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SUMMARY 

Tropical cyclone (TC) intensity change forecasting remains challenging due to the lack of understanding of 
the interactions between TC changes and environmental parameters, and the high uncertainties resulting 
from climate change. This study proposed hybrid convolutional neural networks (hybrid-CNN), which 
effectively combined satellite-based spatial characteristics and numerical prediction model outputs, to 
forecast TC intensity with lead times of 24, 48, and 72 h. The models were validated against best track 
data by TC category and phase and compared with the Korea Meteorological Administrator (KMA)-based 
TC forecasts. The hybrid-CNN-based forecasts outperformed KMA-based forecasts, exhibiting up to 22%, 
110%, and 7% improvement in skill scores for the 24-, 48-, and 72-h forecasts, respectively. For rapid 
intensification cases, the models exhibited improvements of 62%, 87%, and 50% over KMA-based fore­
casts for the three lead times. Moreover, explainable deep learning demonstrated hybrid-CNN’s potential 
in predicting TC intensity and contributing to the TC forecasting field. 

INTRODUCTION 

Ongoing climate change increases the unpredictability of tropical cyclones (TCs), leading to increased damage.1–5 Accurate TC forecasts can 

help mitigate and prepare for damage. Although advances in numerical models have improved TC forecasting, predicting TC intensity re­

mains challenging. This challenge is mainly because of the lack of clarity regarding TC development mechanisms.6–9 The horizontal structure 

and inner core of a TC are significantly related to its intensity.10–14 Consequently, data fusion and assimilation using TC observations play 

crucial roles in enhancing TC intensity forecasts. Several objective and subjective data fusion techniques have been used to forecast TC 

intensity. Regional meteorological centers issue TC forecasts operationally using both approaches: subjective data fusion, which relies on 

forecasters’ knowledge and experience, and the objective approach, which often performs worse than the former. For example, official guid­

ance-based TC intensity forecasts improved by 35%, 29%, and 25% compared with ensemble model forecasts.15 However, excluding subjec­

tivity is difficult, leading to discrepancies in TC forecasts among typhoon centers; thus, objective data fusion must be improved. 

Studies have investigated TC intensity forecasting based on the data fusion of statistical-numerical models and TC observations. For 

example, Velden and Lewis (2017)16 used two geostationary satellite-based atmospheric motion vectors and the Hurricane Weather Research 

and Forecasting model, Honda et al. (2018)17 used Himawari-8-based water vapor (WV) observations and a statistical TC forecasting system, 

and Yin et al. (2021)18 used FY-4A based IR observations and the Global/Regional Assimilation and Prediction System. These studies have 

demonstrated that satellite-based TC observations can improve intensity forecasts. Because objective satellite data integration approaches 

have used pixel-based brightness temperatures observed by satellite sensors (e.g., average and minimum brightness temperatures near a TC 

center), they cannot fully simulate the structural characteristics of TCs directly related to their intensity. Thus, imitating forecasters’ use of in­

tensity-wise structural characteristics when using satellite observations is necessary. 

Research has employed deep learning to characterize TC structure and identify the relationship between TC structure and intensity. Prad­

han et al. (2017)19 proposed an automatic TC intensity estimation model through deep learning using single infrared-window channel data 

observed by a geostationary satellite sensor. Lee et al. (2020)20 proposed a multi-dimensional convolutional neural network (CNN)-based TC 

intensity estimation model, demonstrating that multi-infrared observations in a deep learning framework can improve the accuracy of inten­

sity estimation. Using a deep learning visualization approach, they confirmed the presence of intensity-specific structural characteristics in 

satellite-based TC observations, particularly in the vicinity of the inner core and the outer rainband. In addition, each infrared channel played 
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24 h 0.79 15.1 0.65 18.1 0.19 28.7 0.05 34.6 

48 h 0.72 20.1 0.30 25.6 0.13 28.2 0.08 36.3 

72 h 0.47 23.1 0.31 23.1 �0.02 26.7 0.02 30.1 
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Table 1. Evaluation results of hybrid-CNN, COMS only-CNN, CFSv2 only-CNN, and Intensity only-LSTM 

Hybrid-CNN COMS-CNN CFSv2-CNN Intensity-LSTM 

Forecasting time R MAE R MAE R MAE R MAE 

Forecasting time-wise evaluation results (i.e., 24-, 48-, and 72-h). The best validation accuracies are bolded. The unit of MAE is kts, and R is unitless. 
a unique role in determining the TC intensity. They revealed that the CNN successively simulated the relationship between satellite-based TC 

observations and intensity, providing its potential application in the field of intensity forecasts. 

This research aims to propose a new framework for deep learning–based TC intensity forecasts with 24-, 48-, and 72-h lead times through 

the synergistic fusion of numerical model-based predictions and satellite observations. To effectively integrate the two data sources, this 

study proposed a hybrid-CNNapproach. This approach consists of multi-dimensional CNNswhosemodel parameters are shared. Themodel 

could simulate both the structural characteristics of TCs and the interactions between the environmental predictors and their nonlinearity. The 

proposed approach makes three contributions to the literature: (1) it provides effective synergistic fusion of satellite observations and numer­

ical model output using the hybrid deep learning model; (2) it produces forecasts with multiple lead times (i.e., from 24- to 72-h forecasting) 

through the deep learning–based fusion of numerical model data and satellite observations; and (3) its deep learning visualization method 

suggests that the structural features of TCs affect TC intensity forecasts. 
RESULTS 

Comparison of hybrid-CNN model and single data-based models 

Deep learning–based 24-, 48-, and 72-h TC intensity forecasting was conducted through synergistic fusion of satellite observations (i.e., 

Communicate, Ocean and Meteorological Satellite, COMS) and numerical model outputs (Climate Forecasting System version 2, CFSv2) 

(see STAR methods part). Prior to evaluating the overall performance of the proposed model, the fusion model (i.e., hybrid-CNN) and single 

data-based deep learning models (i.e., COMS-CNN, CFSv2-CNN, and Intensity-long short-term memories (LSTM)) were compared to repre­

sent the impact of deep learning–based data fusion. Table 1 summarizes the 24-, 48-, 72-h TC intensity forecasting performance of the models 

(i.e., hybrid-CNN, COMS-CNN, CFSv2-CNN, and Intensity-LSTM). For all forecasting times, the hybrid-CNNmodels performed much better 

than the single data-based CNN models, resulting in the lowest mean absolute error (MAE) and highest Pearson’s correlation (R). The hybrid-

CNN models improved by MAE of 16.57% and 21.48% compared with COMS-CNN, improved by MAE of 47.36% and 48.72% compared with 

CFSv2-CNN, and improved byMAE of 56.36% and 44.62% compared with Intensity-LSTM in 24- and 48-h forecasting, respectively. In the 72-h 

forecasting, hybrid-CNNdid not significantly outperform COMS-CNN in terms of MAE; however, the prediction correlation improvedby 51%. 

These results revealed that deep learning–based data fusion significantly improved TC intensity forecasting, consistent with results in the liter­

ature on data assimilation.21,22 These findings indicate that data fusion of multi-source datasets in a deep learning framework could syner­

gistically improve TC intensity forecasting with lead times of 24–72 h. 
Overall evaluation of hybrid-CNN models 

Tables 2, 3, and 4 shows the 24-, 48-, and 72-h forecasting results of KMA (i.e., K24, K48, and K72) and the proposed hybrid-CNNmodels (i.e., 

H24, H48, and H72). H24 yielded better performance than K24 did for all categories except for category 1: SS values of 0.22, 0.14, 0.16, and 0.11 

for categories 2–5, respectively. Although H24 performed worse for weak TCs with an intensity <48 kts, resulting in an SS of �0.34 in terms of 
Table 2. Category-wise 24-h forecasting performance 

K24 H24 

Target category MAE R MAPE MAE R MAPE Skill score 

Category 1 7.5 0.1 54.2 10.1 0.2 43.0 �0.34 

Category 2 13.8 0.3 45.4 10.8 0.4 19.7 0.22 

Category 3 17.0 �0.1 26.6 14.7 0.2 20.8 0.14 

Category 4 17.7 0.3 16.7 14.9 0.3 16.5 0.16 

Category 5 19.6 0.3 15.5 17.4 0.3 14.2 0.11 

Category-wise 24-h forecasting performance of KMA (K24) and hybrid-CNN (H24) using 27 typhoons in 2019. Skill score was calculated using the MAE of each 

model. The unit of MAE is kts, MAPE is %, and R and Skill score are unitless. 
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Table 3. Category-wise 48-h forecasting performance 

K48 H48 

Target category MAE R MAPE MAE R MAPE Skill score 

Category 1 9.9 0.27 21.8 15.8 �0.13 58.1 �0.60 

Category 2 13.1 0.38 24.2 13.4 0.34 25.0 �0.02 

Category 3 21.3 �0.15 29.9 10.1 0.07 14.2 1.11 

Category 4 18.8 0.40 21.0 14.9 0.30 16.4 0.21 

Category 5 29.8 0.25 25.3 28.2 0.11 23.8 0.05 

Category-wise 48-h forecasting performance of KMA (K48) and hybrid-CNN (H48) using 27 typhoons in 2019. Skill score was calculated using the MAE of each 

model. The unit of MAE is kts, MAPE is %, and R and Skill score are unitless. 
mean absolute error (MAE), it yielded better correlation values than K24 did. H24 performed well, resulting in a mean absolute percentage 

error (MAPE) < 20 for categories 2, 4, and 5; it also showed reasonable performance for categories 1 and 3. As the target TC intensity 

increased, the performance of K24 degraded rapidly: an MAE of 7.5 kts was observed for category 1, and the MAE doubled for category 

3 and nearly tripled for category 5 (MAE of 17.0 kts and 19.6 kts for categories 3 and 5, respectively). In contrast, H24 demonstrated relatively 

stable performance by intensity, with an MAE of 17.4 kts for category 5 and 10.1 kts for category 1. For 48-h forecasts, H48 demonstrated a 

significantly superior performance, especially in strong TCs of category 3 or higher. Both models showed that the prediction error increased as 

the intensity of the target TC increased (K48 had MAEs of 21.3, 18.8, and 29.8 kts, and H48 had MAEs of 10.1, 14.9, and 28.2 kts for categories 

3–5, respectively), H48 performed 5%–21% better than K48 did. H48 was a good, reasonable intensity forecasting model, with MAPEs of 14.2, 

16.4, and 23.8% in categories 3 to 5, and K48 had MAPEs of 29.9, 21.0, and 25.3% in the same categories. For 72-h forecasting results, H72 

showed a reasonable performance with MAPEs of 28.4, 28.5, 31.1, and 24.1 in categories 2–5, respectively; however, it had 8%–32% lower 

performance in categories 2–4 than K72 did (H72 had MAEs of 15.1, 20.4, and 18.1 kts, and K72 had MAEs of 13.9, 19.6, and 21.3 kts in cat­

egories 2–4, respectively). For category 5 TCs, H72 demonstrated a 7% performance improvement over K72. However, the proposed fore­

casting models (i.e., H24, H48, and H72) showed relatively low performance for weak TCs (category 1). Several reasons were inferred: 1) 

due to the tangled pattern of weak TCs, simulating the intensity-wise TC pattern using a CNN-based model was difficult,20 and 2) due to 

the environmental perturbations that occur when TCs dissipate, predicting weak TC cases with a high probability of dissipating was especially 

difficult.23,24 

Figure 1 depicts the scatterplots of the performance of all forecasting models with three lead times according to the TC phase (i.e., dissi­

pating, sustained, and developing phases, which are the real intensity changes over the past 6 h based on targe TC intensity observations). 

Corresponding to the categorical performances shown in Table 1, H24 outperformed K24: K24 exhibited an R of 0.68 and a slope of 0.46, and 

H24 yielded an R of 0.79 and a slope of 0.60 (Figures 1A and 1B). Interestingly, K24 demonstrated phase-biased prediction results: it under­

estimated the intensity for developing cases and overestimated it for dissipating cases. By contrast, H24 demonstrated robust prediction re­

sults regardless of the phase. K48 resulted in an R of 0.67 and a slope of 0.51; H48 exhibited an R of 0.72 and a slope of 0.38 (Figures 1C and 

1D). Slope did not significantly improve, but R improved by 5% in H48 compared to K48. For overall accuracy, K72 showedbetter performance 

than H72 did (Figures 1E and 1F). However, for strong TCs exceeding 85 kts (i.e., categories 4 and 5), H72 outperformed K72, resulting in an R 

of 0.64 and a slope of 0.91, and K72 had an R of 0.36 and a slope of 0.47 (Figure 2). As shown in Table 4, H72 performed poorly in forecasting 

the intensity of weak TCs, particularly dissipating weak TCs. 

Figure 3 depicts boxplots showing the variability of two numerical forecasting factors (i.e., Pressure at mean sea level (PRES) and Temper­

ature at low altitude (TMPL)) for all dissipating weak TC cases used for validation. H72 generally exhibited good forecasting performance 

when the environmental prediction factors significantly fluctuated. By contrast, when the pressure at mean sea level and temperature at 
Table 4. Category-wise 72-h forecasting performance 

K72 H72 

Target category MAE R MAPE MAE R MAPE Skill score 

Category 1 10.8 0.45 36.7 20.5 0.20 87.8 �0.89 

Category 2 13.9 0.36 26.2 15.1 0.17 28.4 �0.08 

Category 3 19.6 0.00 27.5 20.4 �0.12 28.5 �0.04 

Category 4 21.3 0.53 23.8 28.1 0.33 31.0 �0.32 

Category 5 30.5 �0.28 25.7 28.1 0.25 24.1 0.07 

Category-wise 72-h forecasting performance of KMA (K72) and hybrid-CNN (H72) using 27 typhoons in 2019. Skill score was calculated using the MAE of each 

model. The unit of MAE is kts, MAPE is %, and R and Skill score are unitless. 
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Figure 1. Scatterplots of KMA- and hybrid-CNN-based TC intensity forecasting results 

(A) KMA-based forecasting results for lead time for 24 h. 

(B) Hybrid-CNN-based forecasting results for lead time 24 h. 
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Figure 1. Continued 

(C) KMA-based forecasting results for lead time 48 h. 

(D) Hybrid-CNN-based forecasting results for lead time 48 h. 

(E) KMA-based forecasting results for lead time 72 h.
 

(F) Hybrid-CNN-based forecasting results for lead time 72 h. The x axis indicates observed intensity (kts) reported from JTWC best track, and the y axis indicates
 

predicted intensity (kts). The TC activity phase in the past 6 h of validation samples is marked with colors. Red, black, and white-colored scatters indicate
 

dissipating, developing, and sustained cases, respectively.
 
low altitude forecasts were stable, as in cases 11–22, H72 had high forecasting errors. An exception was that cases with increased atmospheric 

temperatures at low altitudes (i.e., cases 1–3) were accurately predicted as weak TCs by H72, although the predicted atmospheric temper­

atures were stable. Because the number of weak TCs was greater than that of strong TCs, the biased forecasting errors by the target TC in­

tensities led to a decline in the overall prediction performance of H72. 

However, it should be noted that the joint typhoon warning center (JTWC) best track data used in this study require post-processing time, 

making it unsuitable to directly use them for operational forecasting. To overcome this limitation, the best track data might be replaced with 

operational reports. To verify the replaceability, the 24-h, 48-h, and 72-h intensity forecasting models using KMA-based operational real-time 

analysis were evaluated, resulting in skill score differences of 1.8%, 0.7%, and 0.7%, respectively, when compared to the models with JTWC 

best track. It implies that the proposed models can be operationally used based on the operational reports without a significant drop in 

performance. 

Evaluation for rapid intensification (RI) of hybrid-CNN models 

Although TC intensity prediction has significantly improved, accurate forecasting of RI remains challenging.7,25,26 Because of the obscurity of 

TC development mechanisms, such as the interaction between environmental (atmospheric and oceanic) factors and the inter physics of TCs, 

whether rapid intensification (RI) occurrence is typical or exceptional remains unclear.27 Thus, the performance of RI prediction by forecast 

time was evaluated using all typhoons that occurred in 2019. There were 16, 8, and 4 RI cases for 24-, 48-, and 72-h forecasts, respectively. 

Figure 4 shows the prediction performances of the TC intensity change with three lead times over the previous 24 h for each RI case. 

Some cases were predicted to have a negative intensity gradient by both forecasting models, and H24 performed significantly better 

than K24 in nine cases (Figure 4A). K24 predicted cases 11–14 as a weakening or in a sustained phase, and H24 predicted them as inten­

sifying cases. For cases 11 through 16, which traversed the Philippines, H24 exhibited greater improvement than K24 did. The TCs weak­

ened as they made landfall in the Philippines but quickly intensified as they left land. This finding implies that H24 may mitigate the 

unpredictability of K24 when TCs are close to land. H48 performed better than K48 in all RI cases (Figure 4B). For cases 2, 4, and 8, 

K48 predicted the RI cases as a weakening or sustained phase, and H48 predicted them in an intensifying phase. In particular, for cases 

6 and 7, which intensified by more than 50 kts, K48 could not simulate the intensity change, whereas H48 predicted it in an intensifying 

phase. The RI prediction performance of the proposed model was also noteworthy for 72-h forecasts (Figure 4C). For two of the four 

cases (i.e., RI cases 3 and 4), H72 demonstrated better performance than K72 did. RI cases 1 and 2, in the South China Sea and sur­

rounded by land, were difficult to predict with both models, and cases 3 and 4, near the Philippines, performed significantly better 

with  H72 than with K72.  

Although hybrid-CNN-basedmodels did not demonstrate high RI detection accuracy for over 30 kts/day, in terms of probability of detection 

(POD) rate, H24 achieved an 8% improvement compared to K24.While there was no RI forecasting hit in KMA-based forecasts, three cases were 
Figure 2. Scatterplots of KMA- and hybrid-CNN-based forecasting results when targeting TCs over 85 kts 

(A) KMA-based 72 h forecasting results.
 

(B) Hybrid-CNN-based 72 h forecasting results. The x axis indicates the observed intensity (kts) reported from JTWC best track, and the y axis indicates the
 

predicted intensity (kts). The TC activity phase in the past 6 h of validation samples is marked with colors. Red, black, and white-colored scatters indicate
 

dissipating, developing, and sustained cases, respectively.
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Figure 3. Distribution of CFSv2-based two atmospheric forecasts (i.e., pressure at mean sea level and temperature at low altitude) for dissipating TCs 

with category 1 

The x axis indicates TC cases in ascending order of intensity forecasting error. The main y axis indicates the pressure (Pa) for top and temperature (K) for bottom, 

and the sub y axis indicates the intensity forecasting error. 
detected by H24. As there are generally underpredicted trends in H48 and H72, it seems difficult to predict RI. On the contrary, the hybrid-CNN 

outperformed the KMA-based forecasts with regard to the gradient of intensification. Specifically, the KMA-based models failed to detect sig­

nificant gradients for all forecasting lead times. For all forecasting lead times, the hybrid-CNN demonstrated a better performance than the 

KMA-based forecasts did, whereas the KMA-based models could not identify large gradients. In particular, the proposed model performed 

well even when RI occurred before or after landfall, one of the experimental limitations of the approaches in the literature.12,28,29 

Forecasting performance for typhoon KAMMURI in 2019 

Figure 5 shows the successive TC intensity forecasting results using Typhoon KAMMURI in 2019. Similar to the RI evaluation (Figure 4), the TC 

intensity prediction performance of the KMA models decreased during periods of RI (02/12 06:00, 12:00 and 18:00 UTC in 2019). However, the 

proposed model performed well during the intensifying and dissipating phases. When the TC was heading southwest of the Philippines and 

rapidly intensified by an increase of 55 kts from 01/12/2019 06:00 UTC to 02/12/2019 12:00 UTC, the proposedmodel predicted an increase of 

30.7 kts in 24-h forecasting and 21.0 kts in 48-h forecasting, and the KMA models predicted them in a sustained phase. In the 72-h forecasting 

(Figure 5C), the intensified period of KAMMURI (i.e., from 01/12/2019 18:00 UTC to 02/12/2019 12:00 UTC) was predicted to weaken with a 

decrease of 5.8 kts in K72, and H72 predicted it would intensify with an increase of 21.1 kts. KMA-based models exhibited better performance 

in the rapid weakening phase than in the RI phase for Typhoon KAMMURI (2019). By contrast, the hybrid-CNN effectively simulated both the 

timing and gradient of rapid changes (i.e., intensifying and weakening). 

According to the literature, simulations using the horizontal structure of TCs play a crucial role in forecasting intensity changes.30,31 Thus, a 

hybrid-CNN-based objective analysis of satellite-based observations may help improve TC intensity change forecasts. To determine how well 

the hybrid-CNN learned satellite-based observations, this study used the heatmap approach, a CNN-based visualization method. Figure 6 

depicts the visualization results based on the proposed 24-, 48-, and 72-h forecasting models (on 12/01/2019 00 UTC, 12/02/2019 00 UTC, and 

12/03/2019 00 UTC, respectively) and the TC development pattern, which corresponds to the JTWCbest track-based intensity. Each heatmap 

extracted from all the forecasting models mimicked the Dvorak technique. Specifically, the models highlighted the successive curvature of the 

central dense overcast (CDO) pattern around the TC centers. Because the structure of a TC cloud system represents the inner dynamics of 

each system, the effective analysis of successive TC observations using convolutional layers proposed in this study contributes to the fore­

casting of TC intensity. Although each heatmap followed a typical TC development pattern, maps varied by forecasting time. As the fore­

casting time increased, the concentration of high heatmap values increased in the CDO region, and their area decreased. This finding implies 
iScience 27, 109905, June 21, 2024 6 
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Figure 4. Gradients of intensities (kts) predicted by KMA and hybrid-CNN models when TCs were rapidly intensified (i.e., intensity gradients >30 kts in 

the past 24 h) 

(A) The intensity gradients for the lead time of 24 h. 

(B) The intensity gradients for the lead time of 48 h. 

(C) The intensity gradients for the lead time of 72 h. Black, red, and blue bars indicate intensity gradients (kts, main y axis, left side of the graph) of observations 

from the JTWC best track and forecasting by the hybrid-CNN and KMA, respectively. The yellow diamond indicates the observed intensity (kts, secondary y axis, 

right side of the graph) of the target TC. 
that as the lead time increased, the concentration area of the proposed models (i.e., high-value pixels in the heatmap) decreased, and the 

focus on a significant region over the observations was maintained. 

While satellite-observed intensity-related structural characteristics of TCs were incorporated into the model, numerical model-derived 

environmental factors were also considered simultaneously to forecast future intensity in the hybrid-CNN. To examine the impact of environ­

mental factors, the heatmap of vertical wind shear (VWS) was used. VWS is a well-known factor associated with the development of TCs.32–35 

VWS contributes to the weakening of TCs by decreasing vertical convective activity and forming an asymmetric inner core that makes it 
iScience 27, 109905, June 21, 2024 7 
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Figure 5. Intensity forecasting results by hybrid-CNN and KMA-based models for Typhoon KAMMURI in 2019 

(A) Typhoon KAMMURI (2019) forecasting result for the lead times of 24 h. 

(B) Typhoon KAMMURI (2019) forecasting result for the lead times of 48 h. 

(C) Typhoon KAMMURI (2019) forecasting result for the lead times of 72 h.. 
difficult for the eyewall to retain heat and moisture.36–39 Xu et al. (2013)40 also revealed that the horizontal flow of environmental vertical shear 

can influence TC weakening. Figure 7 depicts heatmaps of VWS extracted from the hybrid-CNN-based 72-h forecasting for typhoon 

KAMMURI at 1800 UTC on 01/12/2019. During the TC weakening phase (Figures 7A–7C and 7I–7J), the heatmap of VWS was mostly empha­

sized over the TC center, forming a relatively zonal flow (east–west), which contributes to the asymmetric flows surrounding the TC. On the 

other hand, during the intensification (Figures 7F–7H and 7L–7M), the highlighted heatmap of VWS was away from the TC center. It implies 

that the proposed hybrid-CNN-based intensity forecasting model utilized the environmental factors appropriately to predict intensity. 
DISCUSSION 

In this study, an advanced deep learning–based data fusion model (hybrid-CNN) was proposed to improve objective TC intensity forecasting. 

This attempt was the first to fuse multiple data types into a deep learning framework for TC intensity forecasting. The existing objective data 

fusion techniques using satellite observations are limited to short-term prediction (up to 24 h), but the proposed hybrid-CNN simulates TC 

intensity with lead times of 24, 48, and 72 h. Overall, the hybrid-CNN models outperformed the KMA-based forecasting reports for the 24-h 

and 48-h TC intensity forecasts. However, in the 72-h forecasts, H72 exhibited a better performance with an SS of 7% for category 5, and the 

general performance of H72 was slightly less than K72 (Table 4). 

When evaluating the performance at RIs, the hybrid-CNN models outperformed KMA-based forecasts. In particular, when RI was near the 

Philippines, the proposed models accurately predicted TC intensity in the intensifying phase, and the operational system mis-predicted the in­

tensity in a sustained or decaying phase. For Typhoon KAMMURI in 2019, the proposed models were well predicted for both the RI and rapid 

weakening phases, whereas the operational forecastswere underestimated for RI. The structural characteristics of TCs from satellite observations 

and numerical model outputs substantially improved TC intensity forecasting, confirmed using a heatmap approach. This result implies that the 

hybrid-CNN model reasonably simulated the Dvorak technique, which has been used by forecasters for subjective analysis, and intelligently 

adopted the dynamics of environmental factors. It may play an important role in improving TC intensity forecasts operationally. 

This research demonstrated the promising results of the proposed hybrid-CNN for TC intensity forecasts, but further improvements are 

necessary:1) to improve the training of the mechanisms of TC intensification or dissipation, hybrid-CNN models by phase can be developed 
iScience 27, 109905, June 21, 2024 8 
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Figure 6. Model-wise CNN-based visualization results for satellite observations 

Gray dots in the upper graph indicate intensity from JTWC best track. Green, yellow, and red dots show forecasted intensities at 12/01/2019 00 UTC, 12/02/2019 

00 UTC, and 12/03/2019 00 UTC by the hybrid-CNN-based models with lead times 24, 48, and 72 h, respectively. ’Ref’, ’Pred’, and ’ft’ in the graph mean the 

reference intensity from JTWC best track, predicted intensity by the proposed model, and lead time, respectively. The gray background image in the 

bottom is COMS IR1-based observations, and pink contours are drawn with the upper 50% value of each heatmap. The last row depicts the TC development 

pattern proposed by Dvorak (1973), of which intensity corresponds to the best track-based intensity. 
and 2) multi-numerical models or an ensemble model can be adopted in the hybrid-CNN architecture to mitigate the dependency of the 

proposed approach on the systematic error of a single numerical model. 

Limitations of the study 

As deep learning–based models require a lot of data for various cases, the previous generation geostationary satellite (i.e., COMS) launched 

in 2010 was utilized for this study. However, COMS was decommissioned in 2020, and the next generation geostationary satellite, named 

GeoKompsat-2A (GK2A), has been launched in 2019. Given the limited operational period of GK2A, we were not able to use it in the present 

study. The continuous observations from two satellites may further enhance TC intensity forecasting via transfer learning, which enables the 

proposed hybrid-CNN-based forecasting models to effectively adapt to new data while retaining their previous knowledge. 
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Figure 7. Heatmaps of vertical wind shear (red contour) over typhoon KAMMURI (72-h forecasting for 01/12/2019 1800 UTC) 

Heatmaps generated by the last convolutional layer of mini-CNNs for large-scale in the hybrid-CNN-based 72-h intensity forecasting model. The TC location is 

marked with a cyclone icon. (A–C) and (I–J) show the weakening phase, while (F–H) and (L–M) depict the intensifying phase. 
The varied temporal resolution of the used datasets was a limitation. As the best track and numerical model-based forecasts used in this 

study provide 6-hourly information, we conducted hourly interpolation in order to design deep learning–based TC intensity forecasting 

models. The uncertainty introduced by this preprocessing may persist in the reconstructed datasets. If the best track and environmental vari­

ables were provided as hourly data, the proposed model could mitigate the interpolation-induced uncertainties. Furthermore, hourly numer­

ical model-based forecasts with enhanced performance can also contribute to the improvement of hybrid-CNN-based TC forecasts. 

The limited computational capacity is another limitation of this study. In order to handle the huge amount of data with high dimensions, it 

was necessary to reduce computational costs. Consequently, the satellite-based TC observations were upscaled from 4 km to 12 km in this 

study. While prior research has indicated that a spatial resolution of 12 km is sufficient for simulating TC intensity,20,41 it is evident that a higher 

resolution can furnish a greater amount of information pertaining to TC intensity. If there is enough computer power to train the satellite­

based observations at their original resolution (4 km for COMS MI IR channel-based observations), it may be possible to get more detailed 

spatial information about TC intensity. Furthermore, advances in satellite sensor technology enable the collection of imagery with better spec­

ifications (i.e., higher spatial, temporal, and spectral resolutions). For instance, GK2A Advanced Meteorological Imager (AMI), which succeeds 

COMS, has a spatial resolution of 2 km and a temporal resolution of 10 min for longwave infrared and water vapor channel observations, as 

well as more precise spectral resolution-based channels, which can be used to further enhance the accuracy of TC intensity forecasts. 
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products/matlab.html 
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spyder 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

Communicate, Ocean and Meteorological National Meteorological Satellite Administration (NMSC) https://datasvc.nmsc.kma.go.kr 

Satellite (COMS) Meteorological Imager (MI) 

observations 

Climate forecasting system version 2 (CFSv2) National Centers for Environmental Information (NCEI), https://www.ncei.noaa.gov 

operational forecasts National Oceanic and Atmospheric Administration (NOAA) 

Joint Typhoon Warning Center (JTWC) Naval Meteorology and Oceanography Command https://www.metoc.navy.mil/jtwc 

Best track 

Korea Meteorological Administration (KMA) KMA http://afso.kma.go.kr 

tropical cyclone forecasting report 

Software and algorithm 
RESOURCE AVAILABILITY 

Lead contact 

All requests for additional information and resources should be directed to the lead contact, Jungho Im (ersgis@unist.ac.kr). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

� All data can be obtained from the lead contact, provided the request is reasonable. 
� The code related to the developed model can be accessed by reaching out to the lead contact. 

METHOD DETAILS 

Data 

Satellite data 

Images from the Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) were used as the main input data 

for TC intensity forecasts (Table S1). The instrument had five channels: one visible and four infrared channels. Since April 2011, the sensor has 

collected data with a field of view (FOV) of 1–4 km every 15 min. Thermal infrared channels, from shortwave to longwave, have different char­

acteristics depending on atmospheric conditions. Because atmospheric convective systems contain droplets of various sizes, multi-spectral 

infrared channels can detect them based on particle size. In this study, two infrared channels were used: WV (centered at 6.7 mm) and infrared 1 

(IR1 centered at 10.8 mm). WV detects the water vapor content, and IR1 characterizes the cloud-top pattern and has less sensitivity to water 

vapor absorption than WV does.42,43 Figure 1 illustrates the trend of the mean brightness temperature at the center of 2019 Typhoon 

LINGLING based on the pixel distance. Brightness temperatures between the two channels exhibited significant differences as the distance 

from the TC center increased, depicted by the gray shading in Figure S1. The red boxes in the strong TCs (Figures S1B, S1C, and S1D) indicate 

deep convective regions with high ice crystal concentrations. For weak TCs (Figure S1A), the brightness temperature difference between the 

two channels did not change substantially with increasing distance. As the TC intensified, deep convective regions moved closer to the TC 

center; this result is consistent with the results of dynamic model-based experiments.44,45 The spatial and spectral characteristics of TCs 

observed by multi-spectral channels vary considerably with the TC intensity. 

Climate forecasting system version 2 operational forecasts 

Climate forecasting system version 2 (CFSv2) is a fully coupled forecast model that incorporates interactions among the atmosphere, ocean, 

sea ice, and land, implemented by the National Center of Environmental Prediction (NCEP) of the National Oceanic and Atmospheric 
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Administration (NOAA). The first climate forecast system was executed by the NCEP in 2004; it was developed using four predictions: from the 

NCEP–Department of Energy, Reanalysis 2 (NCEP-DOE R2) for initial atmospheric and land factors, the Global Ocean Data Assimilation Sys­

tem from NCEP for the initial oceanic factor, the Global forecast system from NCEP for atmospheric forecasts, and Modular Ocean Model 

version 3 produced by the Geophysical Fluid Dynamics Laboratory for ocean forecasts.46,47 The CFSv2 product contains various data, 

including two-dimensional energetics, a two-dimensional surface and radiative fluxes, three-dimensional pressure-level data, three-dimen­

sional ocean data, low-resolution output, dumps, and high- and low-resolution initial conditions. These data are provided four times per 

day (i.e., at 00:00, 06:00, 12:00, and 18:00 UTC) with a horizontal resolution of 1�. Weber and Mass (2017)48 evaluated the sub-seasonal fore­

casting skill of CFSv2 with a lead time of 3–5 weeks, focusing on tropical convection. They confirmed that its ocean-atmosphere forecasting 

skill shows promise for up to 2 weeks. Cha et al. (2021)49 evaluated the performance of three models—CFSv2, European Center for Medium-

Range Weather Forecasting Interim Reanalysis (ERA), and NCEP-R2—focusing on sea surface wind. The CFSv2-based wind vector was 

more consistent with the buoy-based observations than the others were. When evaluating CFSv2-based TC intensity predictability using 

the Joint Typhoon Warning Center (JTWC) best track in terms of minimum pressure at mean sea level from 2011 to 2018, the correlations 

for the 24-, 48-, and 72-h forecasting periods were 0.82, 0.72, and 0.60, respectively. 

JTWC best track 

The United States publishes best track data for TCs in the western North Pacific (WNP), northern Indian Ocean, and the Southern Hemisphere. 

These data contain TC information on the location, maximum sustained wind speed, minimum sea surface pressure, and wind intensity by 

radius. JTWC issues real-time TC warning reports, but the best track provides data processed using observations and numerical reanalysis 

data. Annual best track data with a temporal resolution of 6 h are officially published once per year.50 This study focused on the WNP region, 

where the destructive potential of TCs has increased in recent decades.51 Maximum sustained wind speed (kts) was used to represent TC 

intensity with the linear temporal interpolation of the six hourly best track data into hourly data. The best track data from 2011 to 2018 

were used to construct a model for predicting TC intensity, and the data from 2019 were used to evaluate the model. The samples from 

2011 to 2018 were further randomly divided into training (80%) and validation (20%) sets by track. A validation set was used to optimize 

the model parameters. 

KMA-based TC forecasting report 

KMA releases 5-day TC forecast reports. Similar to other TC prediction agencies (e.g., JMA and JTWC), they subjectively determine TC fore­

casts using TC observations and a numerical weather prediction model called the Global Data Assimilation and Prediction System (GDAPS). 

Compared with the TC intensity forecasting performance of GDAPS, the intensity forecasts determined through the official guidance of KMA 

improved by 35%, 29%, and 25% for the 24-, 48-, and 72-h TC forecasting periods, respectively.15 KMA-based forecasts demonstrated a per­

formance comparable to that of the regional specialized meteorological center in Tokyo, which yielded excellent performance for TCs in the 

WNP.7,8,15 In this study, KMA-based 24-, 48-, and 72-h TC forecasts were used to evaluate the proposedmodel; hereafter, they are referred to 

as K24, K48, and K72, respectively. Given the difference in intensity definition standards between KMA and JTWC, it becomes necessary to 

adopt a scaling factor when comparing them. KMA adheres to a sustained wind speed of 10 min, whereas JTWC uses a sustained wind speed 

of 1 min. Recently, the revised scaling factors were proposed by Bai et al. (2023) in order to facilitate the comparison of various standards­

based intensities.52 Following Bai et al. (2023), the category-wise scaling factors were set as 0.9 for category 1 TCs (Intensity <48 kts), 1.0 

for category 2 TCs (48 kts %Intensity <64 kts), 1.1 for category 3 TCs (64 kts %Intensity <85 kts), 1.2 for category 4 TCs (85 kts %Intensity 

<105 kts), and 1.3 for category 5 TCs (105 kts % Intensity). 
Overall methodology 

Based on multiple types of datasets, 24-, 48-, and 72-h TC intensity forecasting models were proposed (Figure S2). Three types of data sources 

were used:1) the JTWC best track, 2) satellite observations, and 3) numerical model-based predictions. A deep learning-based hybrid algo­

rithm (i.e., hybrid-CNN) was proposed for the effective fusion of different types of datasets. The hybrid-CNN consists of several CNN-based 

models that characterize each input data type. Synergistic fusion of input variables is anticipated through parameter sharing among sub­

models. 
Data preprocessing 

Satellite data preprocessing 

Based on the JTWC best track, consecutive TC observations from two infrared channels of COMS MI (WV and IR1) from 2011 to 2019 were 

collected. Because more than 90% of the TCs developed in WNP had a radius up to 450 km,53 a square region of 1204 km (i.e., 301 pixels) on 

one side was extracted as a TC observation. The extracted 301 x 301 images were resized to 101 x 101 pixels to reduce computational de­

mand. This procedure was repeated for the IR1 and WV channels, and each image was normalized using the minimum and maximum values 

from both images. Because satellite observations for the entire TC lifetime were used in this study, 12% of the collected TCs had an intensity 

greater than 96 kts, and 70% had an intensity less than 63 kts. The sample size was not evenly distributed by intensity, which may have resulted 

in biased training with deep learning.54–56 Thus, subsampling of the training data was performed to mitigate this limitation. In the 10 kts in­

terval histogram, over-frequent samples exceeding the upper 25% frequency were randomly removed. Data augmentation through image 
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rotation was then performed to increase the overall sample size. These two preprocessing steps (i.e., image upscaling and sub/over-sampling 

processing) allowed the training samples to be balanced and sufficient. The preprocessing referred to Lee et al. (2020),20 who proposed a 

deep learning-based TC intensity estimation approach using multi-infrared channels from the same geostationary satellite sensor. The six 

hourly time series observations from the previous 72 h (i.e., 13 observations) were used to model 24-, 48-, and 72-h forecasts (Figure S3). 

Numerical model-based forecasts 

In this study, the CFSv2 atmosphere and ocean forecasts were used. They provided atmospheric predictors by altitude and ocean predictors 

by water depth as 3-D pressure-level data (PGB) and 3-D ocean data (OCN), respectively. PGB provides predictions from the time of initial­

ization, and OCN provides predictions starting with a 6-h forecast. The 10 PGB prediction members were used from the current to the fore­

casting time, and the sevenOCNpredictionmembers from a 6-h forecast to a later time were also used (Table S2). These variables have been 

widely used in statistical models to predict TC intensity.11,12,18,57,58 Because the 17 environmental prediction variables had varied value 

ranges, min-max normalization was conducted for each variable. Because of the possibility of perturbational errors in the numerical 

model-based predictors,6 the lower and upper 95% of the whole pixel-wise values of each environmental predictor were used as the minimum 

and maximum values for normalization. This normalization approach enables each predictor to preserve the relative values of each predictor 

while allowing it to maintain its spatial pattern. The region including the WNP (i.e., 0–45 �N, 80–163 �E) was extracted from global-scale pre­

dictions to focus on the TCs that developed in the WNP; thus, the WNP input dataset was 46 3 83 pixels. Because the model forecasts were 

initialized and provided four times per day (i.e., 00:00, 06:00, 12:00, and 18:00 UTC), they were linearly interpolated into hourly forecasts (i.e., at 

00:00, 01:00, ., 23:00 UTC) to match the hourly interpolated best track. 

Although large-scaleWNP input data can consider synoptic tele-connective environmental impacts on a target TC, distinguishing the envi­

ronmental factors affecting the targeted TCwhen multiple TCs occur simultaneously within theWNP remains difficult. To avoid confusion, this 

study extracted the area surrounding a TC was and used it as a local environmental input dataset. Because the atmosphere-ocean environ­

mental variables within 800 km of a TC center could directly affect the TC,59 a 17  3 17 pixel-squared region with a radius of 8� was extracted as 

the local input dataset. In this study, 24-, 48-, and 72-h forecasting environmental variables with a 6-h interval were used for the 24-, 48-, and 

72-h intensity forecasting models, respectively. 

Past trajectory and intensity observations from JTWC best track 

TC trajectory is closely related to TC intensity change.60 Large-scale interactions between the atmosphere and ocean determine the trajectory 

structure and movement pattern of TCs.61–65 To consider the impact of TC movement on intensity change, this study used trajectory images as 

input data. TC trajectory images over the previous 72 h were created using three classes: trajectory, continent, and ocean, which were rep­

resented as values of 1, 0.5, and 0, respectively (Figure S4). They have the same dimensions as the CFSv2-based WNP input dataset (i.e., the 

lengths of the x axis and y axis were 83 and 46 pixels, respectively). In addition, initial TC intensity and previous changes in TC intensity have 

been identified as significant predictors.33,66 Therefore, the consecutive maximum sustained wind speed over the past 72 h provided by the 

JTWC best track was used as the past intensity trend. The hourly intensity trend (73 3 1) extracted from the hourly interpolated best track was 

used in the TC intensity prediction models. 
Deep learning-based TC intensity forecasting models 

CNN 

CNNs are neural networks suitable for image recognition.67 A CNN consists of convolutional, pooling, and fully connected layers, and the 

kernels used as weights in the convolutional layers are shared in the network. During network training, the parameters—kernels and 

biases—are optimized. The well-optimized kernels of each convolutional layer activate significant regions using various activation functions 

(e.g., rectified linear unit [ReLu], hyperbolic tangent [tanh], or linear), which are then used to extract the output. CNNs are classified into 

1-dimensional CNN (1D-CNN), 2-dimensional CNN (2D-CNN), and 3-dimensional CNN (3D-CNN) based on the dimension of the kernels 

used in the convolutional layers. 2D-CNN has been frequently used to analyze images with multi channels (e.g., urban area classification, 

snow detection using satellite observations), and 1D-CNN has been widely used to analyze one-dimensional datasets, such as ocean pig­

ments forecasting.68–74 3D-CNN has been used to analyze data with more than two dimensions, such as multi-layered magnetic resonance 

imaging and human gesture video.75–77 Recently, several studies in the atmospheric and climate fields have used CNNs to analyze various 

types of variables, ranging from one-dimensional climate indices (e.g., El Nino-Southern Oscillation [ENSO]) to three-dimensional images 

(e.g., satellite observations and numerical model products).78–83 

Hybrid convolutional neural networks (hybrid-CNNs) 

Because various data types have become available for environmental modeling, several advanced deep learning approaches have been 

proposed to incorporate them. For example, feature-aggregated multimodal deep learning was proposed to enable the efficient analysis 

of various types of input data,84 and multi-task learning was proposed to allow input datasets to be trained for multiple outputs by sharing 

their parameters.85 These approaches have been adopted for meteorological applications, such as detecting overshooting tops using 

multi-dimensional satellite observations and predicting short-term precipitation with multi-output tasks, resulting in significant improve­

ment in performance.82 
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Since various datasets (i.e., satellite-based TC observations, numerical model-based environmental predictions, past TC trajectory, and 

past TC intensity) have been used for TC intensity prediction, their impact and interactions on TC intensity forecasts should be carefully inves­

tigated. Therefore, a hybrid-CNN approach that combines feature-aggregated multimodal deep learning and multi-task learning was pro­

posed (Figure S5; Table S3). The proposed model improved the network’s understanding of our diverse input datasets by training each data 

type using individual CNN-based models (hereafter referred to as sub-CNNs) with a multi-task learning approach. The hybrid-CNN model 

consists of four modules: three sub-task modules (i.e., sub-models A, B, and C [SM-A, B, and C]) and one main task module (i.e., forecasting 

model [FM]). Previous satellite TC observations were pre-trained using the current TC intensity via a sub-CNN (SM-A), and local environmental 

variables from the numerical prediction model and the past trajectory and intensity trend were individually pre-trained with target TC intensity 

(SM-B and SM-C). In the present study, the rectified linear unit (ReLU) activation function was employed across all the neural networks to effi­

ciently handle the non-linearity of each dataset. To account for each module-wise TC intensity forecasting-related characteristics, the total 

loss is calculated, which includes not only the loss from FM but also the losses from SMs. The features extracted from each sub-model 

were combined to train the FM to forecast TC intensity. Parameter sharing in the main model (i.e., FM) rendered all sub-CNN parameters 

interactive. In this model, the L1 loss function was employed, and the adoptive moment estimation (Adam) optimizer was implemented 

with a learning rate of 0.001. Three hybrid-CNN models were constructed to forecast TC intensity with lead times of 24, 48, and 72 h (hereafter, 

H24, H48, and H72, respectively). 
� � 

Performance evaluation 

H24, H48, and H72 were evaluated using data from 27 typhoons in 2019. All test cases were categorized into five stages (i.e., categories 1–5) 

based on TC intensity (Table S4). Results from hybrid-CNN models were compared with the KMA-based operational TC forecasting results. 

Four metrics were used to evaluate the performance of the proposed models and KMA-based models: MAE, R, mean absolute percentage 

error (MAPE), and skill score (SS). MAE, R, and MAPE were used to evaluate individual models, and SS was used to compare the proposed 

model to the KMA-based operational forecasts. 

X1 
MAE = � abs ypred � yobserved (Equation 1) 

n 
� � P 
ypred � ypred � ðyobserved � yobserved Þ 

R = rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi (Equation 2) � �2 P P 2 ypred � ypred � ðyobserved � yobserved Þ
� � � � � � 
X100% �yobserved � ypred � 

MAPE = (Equation 3) 
n yobserved 
MSEcontrol � MSEmodelSS = (Equation 4) 
MSEmodel 

where n represents the number of validation samples, and ypred and yobserved indicate the predicted and observed intensity (kts), respectively. 

MAEcontrol and MAEmodel indicate MAEs of the KMA forecasts and MAEs of the proposed model, respectively. MAPE has been widely used to 

evaluate forecasting models86: good forecasting (MAPE<20), reasonable forecasting (20 % MAPE % 50), and inaccurate forecasting 
(50<MAPE). 

Before evaluating the performance of the proposed models with respect to KMA-based forecasting, the effectiveness of hybrid-CNN­

based data fusion was compared with that of deep learning-based TC intensity forecasting models without data fusion, using satellite obser­

vations (COMS-CNN) or numerical model data (CFSv2-CNN). The forecasting results were also evaluated by focusing on rapid intensification 

(RI), defined as the intensity gradient (kts) per 24 h exceeding 30 kts87 All RIs that occurred in 2019 were used to validate the performance of the 

models for rapid changes in intensification. Here, RI cases were examined independently because the hybrid-CNN-based TC intensification 

forecasts were simulated on each TC. In addition, the consecutive forecasting performance of the hybrid-CNN-based model was evaluated 

using Typhoon KAMMURI (2019). A heatmap, an explainable artificial intelligence approach, was used to examine how the model led to the 

prediction results. This approach enabled the identification of the contribution and interaction of the input data to the model. 
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