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Abstract
The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic

mutations and segment reassortment events challenge the development of effective thera-

peutics. The capacity to drugmost RNAsmotivates the investigation on viral RNA targets.

123,060 segment sequences from 35,938 strains of themost prevalent subtypes also infecting

humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183

conserved RNA target sequences (�15-mer) in the internal segments. 100% theoretical cov-

erage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences

from the same segment (“Duals”) or from two segments (“Doubles”); 1,662Duals and 28,463
Doubles identified. By combining specific Duals and/orDoubles to form a target graph wherein

an edge connecting two vertices (target sequences) represents a Dual orDouble, it is possible
to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To

evaluate the hedging potential, we define the hedge-factor as the minimum number of resis-

tant target sequences that will render the graph to become resistant i.e. eliminate all the edges

therein; a target sequence or a graph is considered resistant when it cannot achieve 100%

heterosubtypic coverage. In an n-vertices graph (n� 3), the hedge-factor is maximal (= n– 1)
when it is a complete graph i.e. every distinct pair in a graph is either aDual orDouble. Compu-

tational analyses uncover an extensive number of complete graphs of different sizes. Monte

Carlo simulations show that themutation counts and time elapsed for a target graph to

become resistant increase with the hedge-factor. Incidentally, target sequences which were

reported to reduce virus titre in experiments are included in our target graphs. The identity of

target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral

resistance are useful toolkits to construct target graphs for different therapeutic objectives.
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Author Summary

An average of three influenza pandemics occurred in each century over the last 300 years.
As occurrence of the next influenza pandemic is definite, developing new antivirals is
imperative since resistance to the remaining class of antivirals has been reported occasion-
ally, and vaccines are ineffective in the initial wave of a pandemic. The typical evolutionary
traits of viruses, which manifest as multiple virus subtypes in circulation and perpetual
viral genomic mutations, require the development of subtype-specific antivirals that ulti-
mately acquire resistance. Being a rapidly evolving and highly contagious virus that mani-
fest the most subtypes, this is particularly acute for influenza A. Our approach to
overcome these challenges is to identify and characterize influenza A virus sequences for
RNA targeting that can theoretically address all strains from the most prevalent human-
infecting subtypes (i.e. simultaneous multi-subtype targeting) that can hedge against anti-
viral resistance. We uncover an extensive list of target sequence pairs and their specific
combinations for which they can be selected for novel therapeutics development that will
be effective on multiple circulating seasonal strains and future pandemic strains. As our
approach is applicable to other viruses, the methods are general for use in the selection of
antiviral therapeutic targets.

Introduction
An average of three influenza pandemics occurred in each century over the last 300 years [1].
The time interval between consecutive pandemics and their respective mortality are however
irregular; while the 1918 H1N1 Spanish flu was estimated to kill 50 million people, the 2009
H1N1 Swine flu pandemic was probably responsible for 100,000 to 200,000 deaths [2]. As sub-
stitution of a few specific amino acids can be sufficient to alter host tropism [3,4], it is relatively
easy for a novel influenza A viral subtype previously circulating in animals against which the
general human population lacks antibody-mediated immunity to cause future pandemics.

Vaccines and anti-viral drugs respectively are the main biologics and pharmaceuticals tools
to reduce the morbidity and mortality of a pandemic. Depending on the circulating viral strains
and the recipients’ age, vaccine effectiveness can be lower than 40% [5]. Moreover, vaccines are
unlikely to be available in the initial wave of a pandemic as current vaccine approaches are line-
age and subtype-specific and such vaccines are typically developed after the new antigenically
distinct pandemic virus has emerged. Anti-viral drugs are classified by their target viral pro-
teins, typically–M2 ion-channel inhibitors (amantadine and rimantadine) and neuraminidase
inhibitors (e.g. oseltamivir and zanamivir) [6]. The former are now ineffective against current
circulating H3N2 and H1N1 (2009) subtypes [7–9]. Neuraminidase inhibitors are the sole anti-
viral option in a pandemic while incidences of resistance have been reported occasionally [10–
15]. When coupled with so-called permissive mutations, the classical Tamiflu-resistance muta-
tion H274Y (H275Y) can become more prevalent and in the case of the previous seasonally cir-
culating H1N1 virus, became fixed in circulating viruses rapidly in 2008 [16]. Developing new
antivirals to anticipate resistance in seasonal as well as potential future pandemic viruses is
thus imperative. Unfortunately, the multiple circulating influenza A virus subtypes coupled
with the perpetual genomic mutations and segment reassortment events challenge the develop-
ment of effective therapeutics against multiple circulating and future strains.

An arsenal of protein inhibitors that each binds to distinct sites of all expressed viral pro-
teins is one strategy for heterosubtypic targeting and to hedge against inevitable antiviral resis-
tance. While chemical protein inhibitors constitute most pharmaceuticals, their targets are
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limited [17–18]. Alternatively, prior studies have demonstrated viral RNA targeting via siRNA
or antisense oligonucleotides (AONs) as viable antiviral strategies [19–42]. They can poten-
tially target any sequences within a viral RNA segment leading to RNA degradation that is
elicited by either RNAi or RNase-H, or inhibition of RNA splicing or translation by steric hin-
drance effects [43]. Of particular clinical relevance is the demonstration that intranasal AON
inhalation is an efficient delivery vehicle to the respiratory tract and lungs in animal studies
[21,24,27–28,35]. Additionally, rational computational methods [44] to identify optimum
RNA target sites can facilitate rapid development of an AON library for hedging against antivi-
ral resistance and for targeting novel viral strains in a pandemic.

To examine heterosubtypic RNA targeting, we identify and characterize conserved RNA
target sequences in the eight influenza A virus segments from subtypes infecting humans and
animals. Analyses on 168,986 segment sequences derived from 51,661 human and animal
strains reveal thousands of specific pairs of target sequences that can address all prevalent cir-
culating human strains simultaneously. Novel strategies for target sequence selection to hedge
against antiviral resistance illuminate countless sets of target sequence combinations with dis-
tinct hedging capacities. Together, the target sequences and their specific combinations discov-
ered in this pan-virus subtype study is a useful resource for the development of effective RNA
therapeutics, which targets viral RNA, mRNA or cRNA, against multiple circulating and future
strains.

Results

Identification of conserved RNA target sequences
Five subtypes representing the most prevalent human infecting Influenza A viruses in the past
four decades were studied–H1N1 (before 2009; hitherto refer to as H1N1), 2009 pandemic
H1N1pdm09 (hitherto refer to as PD09), H3N2, H5N1 and H7N9. Although both H5N1 and
H7N9 subtypes are primarily avian influenza viruses, they have periodically caused human
infections with occasional reports of human adaptive mutations and therefore pose a signifi-
cant risk of pandemic potential. For each subtype, all available sequences of each of the eight
viral segments were downloaded from curated databases (refer to S1 Text). 123,060 segment
sequences from 35,938 strains of which 70,723 are unique were analysed (S1 Table breakdowns
the sequence counts by subtype and segment).

Two sets of RNA target sequences were obtained. Sequences in the “5-S” set were selected to
optimally target the five subtypes simultaneously whereas sequences in the “3-S” set were
selected to target H1N1, PD09 and H3N2 simultaneously. The 5-S set was obtained as depicted
in Fig 1. First, the consensus sequence of the entire coding segment was determined for every
segment of each subtype from the respective unique sequences. Next, for each segment,
sequence alignment was performed on all the respective consensus sequences from the five
subtypes simultaneously. Consensus motifs defined as sections of the consensus sequence with
perfect alignments were identified. Finally, target sequences of at least 15 nucleotides were
selected from the respective collection of consensus motifs in each segment; this minimum tar-
get length is chosen for RNA binding specificity and thermodynamic stability. The 3-S set was
obtained similarly by omitting H5N1 and H7N9 segment sequences. Section A in Table 1 sum-
marizes both the 5-S and 3-S sets; note that 5-S is a subset of 3-S and the much smaller number
of conserved target sequences in 5-S illustrates, not surprisingly, that target sequence conserva-
tion strongly depends on the number and selection of strains. Both segments 4 and 6, which
code for the more variable hemagglutinin and neuraminidase surface proteins respectively,
cannot be targeted as they do not share any 15-mer sequences between the subtypes consensus.
When the target sequences counts were normalized with the respective segment coding
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lengths, conserved target sequences appear enriched in segment 7 (coding for M1 and M2 pro-
teins in alternative frames) in 5-S and 3-S, and in segment 1 (coding for PB2 protein) of 3-S.

To evaluate coverage of intra-subtype variation for every conserved target sequence in a seg-
ment, it was matched against every unique sequence of the respective segment from five sub-
types in 5-S or from three subtypes (H1N1, PD09 and H3N2) in 3-S. No target sequence was
found in all relevant unique segment sequences although there are always some in each target
segment that are found in more than 95% of the respective unique sequences (S1 and S2 Figs).
The coverage against human corresponding animal subtypes (aH1N1 aH3N2 aH5N1 and
aH7N9) and three groups of collective subtypes labelled as “H00N00”, “zoonotic” and “exotic”
(Materials and Methods) were also determined. The H00N00 group consists of eight subtypes
that have infected humans but are not or no longer in large-scale human circulation whereas
the zoonotic and exotic groups respectively consist of 78 and 19 animal subtypes with zoonotic
potential. 45,926 sequences from the six internal segments of which 32,961 are unique, were

Fig 1. Schematic to obtain 5-S target sequences.

doi:10.1371/journal.pcbi.1004663.g001
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consolidated from 15,728 strains and analysed (S2 Table). Notably, there are human target
sequences that are found in more than 90% of the unique sequences in each target segment of
each animal subtype and in each group of subtypes (S3 and S4 Figs present the coverage of
every target sequence against each human and corresponding animal subtypes, and against
each group of subtypes). Hence, both 5-S and 3-S sets are relatively conserved in a total of 109
human and animal subtypes; for more coverage analyses, see S5 and S6 Figs. Coverage against
Influenza B virus was 0%. In order to achieve 100% coverage in human subtypes, we next con-
sidered target sequence pairs.

Target sequence pairs within a segment (“Duals”)
Target sequences within a segment were paired (each pair is termed a Dual). In the 5-S set,
effective Duals in four segments (1, 2, 3 and 7) and in the 3-S set, effective Duals in six internal
segments can cover all unique sequences of respective target segments (Section B in Table 1).
That is, one or both of the target sequences constituting an effective Dual are found in all
unique segment sequences. A significant fraction of single target sequences in segments 1, 3
and 5 forms effective Duals (Section B in Table 1). The distribution of the target sequence posi-
tions from the effective Duals in each segment are depicted in S7 Fig.

Next, overlapping single target sequences in a segment (tallied in Section B in Table 1) were
grouped as clusters. Two clusters are paired when target sequences between the two clusters
form one or more effective Duals. The cluster pairings in both 5-S and 3-S are depicted as
graphs in which a pairing is denoted by an undirected edge connecting two clusters depicted as

Table 1. Single target sequences andDuals in 5-S and 3-S sets.

A 5-S 3-S

Segment Counts Counts (Normalized) Maximum Length Counts Counts (Normalized) Maximum Length

1 156 0.068 29 2,722 1.194 86

2 243 0.107 34 279 0.123 34

3 49 0.023 20 493 0.229 35

4 0 – – 0 – –

5 107 0.071 26 281 0.188 26

6 0 – – 0 – –

7 594 0.605 44 1,696 1.727 68

8 34 0.041 21 52 0.063 21

Total 1,183 5,523

B 5-S 3-S

Segment Duals Counts Singles Counts Singles (%) Duals Counts Singles Counts Singles (%)

1 943 156 100% 15,363 1340 49.23%

2 36 12 4.9% 42 13 4.66%

3 96 28 57% 6,971 394 79.92%

5 – – – 4,167 140 49.82%

7 587 81 14% 2,578 296 17.45%

8 – – – 3 4 7.69%

Total 1,662 277 23% 29,124 2,187 40%

(A) Single target sequences. Target sequence counts were also normalized with the respective segment coding lengths (columns 3 and 6). (B) Effective

Duals. The numbers of effective Duals (that can cover all unique sequences of respective segments) are listed as “Duals Counts”. The single target

sequences that constitute these Duals are also given as “Singles Counts” and “Singles %” (percent of total single target sequences tabulated in Section A

in Table 1).

doi:10.1371/journal.pcbi.1004663.t001
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vertices (Fig 2). The utilization of cycle graphs in Fig 2 (i.e. vertices connected in a closed
chain) in selecting effective Duals for hedging against antiviral resistance will be discussed.

Target sequence pairs between two segments (“Doubles”)
Alternatively, target sequences from two segments were paired (each pair is termed a Double).
A Double can target a virus strain when one or both of its target sequences is found in either
one or both of the strain’s respective segment sequences. The coverage of a Double is defined as
the fraction of total virus strains in five subtypes in 5-S or in three subtypes in 3-S that it can

Fig 2. Clusters of effectiveDuals. Each vertex denotes a cluster of overlapping single target sequences whose first and last positions were given within the
enclosing square brackets. An edge connecting two vertices signifies that target sequences between the two clusters form one or more effective Duals. Note:
overlapping clusters in S1 (3-S) are not merged as a cluster because they can form effective Duals.

doi:10.1371/journal.pcbi.1004663.g002
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target. The coverage of every Double was determined for every segment pairing (each with at
least 10,000 strains, S3 Table). As summarized in Table 2, for each of the 15 target segment
pairings, there are effective Doubles with 100% strain coverage. In contrast to Duals (Section B
in Table 1), most of the single target sequences are included in effective Doubles (Table 3). The
collective distribution of the target sequence positions from effective Doubles in each segment
are given in S8 Fig.

For every single target sequence tallied in Table 3, the number of segment partners (NSP)
was determined by counting the number of segments with which it can form an effective Dou-
ble with their respective single target sequences; NSP thus ranges from one to five, as illustrated
in Fig 3A. Interestingly, the frequency distributions of NSP in each segment show that the
number of target sequences with a high NSP is common and in some segments, the minimum
NSP of all single target sequences is greater than unity (Figs 3B and S9A). This indicates a high
reusability of a target sequence to form effective Doubles with different target segments.

As there are single target sequences in every segment whose NSP is five (Fig 3B), we investi-
gate the size distribution of all 6-vertices segment partner graph formed by one (NSP = 5) tar-
get sequence from each of the six internal segments. The graph size is the sum of edges with
each edge connecting two vertices (representing target sequences) denoting an effective Double;
hence, the size indicates the number of effective Doubles in a particular segment partner graph.
As shown in Figs 3C and S9B, the modal number of effective Doubles per graph in 5-S and 3-S
is 13 and 7 respectively, and every graph in 5-S has at least 10 effective Doubles. In addition,

Table 2. Doubles in 5-S and 3-S sets.

5-S 3-S

Segment 2 3 5 7 8 2 3 5 7 8

1 510 645 6,821 5,853 117 7,598 102,840 36,287 63,335 4,831

2 – 414 2,280 2,634 72 – 4,107 4,482 3,828 162

3 – – 3,687 879 108 – – 28,971 11,710 2,233

5 – – – 2,946 468 – – – 6,807 1,404

7 – – – – 1,029 – – – – 1,756

Total 28,463 280,351

The number of effective Doubles (with 100% virus strain coverage) in each of the total of 15 segment pairings.

doi:10.1371/journal.pcbi.1004663.t002

Table 3. Single target sequences constituting the effective Doubles in 5-S and 3-S sets.

5-S 3-S

Segment Singles Counts Singles (%) Singles Counts Singles (%)

1 156 100% 2,716 99.8%

2 243 100% 276 98.9%

3 49 100% 493 100%

5 106 99.1% 281 100%

7 594 100% 1,621 95.6%

8 34 100% 52 100%

Total 1,182 99.9% 5,439 98.5%

The single target sequences that constitute these Doubles given as “Singles Counts” and “Singles %” (percent of total single target sequences tabulated in

Section A in Table 1).

doi:10.1371/journal.pcbi.1004663.t003
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808,704 and 3,944,376 graphs in 5-S and 3-S respectively have 15 effective Doubles, which are
termed as complete graphs i.e., every pair of distinct vertices is connected by a unique edge
(S9B Fig). Identical analyses of 6-vertices segment partner graphs constructed by single target
sequences with NSP� 1 (5-S) and with NSP� 4 (3-S) also reveal significant number of graphs
with a big size (� 14) (S10 Fig). The existence of big-sized and complete graphs creates the pos-
sibility to hedge against antiviral resistance, as described next.

Hedging against antiviral resistance
To mitigate antiviral resistance, a minimum of three target sequences is needed so that there is
a target sequence to replace one that has become resistant. In this context, a resistant target

Fig 3. NSP of single target sequences in an effectiveDouble and segment partner graphs. (A) Schematic to determine theNSP. An effective Double
is represented by a grey line connecting a pair of nodes denoting single target sequences from two target segments. For illustration, theNSP of a single
target sequence in segment 1 (depicted as an enlarged grey node) is unity in the left panel (as it forms an effective Double only with segment 2 target
sequences) and five in the right panel (as it forms an effective Doublewith target sequences from each of the other five segments). (B)NSP frequency
distributions. Number of single target sequences againstNSP by target segment in 5-S (left) and 3-S (right) sets plotted as 100% stacked bar charts. (C)
6-vertices (NSP = 5) segment partner graphs. The size (number of effective Doubles) distribution of all permutations of 6-vertices segment partner graphs
constructed by single target sequences withNSP = 5 from the six internal segments were plotted in absolute number of graphs for 5-S (left) and 3-S (right).

doi:10.1371/journal.pcbi.1004663.g003
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sequence is unable to achieve 100% coverage of all subtypes strains when paired with another
non-resistant target sequence. We define the hedge-factor to evaluate the extent a set of target
sequences can potentially mitigate antiviral resistance. When depicted in a graph, wherein ver-
tices denote selected target sequences and an edge represents an effective Dual or Double, the
hedge-factor is the minimum number of resistant target sequences that will eliminate all the
edges therein i.e. abolish the set’s therapeutic effectiveness to achieve 100% coverage. The
hedge-factor in a set is maximal when the target sequences form a complete graph (demarcated
with a border in Fig 4A) i.e. every pair of distinct vertices is connected by a unique edge; in an
n-vertices complete graph, maximum hedge-factor is n– 1 for n� 3. A set of target sequences
that forms a complete graph has the advantage of maintaining the 100% coverage of all strains
by any pair of target sequences, which is valuable when target sequences need to be inter-
changed upon developing resistance.

For effective Duals, Fig 4B gives the maximum hedge-factor (number of grey nodes) in each
target segment. Complete graphs, which are mostly 3-vertices graphs, are formed only in seg-
ments 1, 3 or 7 –S1 (5-S: two 3-vertices; 3-S: three 3-vertices), S3 (3-S: two 3-vertices) and S7
(S-5: two 3-vertices; 3-S: one 4-vertices and seven 3-vertices). Generally, complete graphs in
5-S have higher hedge-factors than in 3-S, and the highest hedge-factor of five is attained in
segment 7. In fact, although the number of effective Duals in segment 7 is lowest among the
three target segments in 3-S (Section B in Table 1), they form the biggest and most number of
complete graphs. For effective Doubles, complete graphs involving 3, 4, 5 or 6 segments result-
ing in hedge-factors from two to five exist (Fig 4C). Myriad combinations of effective Doubles
and effective Duals can be used to construct target sequence graphs that surpass the hedge-fac-
tor limit of five from using Doubles or Duals alone, two of which are depicted in Fig 4D.

Monte Carlo simulations were used to study the effect of hedge-factor on the mutation counts
and time elapsed for a set of n target sequences to become resistant i.e. lose its 100% coverage. In
the simulation model (Materials and Methods and S2 Text), it is considered resistant when n– 1
target sequences are resistant; a target sequence becomes resistant when its target site acquires a
mutation and thereby cannot achieve 100% coverage. Thus, the mutation count is the minimum
number of mutations in a virus to become resistant to a set of target sequences, with the corre-
sponding time elapsed obtained by dividing the mutation counts with the average total annual
mutation events in a virus [45]. Mutation events in 100,000 viruses were simulated for each set of
target sequences to determine the median mutation counts and median time to resistance. Fig 5A
plots the medians for sets of effectiveDuals forming complete graphs for a range of hedge-factors
in segments 1, 3 and 7 depicted in Fig 4B. Expectedly, as the hedge-factor of a set is increased,
substantially more mutation events and longer time is required to attain resistance. Likewise,
complete graphs of effective Doubles in Fig 4C with higher hedge-factors possess considerably
larger capacity to hedge against resistance (Fig 5B). Lastly, the target sequence graphs that com-
bine effectiveDoubles and effectiveDuals in Fig 4D to augment the hedge-factor can further
increase their hedging capacities (HF = 6(1) in Fig 5B).

Cross-reactivity of the target sequences in human, pig and chicken hosts
The target sequences were aligned with up to one mismatch to the genomes and transcriptomes
from human, pig and chicken hosts (Materials and Methods). Up to 4.7% and 3% of them in
5-S and 3-S sets respectively were found in one or more of the hosts’ transcriptomes whereas
up to 22% and 12.7% of target sequences in 5-S and 3-S sets respectively were found in one or
more of the hosts’ genomes (Section A of S4 Table). The 56 and 165 respective target sequences
in 5-S and 3-S sets that hit the human transcriptome were mapped to 36 and 133 human genes
(Section B of S4 Table). Among the 27 and 89 respective genes whose expression data were

Heterosubtypic Targeting that Hedges against Antiviral Resistance

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004663 January 15, 2016 9 / 24



known, which correspond to 45 and 122 hit target sequences in 5-S and 3-S sets respectively,
not all are expressed in tissues of the respiratory system. Nevertheless, when all the hit target

Fig 4. Hedge-factor of a set of target sequences. Each graph depicts a set of selected target sequences (shown as nodes) wherein an edge represents an
effective Dual or Double. The nodes used to compute the hedge-factor (given in brackets) are either shaded or bordered grey. (A) Representative values of
hedge-factor,HF. HF of all possible 2-, 3- and 4-vertices graphs are shown. Complete graphs are demarcated by a border. (B) MaximumHF of effective
Duals clusters. The topologies of the Duals clusters from Fig 2 and their maximalHFswere presented. (C) MaximumHF of segment partner graphs by
effectiveDoubles. As each internal segment can be used to form complete graphs exhibiting a range of HF from 2 to 5, only representative complete graphs
are shown. (D) Representative target sequence graphs withHF = 6 constructed by combining effectiveDuals and effectiveDoubles. Effective Duals
and effective Doubles are denoted by broken and full edges, respectively. The running number in the round bracket of a target sequence’s label is purely
schematic to denote different target sequences.

doi:10.1371/journal.pcbi.1004663.g004
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sequences from each set independent of their tissue expression status were removed, complete
heterosubtypic coverages by either effective Duals or effective Doubles (Tables 4 and 5), as well
as maximal hedging against resistance by complete graphs (S11A Fig) are retained; all the data
are made available at S1 Text. Similarly, when the respective target sequences in 5-S and 3-S
sets that hit either the human genome or transcriptome were excluded, complete heterosubty-
pic coverages by effective Duals or Doubles, and hedging against resistance by complete graphs
are conserved (Tables 4 and 5, S11B Fig and S1 Text).

Discussion
The capacity to drug most RNAs motivates the investigation on viral RNA targeting to address
multiple circulating human subtypes and to mitigate antiviral resistance. 123,060 segment
sequences and 35,938 virus strains from H1N1 (prior 2009), PD09 (2009 pandemic
H1N1pdm09), H3N2, H5N1 and H7N9 representing the most prevalent human infecting sub-
types over the past four decades were used to identify and characterize two sets of target
sequences, each with a minimum length of 15 bases, for their coverage in targeting the multiple
subtypes either singly or in pairs. A total of 1,183 conserved target sequences in the 5-S set and

Fig 5. Mutation counts and time to resistance. For each set of target sequences, various sequence lengths ranging from 15 to 30 nucleotides were
considered, and for simplicity, the length of all the target sequences in a set is identical. The median mutation counts and median time to resistance were
obtained from 100,000 independent Monte Carlo simulations. (A) Sets of effectiveDuals.Only effectiveDuals from segments 1, 3 and 7 were used in the
simulations as they are able to form complete graphs withHF� 2. (B) Sets of effectiveDoubles and sets of effectiveDuals and effective Doubles
combined. For 2�HF� 5, complete graphs formed by effectiveDoubles depicted in Fig 4C were used in the simulations. For HF = 1, effective Doubles
targeting segments 1 and 2 were used. For HF = 6, the target sequence graphs that combine effective Doubles and effective Duals in Fig 4D were used; 6(1)
and 6(2) respectively denote the left and right graphs in Fig 4D.

doi:10.1371/journal.pcbi.1004663.g005

Table 4. Complete heterosubtypic coverage by effectiveDuals and effectiveDoubles in the absence
of target sequences that hit the human transcriptome or genome.

A

Target sequences 5-S 3-S

Segment Counts Counts

1 153 | 131 2,691 | 2,552

2 223 | 156 250 | 164

3 43 | 10 480 | 395

5 102 | 77 228 | 127

7 573 | 522 1,660 | 1,549

8 33 | 27 49 | 28

Total 1,127 | 923 5,358 | 4,815

B

Effective Duals 5-S 3-S
Segment Counts Counts

1 493 | 130 11,659 | 5,228

2 25 | 0 30 | 0

3 59 | 6 6,386 | 3,768

5 – 2,316 | 298

7 506 | 320 1,987 | 808

8 – 2 | 0

Total 1,083 | 456 22,380 | 10,102

(A) Breakdown of target sequence counts by segment. (B) Number of effective Duals.

doi:10.1371/journal.pcbi.1004663.t004
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5,523 conserved target sequences in the 3-S set (only H1N1, PD09 and H3N2 subtypes were
analysed) were identified in all but segments 4 and 6 (Section A in Table 1). Notably, simulta-
neous heterosubtypic targeting of all the subtypes is achieved when specific pairs of same-seg-
ment (effective “Duals”) or two-segment (effective “Doubles”) target sequences are used. In 5-S
and 3-S respectively, large numbers of effective Duals (1,662 and 29,124) and effective Doubles
(28,463 and 280,351) exist (Section B in Table 1 and Table 2). The target selection space of
Doubles is larger (Section B in Table 1 vs. Table 2)–(a) there are about 10 times more effective
Doubles than effective Duals; (b) almost all single target sites can be paired to form effective
Doubles but not effective Duals.

The specific pairings of multiple effective Duals, effective Doubles or both can generate dis-
tinct sets of target sequences each with different potential to hedge against antiviral resistance,
as indicated by its hedge-factor (Fig 4). As the hedge-factor is maximal when target sequences
in a set form a complete graph, they would be top choices for target selections. The number of
possible complete graphs is enormous particularly those formed among effective Doubles (Figs
3C and S9B). Importantly, because effective Doubles in the six internal segments can form
complete graphs (Fig 4C vs. Fig 4B) unlike effective Duals where complete graphs exist only in
three segments (1, 3 and 7), they can hedge against resistance arising from segment reassort-
ment events. That is, when a target segment undergoes reassortment and thereby becomes
resistant to a target sequence, there are options to target another segment. Multi-segment tar-
geting could be essential to address the observation that a third of avian flu A virus samples
harbours at least one reassorted segment [46–47], although the reassortment frequency is likely
lower in human subtypes. The Monte Carlo simulation results corroborate the use of combina-
torial targets to significantly prolong antiviral resistance in HIV infections to a timescale typical
for a chronic disease [48]. Incidentally, several target sequences in 5-S and 3-S sets that have
been experimentally validated to reduce virus titre can be paired to form effective Duals, effec-
tive Doubles, and target graphs with hedge-factor of 2 (S3 Text). Thus, they can be readily be
used for animal studies prior human clinical trials.

Although the time to resistance of a set of target sequence is primarily dependent on the
hedge-factor, it is affected by target sequence length and target segment mutation rate (Fig 5).
At a given hedge-factor, the time to resistance correlates inversely with target sequence length
since a long target sequence has more nucleotides to acquire a mutation. Target sequences in a

Table 5. Complete heterosubtypic coverage by effectiveDoubles in the absence of target sequences that hit the human transcriptome or genome.

5-S 3-S

Segment 2 3 5 7 8 2 3 5 7 8

1 297 |
16

441 |
94

6,041 |
2,966

3,945 |
1,496

93 | 0 6,081 |
1,207

98,235 |
64,580

29,024 |
12,854

51,901 |
23,833

4,173 |
1,492

2 – 286 |
12

1,957 | 267 2,075 | 549 55 | 0 – 3,378 | 399 3,846 | 561 3,026 | 748 125 | 0

3 – – 3,047 | 473 574 | 76 67 | 12 – – 25,204 |
11,530

8,304 | 3,094 1,964 | 678

5 – – – 1,908 | 953 370 | 0 – – – 4,940 | 1,966 1,110 | 49

7 – – – – 962 |
639

– – – – 1,492 | 641

Total 22,118 | 7,553 242,803 | 123,632

Counts obtained without hits to the human transcriptome are given before “|” whereas counts obtained without hits to the human genome and

transcriptome are given after “|”.

doi:10.1371/journal.pcbi.1004663.t005
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relatively slower mutating segment have longer time to resistance–for instance, sets of effective
Duals in segment 7 has the longest time to resistance for the same hedge-factor and target
sequence length (Fig 5A). In summary, Fig 5 provides a reference for specifying key parameters
pertaining to target segment(s), hedge-factors, target sequence length, and hedging capacity.
Together with Fig 4, they offer the toolkits for assembling sets of target sequence for specific
therapeutic objectives.

Besides efficacy and efficiency, off-target side effects are major obstacles to a successful drug
in human studies. In the context of viral RNA suppression as a therapeutic strategy, off-target
effects occur when a viral target site is also found in the host cell transcriptome whose expres-
sion is essential. Notably, when target sequences with potential off-target effects were removed,
the reduced numbers of effective Duals, effective Doubles and complete graphs still remain
enormous as drug targeting space; for example, the 3-S set has 22,380 effective Duals, 242,803
effective Doubles, and 905,850 complete graphs of size 15 (Tables 4 and 5 and S11 Fig). Other
off-target effects result from polypharmacological properties of a drug through binding to
unspecific target sites, high-dose non-specificity effects, immunological response [49] or other
non-sequence dependent effects [43,50]. Specific nucleic acid chemistry and modifications
such as morpholino and 2’-O-methyl with phosphorothioate or phosphorodiamidate back-
bones have improved binding specificity [43,51–53] and could help to overcome some of these
problems.

Due to the relative small number of available H5N1 and H7N9 strains (S1 Table), they were
excluded in the determination of conserved target sequences in the 3-S set. Consequently, the
number of target sequences, effective Duals and effective Doubles in 3-S is about an order of
magnitude larger than in 5-S (Table 1); an expanded target space is typically useful for thera-
peutic development. Notably, consideration of H5N1 and H7N9 subtypes does not affect the
coverage of target sequences against human subtypes, as the coverage distributions against
H1N1, PD09, H3N2 andH00N00 in both sets are similar (S12 Fig). In contrast, coverage of tar-
get sequences in the 5-S set was greatly improved over in the 3-S set against all animal subtypes
as well as both zoonotic and exotic groups of animal subtypes (S12 Fig), except for segments 2
and 8. Thus, one can select target sequences in segments 2 and 8 from the 3-S set for their
larger target space and target sequences in segments 1, 3 5 and 7 from the 5-S set for their better
extensibility against cross-species subtypes to pre-empt future strains that cross from animal to
human hosts.

Curated strains with incomplete genomes and segment sequences with non-full-length were
both included in the analyses for considering as many sequence variations as possible. When
only complete-genome strains were analysed for both 5-S and 3-S sets, the number of target
sequence pairs and their combinations do not change significantly. This is expected because
the analyses of both effective Duals and effective Doubles do not require genome completeness.
Moreover, all the effective Duals, effective Doubles and complete graphs of size 15 from the all-
genome analysis are complete subsets of those in the complete-genome analysis (S5 Table). On
the other hand, when only full-length segment sequences were analysed, significantly more tar-
get sequence pairs and their combinations were obtained in both 5-S and 3-S sets. Similarly, all
the effective Duals, effective Doubles and complete graphs of size 15 from the all-length analysis
are complete subsets of those in the full-length analysis, except for five effective Duals (out of
29,124) and 54 effective Doubles (out of 280,351) in the 3-S set (S6 Table). Therefore, not all
results from the complete-genome and full-length analyses respectively are applicable to com-
plete- and incomplete-genome strains, and to full-length and non-full-length segments. In
short, considering only complete genomes and full-length segments overestimates conserva-
tion of candidate sites while additional variations observed in incomplete genomes/segments
lead to un-selection of more sites as not being conserved. Therefore, an analysis considering all
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available influenza sequences will provide the most robust selection hedging against further
genomic changes and natural virus evolution.

This study inevitably poses the following questions–which segment to target when Duals
are used, which segment combinations to target when Doubles are used, and how to prioritise a
set of RNA drugs targeting multiple sequences for clinical trials? Reduction of virus titre upon
either knockdown or knockout of specific segment have been reported [19–42], however, there
is no comparative study to determine the relative suppression by each targeted segment on
virus viability and replicability. Moreover, only four out of 15 combinations of double segments
targeting have been reported; segment 5 paired with segment 1, 2, 3 or 7 [26,29,31–33]. The
feasibility to target a segment is also dependent on the accessibility of its target sequence’s sec-
ondary structures for efficient drug binding. The secondary structures and thereby binding
accessibility of a target sequence between subtypes can vary due to nucleotide variations
among segment sequences (S13 Fig). To facilitate the selection of a set of target sequences that
lead to efficient RNA therapeutics targeting viral RNA, mRNA or cRNA, the following
resources for respective 5-S and 3-S sets are made available for download–coverages of all tar-
get sequence against all analysed strain sequences from human and animal subtypes, pairings
of all effective Duals and Doubles, and binding accessibilities [54] of every target sequence (S1
Text); two versions (inclusion or exclusion of hit target sequences to the human transcriptome
or genome) are provided per resource.

It is possible that RNA therapeutics could develop antiviral resistance easier than protein-
targeting drugs via silent mutations. However, at least three simultaneous mutations at a target
sequence are required to abrogate the AON efficiency [30,34], which further substantially
increase the mutation counts and prolongs the elapsed time required for a set of target
sequences to become resistant (S14 Fig). The availability of drugs for simultaneous heterosub-
typic targeting is likely to be more effective and therefore may slow down and reduce the sever-
ity of pandemic and seasonal flu infections, which limits the reservoir of hosts for the virus to
evolve. In addition, clinical administration of a drug cocktail with more than two RNA drugs
to further delay antiviral resistance is worth exploring albeit two targets are theoretically suffi-
cient to address all prevalent subtypes. Nonetheless, since few genomic modifications suffice to
create a novel virus strain with strongly altered transmission phenotype [3–4], the strategy of
selecting a resistance-hedging set of multiple target sequences is particularly relevant as some
of the target sequences are likely to remain effective against a new strain. This is corroborated
from the results that there are human target sequences that are found in more than 90% of the
unique sequences from a total of 109 human and animal subtypes of differing zoonotic poten-
tial. (S3, S4, S5, and S6 Figs). Finally, the concept of Duals, Doubles and hedge-factor can
potentially be applied to other viruses that manifest multiple subtypes to develop RNA thera-
peutics addressing the subtypes simultaneously and for mitigating antiviral resistance.

Materials and Methods

Sources of sequence data
Influenza A virus nucleotide sequences from both human and animal hosts were downloaded
from GenBank for all eight segments for H1N1 (before 2009), PD09 (2009 pandemic H1N1),
H3N2 and H5N1 subtypes. For the H7N9 subtype, nucleotide sequences for both human and
animal hosts were downloaded from the Global Initiative on Sharing All Influenza Data
(GISAID) Epiflu database; we acknowledge the authors, originating and submitting laborato-
ries of the sequences analysed from the Database, listed in gisaid_acknowledge_table_pro-
cessed.txt. To further assess the degree of conservation and extensibility of target sequences,
three other groups of influenza viruses were downloaded from GenBank. The first group
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consists of viruses from any other subtypes with history of infecting humans: H1N2, H2N2,
H6N1, H7N2, H7N3, H7N7, H9N2 and H10N8, collectively named as “H00N00”. The second
group, named as “zoonotic”, is considered as having a higher zoonotic potential. To obtain this
set of viruses, every protein from all viruses from theH00N00 group was used as query to the
tachyon server [55] and all animal strains that are within the top 50 hits with a tachyon score
of 0.8 or more would be considered as having zoonotic potential. The third group of viruses,
named as “exotic”, are viruses from less common host sources like Equine, Canine, Ferret, Cat,
Seal, Tiger, Pika, Mink, Bat, Penguin, Bovine, Wild boar, Raccoon dog, Camel, Leopard, Musk-
rat, Cheetah, Feline, Stone marten, Panda, Civet, Whale, Giant anteater, Blow fly or Beetle ori-
gin. Sequences used in the analyses were downloaded on 29th April 2014. To ensure that only
unique sequences were analysed for each subtype, the redundant identical sequences were
removed with Cd-hit [56] by allowing a maximal sequence identity of 100%. Although UTRs
were not used in identifying target sequences, they were not removed from the sequences as
they were used for secondary structure predictions when designing AONs.

Monte Carlo simulations for estimating mutation counts and time to
resistance
A computational model is developed to simulate the random single nucleotide substitution
events in each of the eight viral segments; the model assumptions are discussed in S2 Text.
Monte Carlo simulations were applied on the model as follows:

1. Specify the parameters of the target sequence set: target sequence length and target
segments.

2. 9 independent random number generators (R0, R1, R2, R3, R4, R5, R6, R7 and R8) are
initialized.

3. A random number is generated from R0 to determine the next segment where the next
nucleotide substitution event will occur. The probability of each segment where a substitu-
tion will occur is estimated from reported segment mutation rates (see below).

4. Given the next segment where the substitution will occur, the corresponding random num-
ber generator Ri is used to determine the nucleotide position in the segment where the sub-
stitution occurs.

5. Increment the mutation counts by one.

6. Check the resistance status of every target sequence. Repeat steps 3 to 5 until the set
becomes resistant.

7. Output the mutation counts and compute the time elapsed (see below).

8. Repeat steps 2 to 7 for a total of 100,000 runs.

9. Determine the medians of the mutation counts and time to resistance from the 100,000
runs.

The segment mutation rates (S2 Text) are used to compute the probability of each segment,
Pr(Segment), where the next substitution mutation will occur in the Monto Carlo simulations,
and the time to resistance. Pr(Segment) is calculated by normalizing the segment’s mutation
rate with the total number of substitution events from all the segments in a year. Lastly, the
time to resistance is computed by dividing the mutation counts with the total number of substi-
tution events from all the segments in a year. The simulation was implemented in JavaTm
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programming language; source codes can be downloaded at http://mendel.bii.a-star.edu.sg/
SEQUENCES/HEDGING_DRUG_RESISTANCE/source-codes/index.html.

Cross-reactivity of the viral target sequences in human, pig and chicken
hosts
The human (GCF_000001405.28_GRCh38.p2), pig (GCF_000003025.5_Sscrofa10.2) and
chicken (GCF_000002315.3_Gallus_gallus-4.0) genomic and transcriptomic sequences were
downloaded from the NCBI genome resource (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/). The
blastn program [57] was used with both the default parameters, and also with parameters
adjusted for short sequence searches (e-value of 1000, word size 7, no complexity masking) to
search the target consensus sequences against the human transcriptome and genome for possi-
ble cross-reactivity. In order to reduce cross-reactivity, target sequences that have a hit in the
human transcriptome were removed. The hits had maximally one mismatch and no target
sequence was found to have more than one mismatch from the above search criteria. In any
case, sequences with two- and three-mismatches are inefficient and ineffective to target respec-
tively [30,34]. The genes in the human transcriptome that match the target sequences for up to
one mismatch were examined for their gene expression profile in 84 tissue types using data
obtained from Gene Atlas (Human U133A/GNF1H, GSE1133, http://biogps.org/downloads,
click the link to gnf1h-gcrma.zip) [58]. Perl scripts were used to map the accessions from the
human ptome to their respective genes using the NCBI gene2accession data file (ftp://ftp.ncbi.
nlm.nih.gov/gene/DATA/gene2accession.gz); the scripts can be downloaded at http://mendel.
bii.a-star.edu.sg/SEQUENCES/HEDGING_DRUG_RESISTANCE/source-codes/index.html.

Supporting Information
S1 Table. Breakdown on sequence counts and strains of H1N1, PD09, H3N2, H5N1 and
H7N9. The total sequence counts in the curated database used to determine the unique
sequences are given in parentheses.
(DOCX)

S2 Table. Breakdown of number of unique segment sequences and strains from aH1N1,
aH3N2, aH5N1 and aH7N9 subtypes and fromH00N00, zoonotic and exotic groups of sub-
types. The total sequence counts in the curated database used to determine the unique
sequences are given in parentheses.
(DOCX)

S3 Table. Number of virus strains analysed in pairing of target segments. Available human
infecting virus strains and their segment sequences from H1N1, PD09, H3N2, H5N1 and
H7N9 were downloaded from GenBank and Global Initiative on Sharing All Influenza Data
(GISAID) EpifluTM databases. The quantity in a cell indicates the total number of virus strains
in which both of their targeted segment sequences are available from either five subtypes in (A)
5-S set or from three subtypes (H1N1, PD09 and H3N2) in (B) 3-S set.
(DOCX)

S4 Table. Hit target sequences in the transcriptomes and genomes from human, pig and
chicken hosts. (A) Number of target sequences in 5-S and 3-S sets that were found (up to one
mismatch) in the transcriptomes and genomes of human, pig and chicken hosts. The % column
tabulates the percentage of hit target sequences in the total target sequence in each set. (B)
Number of human genes (with and without expression data) that were mapped from the
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accessions for which the viral target sequences was found.
(DOCX)

S5 Table. Complete heterosubtypic coverage and resistance hedging when only viral strains
with complete-genome were analysed. 11.5% of the total unique internal segment sequences
that do not belong to complete genomes were removed. Counts from the all-genome analysis
are given in parentheses for comparison. (A) Target sequences. No target sequence can achieve
100% heterosubtypic coverage in the all-genome analysis. � Except for 15 new target sequences
in segment 7 in the 3-S set, the target sequences in both 5-S and 3-S sets are identical in both
all- and complete-genome analyses. (B) Effective Duals. All effective Duals from the all-
genome analysis are complete subset of those from the complete-genome analysis. (C) Effective
Doubles. All effective Doubles from the all-genome analysis are complete subset of those from
the complete-genome analysis. (D) Size distribution of all 6-vertices segment partner graphs
formed by a target sequence (whose NSP = 5) from each of the six internal segments (Figs 3C
and S9B). � Complete graphs of size 15.
(DOCX)

S6 Table. Complete heterosubtypic coverage and resistance hedging when only full-length
viral segment sequences were analysed. 11% of the total unique internal segment sequences
that are non-full-length were removed. Counts from the all-length segment sequence analysis
are given in parentheses for comparison. (A) Target sequences. No target sequence can achieve
100% heterosubtypic coverage in the all-genome analysis. No single target sequence can
achieve 100% heterosubtypic coverage in the full-length analysis. � Except for one target
sequence in segment 7 in the 3-S set, the target sequences in both 5-S and 3-S sets are identical
in both full- and all-length analyses. (B) Effective Duals. � Except for five effective Duals in seg-
ment 7 in the 3-S set, all effective Duals from the all-length analysis are complete subset of
those from the full-length analysis. �� 21 effective Duals in segment 5 were obtained in the full-
length analysis whereas there was none in the all-length analysis. (C) Effective Doubles. �

Except for six S1-S7, 45 S5-S7, and three S7-S8 effective Doubles in the 3-S set, all effective Dou-
bles from the all-length analysis are complete subset of those from the full-length analysis. (D)
Size distribution of all 6-vertices segment partner graphs formed by a target sequence (whose
NSP = 5) from each of the six internal segments (Figs 3C and S9B). �Complete graphs of size
15.
(DOCX)

S1 Text. Description of data resources.
(DOCX)

S2 Text. Monte Carlo simulations for estimating mutation counts and time to resistance.
(DOCX)

S3 Text. Validated target sequences.
(DOCX)

S1 Fig. Cumulative frequencies of the 5-S set target sequences coverage by target segments.
In the graphs, each data point denotes the cumulative number of target sequences (vertical
axis) in a particular target segment with a minimum coverage (horizontal axis). The coverage
of a target sequence is defined as the percentage of unique segment sequences in the corre-
sponding target segment from subtypes H1N1 (grey), PD09 (orange), H3N2 (red), H5N1
(green), H7N9 (blue) and all the five subtypes (black) in which a match with the target
sequence was found. In the occasional incident that the target site of a unique sequence con-
tains an ambiguous base, it is processed by the following rules. The unique sequence is not
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considered a match when all possible bases of its ambiguous base do not match the respective
base of the target sequence; for instance, a K (denotes either G or T) ambiguity code is found at
the unique sequence where it is a C at the corresponding target sequence. Otherwise, the
unique sequence is omitted during the computation of target sequence coverage when one of
the possible bases of its ambiguous base matches the respective base of the target sequence (i.e.
the unique sequence is neither a match nor a no-match; for instance, a K (denotes either G or
T) ambiguity code is found at the unique sequence where it is a T at the corresponding target
sequence.
(TIF)

S2 Fig. Cumulative frequencies of the 3-S set target sequences coverage by target segments.
Refer to S1 Fig legend. In this case, only unique sequences from 3 subtypes (H1N1, PD09 and
H3N2) were used.
(TIF)

S3 Fig. Coverage of target sequences in other human and animal subtypes. Coverage of each
target sequence against subtypes H1N1, PD09, H3N2, H5N1, H7N9, aH1N1, aH3N2, aH5N1
and aH7N9, and against a collection of subtypes grouped asH00N00, zoonotic and exotic (refer
to Materials and Methods in the main paper); refer to S1 Fig legend on the procedure to deter-
mine the coverage. For plotting purposes (left panel: 5-S; right panel: 3-S), all the target
sequences in a segment were numbered (horizontal axis) after they were sorted ascendingly by
their coordinates in the target segment followed by their target sequence length. (A) Segment
1. (B) Segment 2. (C) Segment 3. (D) Segment 5. (E) Segment 7. (F) Segment 8.
(TIF)

S4 Fig. Cumulative frequencies of target sequences coverage in other human and animal
subtypes. In the graphs (left panel: 5-S; right panel: 3-S), each data point denotes the cumula-
tive number of target sequences (vertical axis) in a particular target segment with a minimum
coverage (horizontal axis). Coverage of each target sequence against subtypes H1N1, PD09,
H3N2, H5N1, H7N9, aH1N1, aH3N2, aH5N1 and aH7N9, and against a collection of subtypes
grouped asH00N00, zoonotic and exotic (refer to Materials and Methods in the main paper);
refer to S1 Fig legend on the procedure to determine the coverage. (A) Segment 1. (B) Segment
2. (C) Segment 3. (D) Segment 5. (E) Segment 7. (F) Segment 8.
(TIF)

S5 Fig. Comparing target sequences coverage distributions in human (H1N1, PD09,
H3N2, H5N1 and H7N9) and corresponding animal (aH1N1, aH3N2, aH5N1 and aH7N9)
subtypes and inH00N00 group of human subtypes. Differences in the coverage distribution
of target sequences in each human subtype and in its corresponding animal subtype or in the
H00N00 group were tested for statistical significance. Coverage distributions of target
sequences in different subtypes were compared by boxplots (vertical axis) and student-t test for
5-S (left) and 3-S (right) sets. One-sided student-t test was performed on the target sequences
coverages against each human subtype and against its corresponding animal subtype (i.e.
H1N1 vs. aH1N1, PD09 vs. aH1N1, H3N2 vs. aH3N2, H5N1 vs. aH5N1, and H7N9 vs.
aH7N9), and against every human subtype and against theH00N00 group of human subtypes
(i.e. H1N1 vs. H00N00, PD09 vs. H00N00, H3N2 vs.H00N00, H5N1 vs.H00N00, and H7N9
vs.H00N00). Differences between two coverage distributions were considered as statistically
significant when p-value� 0.001. � denotes coverage distribution in the human subtype and
the corresponding animal subtype is different (black: coverage distribution in the human sub-
type is statistically higher; red: coverage distribution in the animal subtype is statistically
higher). # denotes coverage distribution in the human subtype andH00N00 group is different
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(black: coverage distribution in the human subtype is statistically higher; red: coverage distri-
bution in theH00N00 group is statistically higher). Except for segment 5, coverage distribution
in the human subtype is not always the highest. Particularly in the 5-S set, more incidences
where coverage distribution in the human subtype is either similar to or lower than its corre-
sponding animal subtype or theH00N00 group are observed.
(TIF)

S6 Fig. Comparing target sequences coverage distributions in animal subtypes (aH1N1,
aH3N2, aH5N1 and aH7N9) subtypes and in zoonotic and exotic groups of animal sub-
types. Differences in the coverage distribution in each human corresponding animal subtype
and in the zoonotic or exotic groups of animal subtypes were tested. Coverage distributions of
target sequences in different subtypes were compared by boxplots (vertical axis) and student-t
test for 5-S (left) and 3-S (right) sets. One-sided student-t test was performed on the target
sequences coverages against every animal subtype and against the zoonotic group of animal
subtypes (i.e. aH1N1 vs. zoonotic, aH3N2 vs. zoonotic, aH5N1 vs. zoonotic, and aH7N9 vs. zoo-
notic), and against every animal subtype and against the exotic group of animal subtypes (i.e.
aH1N1 vs. exotic, aH3N2 vs. exotic, aH5N1 vs. exotic, and aH7N9 vs. exotic), and against the
zoonotic and exotic groups. Differences between two coverage distributions were considered as
statistically significant for p-value� 0.001. � denotes coverage distribution in the animal sub-
type and zoonotic group is different (black: coverage distribution in the animal subtype is statis-
tically higher; red: coverage distribution in the zoonotic group is statistically higher). # denotes
coverage distribution in the animal subtype or zoonotic group and exotic group is different
(black: coverage distribution in the animal subtype or zoonotic group is statistically higher; red:
coverage distribution in the exotic group is statistically higher). More incidences where cover-
age distribution in the human corresponding animal subtype is either similar to or lower than
in the zoonotic group are observed for the 5-S set. Coverage distribution in the exotic group is
generally the lowest.
(TIF)

S7 Fig. Distribution of the target sequence positions from the effective Duals in each seg-
ment. Effective Duals in both 5-S and 3-S sets refer to pairs of single target sequences that can
cover all unique sequences of respective target segments. No effective Dual was found for seg-
ments 5 and 8 of the 5-S set.
(TIF)

S8 Fig. Collective distribution of the target sequence positions from effective Doubles in
each segment. Effective Doubles in both 5-S and 3-S sets refer to pairs of single target
sequences in different segment that can cover all virus strains. An effective Double is consid-
ered to cover a virus strain when one or both of its target sequences is found in either one or
both of the virus strain’s targeted segment sequences. The target sequence position distribution
depicted is aggregated from all effective Doubles target sequences obtained from all possible
target segment pairings.
(TIF)

S9 Fig. Frequency distributions of NSP and segment partner graphs. (A) NSP frequency
distributions. Number of single target sequences against NSP by target segment in 5-S (top)
and 3-S (bottom) sets plotted as bar charts. (B) 6-vertices (NSP = 5) segment partner graphs.
The size (number of effective Doubles) distribution of all permutations of 6-vertices segment
partner graph constructed by single target sequences with NSP = 5 from the six internal seg-
ments were tabulated, and plotted in percentage of total graph permutations for 5-S (top) and
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3-S (bottom) sets.
(TIF)

S10 Fig. 6-vertices (NSP� 1) segment partner graphs. The size (number of effective Doubles)
distribution of all permutations of 6-vertices segment partner graph were tabulated (left), and
plotted in absolute number of graphs (gray) and in percentage of total graph permutations
(black). Graphs were constructed by single target sequences with (A) NSP� 1 (5-S set) and
(B) NSP� 4 (3-S set) from the six target segments. Note: determination of graph size becomes
computationally intractable in the 3-S set when single target sequences with NSP� 3 are con-
sidered, as a consequence of immense total graph permutations.
(TIF)

S11 Fig. Size distribution of graphs formed by effective Doubles in the absence of target
sequences that hit the human transcriptome or genome. (A) Size distribution of all 6-vertices
segment partner graphs formed by a target sequence (whose NSP = 5) from each of the six
internal segments (Fig 3C and S9B Fig) in 5-S (top panel) and 3-S (bottom) sets, after the
removal of hits with the human transcriptome. The key results remain qualitatively
unchanged–the modal number of effective Doubles per graph in 5-S and 3-S is 13 and 7 respec-
tively, every graph in 5-S has at least 10 effective Doubles, and complete graphs (size = 15) that
has the highest hedge-factor of five in both sets are still aplenty. (B) Upon removal of target
sequences that hit the human genome or transcriptome, the size distribution of all 6-vertices
segment partner graphs formed by a target sequence from each of the six internal segments in
5-S (column 1, NSP� 1) and 3-S (columns 2 and 3, NSP� 3 and NSP� 2 respectively) sets.
There are respectively 588 and 436,614 complete graphs of 5-vertices formed by a target
sequence from S1, S2, S3, S5 and S7 (size = 10) in 5-S and 3-S sets.
(TIFF)

S12 Fig. Comparing coverage distributions of target sequences between 5-S and 3-S sets.
Coverage distributions of target sequences in H1N1, PD09, H3N2, H00N00, aH1N1, aH3N2,
aH5N1, aH7N9, zoonotic and exotic were each plotted for 5-S and 3-S sets side-by-side.
(TIF)

S13 Fig. Representative binding accessibilities of target sequences in all subtypes strains.
Binding accessibilities of the two representative target sequences in every strain were computed
(refer to S1 Text), and their distributions in each of the five human subtypes were depicted as
boxplots. Due to variations in the segment sequence among the strains, differences in the seg-
ment mRNA co-transcriptional secondary structures can lead to different binding accessibility
distributions (right) or have no considerable effect (left).
(TIF)

S14 Fig. Mutation counts and time to resistance. The Monte Carlo simulations described in
the main text and shown in Fig 5 were repeated with the condition that a target sequence is con-
sidered resistant when it acquires three substitution mutations (3-hits). For ease of comparison
with Fig 5, the results labelled as “1-hit” were plotted together with 3-hits. Refer to Fig 5 legend.
(TIF)
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