporal pattern of stimulation 
pulses to the internal component (Figure 3).40

The device uses ultrahigh-frequency-pulsed charge-
controlled stimulation to reduce large stimulation 
artifacts. This allows for bidirectional stimulation 
and recording by the microelectrodes. During 
experiments using animal models of RP, it was 
noted that there was spontaneous RGC activity  
in areas adjacent to regions of stimulation. 
Furthermore, biphasic pulses appeared to have an 
inhibitory effect on some RGC responses, probably 
due to the action of residual interneurons, such as 
amacrine or bipolar cells. Using this bidirectional 
enhancement system, it is possible to characterize 
response types from specific retinal areas and to 
modify stimulation algorithms to accommodate 
intrinsic activity of retinal neurons and thereby 
deliver more effective stimulation patterns.38,41

In the first clinical trial, a basic 25-electrode sys-
tem was implanted for a short period into six  
subjects. In all patients, the implantation was 
uncomplicated, except for one case of sterile 
hypopyon, which resolved with treatment. The 
system was removed at 4 weeks as planned. One 
case developed a giant retinal tear during removal, 
requiring further surgery.42,43 All six patients 
reported patterned phosphenes with low threshold 
stimulations in regions corresponding to the stim-
ulated retina. The phosphene characterization 
varied greatly between patients.44

Future feasibility trials for EPI-RET3 have been 
focused on the development of a very large elec-
trode arrays for epiretinal stimulation (VLARS), 
covering 37° of the field of vision.45 However, no 
results have since been published from this group.

Subretinal prostheses
The rationale behind the placement of a subreti-
nal implant is that by positioning the device at the 

Figure 2. The Intelligent Retinal Implant System (IRIS) II.
Source: Adapted from Pixium Vision S.A., Paris, France.
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level of the degenerated PRs, the intrinsic signal 
processing capacity of the retinal interneurons 
can be exploited, producing a more physiological 
form of vision, with less demand for image pro-
cessing. Moreover, the device is situated closer to 
the target retina and may benefit from the natural 
retinal signal amplification, requiring lower stim-
ulation intensities. This, however, assumes reten-
tion of the anatomical organization of the retinal 
interneuron network, which is unlikely to be the 
case, even prior to detectable PR cell death.46,47

Unless the system has intrinsic photosensitivity 
and amplification capacity, it will, like the 
epiretinal devices, require a power source and a 
connection serving the delivery of data. In terms 
of surgery, some reports have suggested that 
placement of subretinal implants can be techni-
cally more challenging, both due to retina-reti-
nal pigment epithelium (RPE) adhesion, as a 
consequence of the underlying degeneration, 
and the surgical approach being less familiar to 
surgeons carrying out routine retinal surgery.

Boston Retinal Implant
The Boston Retinal Implant Project (BRIP) was 
one of the first endeavors of its kind and led one 
of the earliest acute trials in human subjects, 
wherein it was shown that reproducible percepts 

could be induced with single-electrode stimula-
tion in patients with end-stage RP and one patient 
with normal vision prior to exenteration for orbital 
cancer.48 The BRIP device is, in many respects, 
similar in design to the Argus II implant, but it is 
implanted in the subretinal space, in order to 
obviate the need for device fixation and to mini-
mize gliosis that may occur with tack insertion.49

The BRIP group is currently performing preclini-
cal trials for a 256-channel device, with a view to 
performing phase I clinical trials in the near 
future. The group is committed to developing an 
implant that provides functionally ‘useful’ vision, 
before adopting a corporate strategy for ongoing 
development.50

Artificial silicon retina
This device, developed by Optobionics (Glen 
Ellyn, IL, USA), was the first passive prosthesis to 
attempt wireless retinal stimulation using ambient 
light. The 2-mm-wide, 25-µm-thick artificial sili-
con retina (ASR) array consists of 5000 micro-
photodiodes of 20-µm-diameter associated with 
9-µm-diameter iridium-tipped microelectrodes 
and separated by 5 µm. In a pilot study of six 
patients, in whom the implant was placed in the 
superior retina, it was demonstrated that phos-
phenes could be perceived in the region of the 
field of vision corresponding to the device in four 
patients. Furthermore, overall visual function was 
enhanced in retinal areas distant from the implant, 
with reported improvements in visual function. 
This led the group to suggest that either the sur-
gery or the focal electrical stimulation by the 
implant could induce a generalized neurotrophic 
effect on the retina,51 which was also demon-
strated on rodent models.52,53 A further 4 patients 
were implanted, giving a total of 10 patients 
implanted with the ASR chip, 6 of whom received 
long-term follow-up. The ASR implants demon-
strated good safety and longevity profiles,54 and 
while a temporary improvement in generalized 
visual function was demonstrated, compared with 
the control eye, this was ascribed to the effect of 
neuroprotective growth factors rather than the 
retinal prosthesis per se. It has been concluded that 
a device relying on ambient light alone is unable to 
generate sufficient photocurrent to directly stimu-
late a meaningful number of neurons. The com-
pany has subsequently closed and there have been 
no further published results from this group.55 
Ultimately, however, the pioneering work by this 
group has since led to the development of promis-
ing next-generation photovoltaic systems.

Figure 3. The EPI-RET3 Retinal Prosthesis System. 
Source: EPI-RET3 Team, RWTH Aachen, Germany.
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Alpha IMS and AMS
The Alpha IMS (Retina Implant AG, Reutlingen, 
Germany) is the first and only subretinal implant 
to obtain CE marking, which was granted in 
2013. In a similar fashion to the ASR, it incor-
porates a photovoltaic array, termed a mul-
tiphotodiode array (MPDA), which comprises a 
3-mm2 microchip containing 1500 independent 
photodiode–amplifier–electrode units, each of 
which will convert ambient luminance into an 
electrical signal. However, it differs from the 
ASR in that it is an ‘active’ device, using an 
extrinsic power source to amplify the signal. 
This is supplied via a silicone supply cable, 
which links to a fixation pad looped through the 
orbit, passing subcutaneously and then under 
the temporal muscle to a subdermal coil, which 
is fixed to the postauricular cranial bone. A 
removable external coil magnetically attaches to 
the subdermal coil, allowing electromagnetic 
power induction and control of contrast sensi-
tivity and brightness from a handheld unit.56,57 
Due to the extra-orbital placement of the induc-
tion coil and the intra-ocular placement of the 
array, coordination between different surgical 
specialist teams is required, leading to longer 
operating times. Moreover, RPE degeneration 
and adhesion to the retina can lead to difficulty 
with subfoveal device placement. These factors 

may contribute to the higher reported rates of 
device repositioning, replacement surgery, and 
device failure.57,58

The Alpha IMS clinical trial in 2010–2014 aimed 
to assess the improvement in daily living and 
mobility, as well as visual acuity and object rec-
ognition. Patient experience of the device in daily 
life varied from six subjects (21%) who reported 
very good experiences, recognizing letters or 
unknown objects, including houses and cars, to 
eight subjects (28%) who reported no benefit at 
all. It was reported that 25 subjects (86%) could 
perceive light with the implant, with significant 
improvement in light localization, while 6 sub-
jects could detect motion. The best visual acuity 
recorded on contrast-reversal Landolt C-ring 
testing was 20/546. Object recognition tests 
revealed significant improvement with the device 
on during the initial 3 months but fell below sig-
nificance from month 6.59,60 The safety profile of 
the device was generally felt to be clinically 
acceptable, with only two SAEs (among 75 
reported total AEs) in nine subjects within 1 year 
of implantation.61

The subsequent iteration, the Alpha AMS, which 
is larger and incorporates 1600 photodiode com-
plexes, received CE approval in 2016 (Figure 4). 

Figure 4. The Retina Implant Alpha AMS System.
Source: Adapted from Retina Implant AG, Reutlingen, Germany.
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Results of 1 year showed similar functional bene-
fits and number of SAEs (eight in nine subjects) 
to the Alpha IMS, although the authors report a 
considerable improvement in the functional lon-
gevity of the device.6

Photovoltaic Retinal Implant (PRIMA) bionic 
vision system
This relatively recent venture (Pixium Vision 
S.A.) has taken various pre-existing implant con-
cepts and created a novel model of photovoltaic 
stimulation. In this modular array setup, a 1-mm-
wide hexagonal chip, containing 142-pixel cells of 
30-µm-thick, is inserted subretinally (Figure 5). 
Each pixel receives visual information in the form 
of pulsed near-IR light directly from a pair of spe-
cially constructed glasses. This photic energy 
passes from a stimulating electrode to a return 
electrode, each connected to multiple photodi-
odes in series and coated in sputtered iridium 
oxide. In turn, these photodiodes generate an 
electrical current that polarizes the adjacent neu-
ronal tissue. This modular arrangement is thought 
to both improve spatial resolution and also be 
more readily scalable to a larger visual field, with-
out the need for transscleral wires or additional 
power induction, as in the Alpha IMS.62–64

Preclinical results using this approach in animal 
models have been encouraging. Visual-evoked 
potential (VEP) testing in implanted Royal 
College of Surgeons rats in response to photo-
voltaic stimulation demonstrated a similar  
shape and amplitude to VEPs in wild-type rats, 
with decreased latency due to the absence of 

phototransduction. The amplitude of the VEP 
could also be scaled by modulating light inten-
sity with liquid crystal displays or pulse duration 
with digital light processing micro-mirror 
arrays.65 Contrast sensitivity, on the other hand, 
was limited, with only 100% contrast eliciting a 
VEP response above the noise level.66 By switch-
ing from cathodic-first pulses of current to 
anodic-first, it has been shown in vitro and in 
vivo that stimulation thresholds can be decreased 
well below the ocular safety limit for near-infra-
red (NIR) irradiance while retaining spatial fre-
quency.66–68 It has been postulated that an 
equivalent spatial resolution in humans could 
yield a grating acuity of 20/250, with scope to 
further reduce pixel size and pitch.69

Five patients with dry AMD have been implanted 
with the PRIMA device in France, with plans to 
implant five more in the United States during 
2018, as part of a safety and performance evalua-
tion feasibility study over 36 months. Preliminary 
results are anticipated in 2019.70

Suprachoroidal prostheses
The third position of placement of prostheses for 
local retinal stimulation has been the supracho-
roidal space. In this position, the system does 
not necessitate transvitreal surgery and is there-
fore potentially less invasive and more easily 
accessible for repair or replacement. However, 
the suprachoroidal space is highly vascular and 
there is a significant risk of hemorrhage and 
there remains a risk of fibrosis postimplantation. 
Furthermore, due to its distance from the neuro-
sensory retina, this design appears to require 
greater stimulation power to elicit visual per-
cepts. Suprachoroidal placement also risks 
greater spread of current, thereby reducing the 
spatial resolution.

Bionic Vision Australia
The Bionic Vision Australia (BVA) team has 
developed a series of suprachoroidal implant pro-
totypes over the past 10 years. The first of these 
was a 24-channel system, consisting of 20 stimu-
lation channels and 4 return electrodes. In a simi-
lar fashion to the Alpha AMS and cochlear 
implants, this system involves dissection of the 
temporalis muscle for attachment of a percutane-
ous connector to the bone. From there the con-
necting wire is passed through a tunnel in the 
muscle fascia and via a lateral orbitotomy and 

Figure 5. Schematic of the Photovoltaic Retinal 
Implant (PRIMA) Bionic Vision System. Inset: device 
in a patient with geographic atrophy.
Source: Adapted from Palanker et al, Stanford University, 
and Pixium Vision S.A., Paris, France.
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peritomy, at which point the lateral muscle is 
temporarily disinserted to allow for placement of 
the array into the suprachoroidal space.71,72 This 
device has no photovoltaic properties, relying on 
a head-mounted camera and image processor to 
provide the electrode stimulation patterns.

In 2012, three subjects with advanced RP were 
implanted for 2 years as part of a pilot study. The 
surgery took between 3 and 4 h and it was reported 
that all patients developed a combined subretinal 
and suprachoroidal hemorrhage postopera-
tively.72 During testing, phosphene location, 
shape, and size were mapped using a finger-
mounted motion tracker and eye-facing camera 
to monitor gaze. Phosphenes could be elicited in 
all patients, and although variable in character, 
location, and stimulation thresholds, they were 
reported to be controllable and retinotopically 
locatable in two patients.73,74 Light localization, 
optotype recognition, and grating acuity tests, as 
well as tasks of daily living, were performed using 
a head-mounted camera. Light localization was 
better than chance in all participants, while only 
one subject completed the visual acuity task, aver-
aging 20/8397, significantly better with device on 
than with the device off.72,75 In a series of psycho-
physical tasks delivered by direct electrode stimu-
lation, two of the subjects demonstrated better 
than chance character recognition and static 
object localization, while one was able to detect 
dynamic image trajectory.76 At the time of explan-
tation, electrical stimulation was still possible, 
although it was noted in all cases that a fibrous 
capsule had developed around the implant.77

The primary limitations of suprachoroidal stimu-
lation relate to the proximity of the device to the 
retinal neurons. The BVA group is developing a 
next-generation 44-channel fully implantable 
device,78 while also designing a 99-channel device, 
the Phoenix-99, which will incorporate a dual 
monopolar and hexapolar (‘quasi-monopolar’) 
stimulation pattern, to try and address the issues 
of retinotopic discrimination and high stimula-
tion thresholds.73,79

Suprachoroidal–transretinal stimulation
The suprachoroidal–transretinal stimulation 
(STS) system is under development by Japan’s 
Artificial Vision Project in conjunction with 
NIDEK. Like the BVA system, the STS requires 
a temporalis incision and tunneled connection 
between a decoder, an internal coil and a 

stimulating electrode array, and return electrode. 
Once suprathreshold light is detected by a glasses-
mounted camera and processed by a computer 
within the arm of the spectacles, the external coil 
will relay a signal via the secondary coil to the 
decoder, which, in turn, generates a biphasic 
pulse to stimulate individual electrodes. Unlike 
other systems, the current STS consists of a ‘3D’ 
(three-dimensional) 49-microelectrode array, 
with electrodes that protrude from the array by 
0.3 mm, which is inserted into a 6 mm × 5 mm 
scleral pocket. Power is provided externally 
through a portable battery pack.80

In a pilot study of two patients using a prototype 
nine-electrode implant, it was shown that phos-
phenes could be reproducibly elicited in the area of 
the visual field corresponding to the implant, dur-
ing direct stimulation. Using a headband-mounted 
camera, following which the images are converted 
to 3 × 3 squares with a pixel resolution of 40 × 40, 
both patients could identify and discriminate 
objects using head scanning with between four and 
six electrodes, while one patient could also detect 
motion and perform grasping tasks better than by 
chance.81 Following the surgical success of both 
single and dual 49-electode arrays in animal mod-
els, three patients underwent implantation of this 
second-generation device. While the safety profile 
of the device was reassuring, with no SAEs requir-
ing further surgery at 1 year, the tests of function 
were less consistent. One subject could localize a 
square better with the device on during all of the 
follow-up, while two subjects were able to walk 
along a white line and recognize an everyday object 
better than chance, but not reproducibly at sepa-
rate time points.82 One subject with Stargardt dis-
ease and hand movements vision in the left eye 
underwent implantation with an STS device in the 
fellow eye. Results suggest that the subject could 
reach more accurately using a combination of nat-
ural and artificial vision than with residual natural 
vision alone.83 Larger numbers are required to 
draw firmer conclusions about the efficacy of 
suprachoroidal and transscleral implants in their 
present formats; however, results to date suggest 
greater limitations to this approach than for epiret-
inal or subretinal implants.

Challenges in prosthetic vision
The classification of retinal prostheses according 
to their anatomical placement serves best to 
demonstrate the different surgical approaches 
and theoretical differences in which residual 
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retinal cells are stimulated. However, apart from 
these aspects, all devices face challenges in the 
form of image capture, processing, delivery of 
data and power, biocompatibility, and hermetic-
ity. During the last quarter century, the field has 
witnessed progress from intra-operative focal 
electrode stimulation to chronic implantation of 
multi-electrode arrays for over 10 years, demon-
strating significant, albeit coarse, functional 
improvement. In general, advances in image 
processing algorithms and optical data transfer 
rates, combined with developments in the field 
of microelectronics and material microfabrica-
tion, continue to drive the field forward, project-
ing a hugely encouraging outlook for the future 
progress of visual restorative therapy.

To date, no single approach has yielded results 
that suggest a significant advantage over other sys-
tems, but the substantial progress over the past 
three decades represents unprecedented endeavor, 
innovation, and collaboration, across the field as a 
whole.

Assessing functional outcomes
One of most pressing issues that has begun to 
limit the broader use of prosthetic retinal devices 
is how to assess its ‘usefulness’ and function in 
terms of patient benefit and consequently how to 
predict in which direction to develop these 
devices. Numerous studies have incorporated 
performance-based measures and self-reporting 
questionnaires to attempt to understand the rela-
tive importance of visual parameters in perfor-
mance of everyday tasks in visually impaired 
subjects. This has demonstrated the importance 
of visual acuity, visual field, and contrast sensitiv-
ity for acceptable day-to-day visual function-
ing.84–88 Simulation studies can estimate the 
visual requirements to deliver a sufficient image 
resolution and field of view with a prosthetic sys-
tem, in order to perform useful tasks. Overall, a 
minimum spatial resolution of 3–4 pixels per 
degree2 (i.e. a 600–1000 pixel array with a 15° × 
15° field of view) is thought to be able to permit 
an acceptable accuracy in pointing, manipula-
tion, mobility, and object recognition activi-
ties,89–92 and even higher resolution is necessary 
for reading.93,94 This is approximately 10 times 
greater than the resolution provided by the cur-
rent Argus II system.

Most conventional tests of basic visual function 
such as ETDRS and Snellen visual acuity are not 

validated for quantification of vision below a cer-
tain threshold, though calculated equivalents in 
these scales are often mentioned in published 
articles and in this review. Coarser tests of func-
tion, such as grating visual acuity, Basic Light and 
Motion Assessment (BaLM) and the Freiburg 
Visual Acuity Test (FrACT), have shown some 
capacity to deliver reliable evaluations of ULV in 
some studies.95–97

In terms of functional outcomes, self-reporting 
and performance-based testing can give some 
indication of qualitative benefit. However, there 
is currently no universally accepted functional 
outcome measure for providing reliable and 
quantitative evidence for the functional value of 
therapies in those with ultra-low vision (ULV). 
Functional vision tests in ULV should not only 
be valid, reliable, and repeatable in the conven-
tional sense, but ought to also have ecological 
validity, that is, relate to an appreciable change 
in the subject’s real-world task performance. 
Furthermore, they should be sensitive to 
response to treatment and allow estimation of a 
quantifiable ‘minimally important difference’, 
at which a subject perceives a useful functional 
improvement.98

Many of the aforementioned functional tests, 
such as square localization, recognition of white 
objects on a black background, or following a 
white line on the floor, are limited in terms of 
ecological validity due to their departure from a 
real-world environment. On the other hand, 
real-world functional assessments, such as 
FLORA, which involve an observer-rated calcu-
lation of visual ability during activities of daily 
living in residential settings, suffer from the ina-
bility to provide a standardized metric for meas-
uring functional benefit across different subjects. 
One solution, in the context of navigational 
function, can be offered using standardized, 
simulated real-world environments, such as  
the Pedestrian Accessibility and Movement 
Environment Laboratory at UCL, although this 
is expensive to manufacture, maintain, and 
reproduce across the number of groups working 
in the area. Other approaches include the use of 
salience maps to determine the spatial allocation 
of a subject’s visual attention toward objects of 
interest within a presented visual scene. 
Simulated tests of picture and face discrimina-
tion have demonstrated good ability of subjects 
to identify salient features, with a pronounced 
learning effect during retesting.99,100
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Currently, progress in the field of restorative visual 
medicine is reliant on the validation of a standard-
ized test battery that incorporates both objective 
and subjective measures of visual task perfor-
mance, in order to demonstrate a reliable metric of 
functional benefit. As increasing numbers of 
patients with ULV receive various emerging thera-
pies, we anticipate that this demand will be met.

Hardware and software constraints
Using basic tests of visual function, the highest 
estimated acuity achieved to date is with the 
Alpha IMS, with which 20/546 was recorded, 
followed by 20/1262 with the Argus II.6,23 This is 
significantly inferior to natural vision, both in 
terms of resolution and form. Spatial resolution 
of prosthetic systems is limited by several factors, 
including electrode density, size, number and 
pitch, electrode contact, and visual encoding. 
Issues with temporal resolution and image persis-
tence further limit the interpretation of prosthetic 
vision.101

Existing electrode arrays are thought to have a 
theoretical maximum resolution that is at least 12 
times less than that of the normal retina.102 The 
maximal electrode density is currently limited by 
heat generation that occurs during signal trans-
mission. However, even if it is possible to develop 
an implant with a similar size and density of 
microelectrodes to native cone PRs, there would 
still exist the biological challenge of recreating 
the visual encoding capacity of the retinal 
interneurons, especially at the fovea, where the 
neuronal layers do not directly overlie the PRs. 
In theory, a maximum pixel diameter of about 50 
µm, separated by 25 µm, would be necessary to 
achieve a spatial frequency equivalent to the min-
imum angle of resolution achieved in 20/200 
vision (the approximate level of visual impair-
ment). At present, the MPDA systems contain-
ing autonomous pixels appear to hold the most 
promise for maximizing electrode density at this 
scale but have not yet achieved results that reflect 
the theoretical limit of the devices, probably, in 
part, due to the aforementioned remodeling pro-
cess that the degenerative retina undergoes17 and 
electrode–target tissue distance. Incorporation of 
bidirectional stimulation, as in the EPI-RET3, is 
important to allow signal feedback and modula-
tion of the stimulation algorithms to exploit any 
residual retinal processing and mimic RGC 
receptive fields, thus enhancing contrast and spa-
tial resolution.38

The issue of electrode contact is being addressed 
by some groups using 3D electrodes to improve 
local contact, such as the NIDEK group and the 
Nano Retina group, who are developing the 
Bio-Retina array with nano-coated electrode 
tips.103 While embedded electrodes may reduce 
charge density and stimulation artifact, it is con-
ceivable that such penetration of the retina 
could lead to greater risk of complication, such 
as hemorrhage or further retinal degeneration, 
and make removal or repositioning of devices 
more problematic.

In addition, there are hardware constraints lim-
iting the field of vision that current implants can 
deliver. In the case of external image capture 
systems, the patient must become adept at head 
scanning, both to maximize the accumulation of 
information from a visual scene and to prevent 
‘fading’ of images due to repetitive stimulation. 
This latter issue can be partly resolved through 
the use of photovoltaic systems or an intra-ocu-
lar camera, which exploits the natural microsac-
cadic eye movements to prevent this fading 
phenomenon and also avoids any decoupling of 
the visual interface and stimulating array when 
the head or eye moves. Development of very 
large electrode arrays (VLARS) is underway45 
but will ultimately be a trade-off between 
expanding the field of vision, minimizing 
implantation trauma, and coping with high lev-
els of heat dissipation. The concept of using 
modular elements, as in the PRIMA device, to 
enlarge the functional visual field, may repre-
sent a preferable strategy.

The longevity of the subretinal photovoltaic sys-
tems appears to be shorter than for epiretinal 
devices, probably because of the current limita-
tions in material engineering. Development is 
underway for novel biocompatible materials, 
such as laser-microstructured diamond elec-
trode arrays, with greater longevity and chemical 
stability,104 or liquid crystal polymers that are 
also ultra-thin, lightweight, and deformable.105 
In addition, the field of tissue electronics, con-
cerned with the development of organic conduc-
tive and semi-conductive polymers, is emerging 
as an alternative to inorganic systems. Initial ani-
mal models have demonstrated efficacy, and it is 
postulated that the graded modulation of neuro-
transmitter release afforded via an organic array 
may create a more physiological interaction with 
the neuronal tissue, potentially enhancing the 
resultant spatial resolution.106–108
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There is also much focus on how software 
algorithms can be refined to filter the image 
and detect relevant features of the visual scene. 
This image processing method, termed sali-
ency mapping, has been used to develop com-
putational models for rapid recognition and 
segmentation of image information for over a 
decade and is now widely utilized in the emerg-
ing field of computer vision and machine 
learning.109–112 In the field of retinal prosthet-
ics, this information can be used to apply 
transformations to the encoded stimulation 
pattern, such as edge detection, grayscale his-
togram equalization, contrast and intensity 
enhancement, as well as image magnifica-
tion.112,113 Simulation studies suggest that use 
of such processing algorithms can boost task 
performance, including face and object recog-
nition and navigation.114–118

Finally, another factor that is certain to play a 
role in the future success of retinal prosthetics is 
the ability of recipients to adapt to using this 
novel but rudimentary visual input. The rela-
tively poorly understood phenomenon of corti-
cal plasticity and perceptual learning has been 
thoroughly addressed with respect to visual res-
toration in excellent previous reviews.119,120

Conclusion
The field of visual restorative therapy is rapidly 
advancing and holds great promise for the 
introduction of real, measurable treatments of 
blinding conditions in the near future. Although 
not limited to retinal prostheses, with signifi-
cant progress being made in other strategies, 
such as optogenetics, stem cells, and gene ther-
apy, this represents the most advanced form of 
treatment for profound vision loss that is cur-
rently available. It is likely that the future will 
see integration of prosthetic devices with regen-
erative medicine technologies, in the form of 
‘biohybrid’ implants.

This review summarizes just some of the consid-
erable progress has been made in the field of reti-
nal prostheses in the past decades. However, the 
remaining challenges are as diverse as they are 
numerous, and overcoming them will rely on con-
tinued close collaboration between engineers, 
healthcare workers, industry, and patients to 
eventually transform this concept from science 
fiction into science fact.
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