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1  | INTRODUC TION

The marine environment is heterogeneous with many instances of 
cryptic speciation and genetic differentiation due to adaptive and 
neutral processes of divergence (Bohonak, 1999; Boissin et al., 2008). 
Geographic patterns of genetic variation in the marine environment 

are shaped by life history (Cahill et al., 2017), oceanographic and trans-
port processes (Kelly & Palumbi, 2010; Perrin et al., 2004), sea level, 
and land changes (Hellberg et al., 2001), and selection (Koehn, 1978; 
Puritz & Toonen,  2011). These processes influence gene flow and 
population structure of marine invertebrates on both temporal and 
spatial scales (Fenderson et al., 2020; Je Lee & Boulding, 2009).
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Abstract
Temporal genetic studies of low-dispersing organisms are rare. Marine invertebrates 
lacking a planktonic larval stage are expected to have lower dispersal, low gene flow, 
and a higher potential for local adaptation than organisms with planktonic disper-
sal. Leptasterias is a genus of brooding sea stars containing several cryptic species 
complexes. Population genetic methods were used to resolve patterns of fine-scale 
population structure in central California Leptasterias species using three loci from 
nuclear and mitochondrial genomes. Historic samples (collected between 1897 and 
1998) were compared to contemporary samples (collected between 2008 and 2014) 
to delineate changes in species distributions in space and time. Phylogenetic analysis 
of contemporary samples confirmed the presence of a bay-localized clade and re-
vealed the presence of an additional bay-localized and previously undescribed clade 
of Leptasterias. Analysis of contemporary and historic samples indicates two clades 
are experiencing a constriction in their southern range limit and suggests a decrease 
in clade-specific abundance at sites at which they were once prevalent. Historic sam-
pling revealed a dramatically different distribution of diversity along the California 
coastline compared to contemporary sampling and illustrates the importance of tem-
poral genetic sampling in phylogeographic studies. These samples were collected 
prior to significant impacts of Sea Star Wasting Disease (SSWD) and represent an 
in-depth analysis of genetic structure over 117 years prior to the SSWD-associated 
mass die-off of Leptasterias.
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In comparison with marine organisms with planktonic larvae, ma-
rine direct-developers and brooders tend to have lower vagility, lower 
levels of gene flow and greater genetic structure among populations, 
a higher potential for local adaptation, and more frequent specia-
tion and extinction events (Barbosa et  al.,  2013; Jablonski,  1986; 
Keever et al., 2013; Kelly & Palumbi, 2010; Levin, 2006; Strathmann 
& Strathmann,  1982). However, predictions of genetic structure 
based on developmental mode are not always consistent (Becker 
et al., 2007; Bradbury et al., 2008; Sotka et al., 2004). These incon-
sistencies have been explained by intrinsic and extrinsic factors in-
fluencing dispersal such as larval behavior, currents and circulation, 
habitat discontinuity, and geographic features (Avise,  1992; Billot 
et al., 2003; Kamel et al., 2014; Selkoe et al., 2010; Winston, 2012).

While studies of low-dispersers commonly find high spatial ge-
netic structure among populations (Collin,  2001; Hellberg,  1996; 
Hunt,  1993), studies assessing temporal genetic structure among 
organisms with low-dispersal life histories are less common. Je Lee 
and Boulding (2009) compared the genetic structure of four littor-
inid gastropods, two of which were planktonic-dispersers and two 
of which were brooders, over 10  years and four sites leading to 
predictions of variability based upon inferred dispersal ability. On 
a temporal scale, planktonic-dispersers are predicted to have high 
levels of genetic turnover between generations due to stochastic 
processes affecting larval mortality and high gene flow between 
populations (Eldon et al., 2016; Je Lee & Boulding, 2009). According 
to the sweepstakes hypothesis, relatively few individuals will con-
tribute to the recruits of the next generation due to high variance in 
success at varied life-history stages, leading to high temporal genetic 
variability (Hedgecock,  1994; Johnson & Black,  1982). Conversely, 
low-dispersers with significant parental care are expected to experi-
ence low juvenile mortality and have low levels of temporal variabil-
ity across generations (Je Lee & Boulding, 2009; Puritz et al., 2017). 
In brooders, low gene flow from other populations also contributes 
to high population genetic stability over time. Je Lee and Boulding 
(2009) provide predictions of limited temporal genetic structure for 
low-dispersers over 10 years. Additional studies are needed to test 
this pattern in other taxa over variable lengths of time. Assessing 
temporal genetic stability in brooding species will provide insight 
into long-term environmental and demographic processes contrib-
uting to population structure and inform population responses to 
large-scale environmental changes.

Leptasterias is a genus of small-bodied lecithotrophic sea stars 
ranging from Alaska to central California composed of several 
cryptic species complexes. Leptasterias occur in rocky intertidal 
and subtidal habitats, typically measure less than 6  cm from ray 
tip to ray tip (Chia, 1966; Fisher, 1930; Niesen, 1973), and mature 
around 2  years of age (Menge,  1974). Leptasterias are lecithotro-
phic and females brood their young underneath their rays until 
the fully developed juveniles crawl away to disperse (Barreto & 
Bauer, 2019; Chia, 1966; Menge, 1975). Due to their brooding life 
history and small size, these sea stars have limited dispersal to new 
sites. Dispersal likely occurs by individuals rafting on macroalgae or 

other floating substrate; long-distance dispersal is possible though 
likely infrequent (Highsmith, 1985; Parker & Tunnicliffe, 1994). Due 
to the limited vagility of these sea stars and high susceptibility to 
local selection pressures like algal blooms and disease outbreaks, 
Leptasterias can be a coastal-indicator species reflecting local envi-
ronmental health; however, proper species identification is neces-
sary to assess changing distributions, abundances, and population 
health. Assessing cryptic diversity is also important for providing 
baseline data for monitoring ecological effects of mortality events 
and other environmental perturbations, especially as these types of 
events are predicted to increase with global climate change (Harvell 
et  al.,  2004; Jurgens et  al.,  2015). For example, Sea Star Wasting 
Disease (SSWD) is a syndrome that resulted in mass mortalities in 
many Pacific Coast sea star populations and is multifactorial in cause 
(Bates et al., 2009; Eisenlord et al., 2016; Hewson et al., 2014, 2018; 
Kohl et  al.,  2016; Menge et  al.,  2016). SSWD impacts on sea star 
genera, including Pisaster and Pycnopodia, were first noted in central 
California in 2013 (Eisenlord et al., 2016). Collections for this study 
were completed in 2014, before major impacts of SSWD were evi-
dent in Leptasterias (Eberl et al., 2017; Eisenlord et al., 2016; Jaffe 
et al., 2019; MARINe, 2015).

Many lineages within the Leptasterias genus have an unresolved 
taxonomic status. In several broad-scale analyses of the Leptasterias 
genus, cryptic lineages were identified within both L.  hexactis and 
L.  aequalis using mitochondrial molecular data (Foltz et  al.,  2008; 
Hrincevich et  al.,  2000). Leptasterias hexactis is comprised of two 
distinct clades: L. hexactis C found in Washington and L. hexactis G 
found in Alaska. Leptasterias aequalis is comprised of four allopat-
ric and sympatric clades: L. aequalis B in Washington, L. aequalis A 
ranging from Washington to north of San Francisco Bay, L. aequalis 
D ranging from Washington to south of Monterey Bay, and L. aequa-
lis K ranging from Cape Mendocino to south of Monterey Bay. 
Morphological characters are challenging for identification within 
the Leptasterias genus due to high morphological variability within 
and among clades (Foltz et  al.,  1996) and potential hybridization 
(Foltz, 1997). Taxonomic uncertainty exists for L. aequalis D, which 
is also referred to as Leptasterias pusilla in some literature (Foltz 
et al., 2008). Fine-scale genetic analysis of Leptasterias will contrib-
ute to taxonomic revision and resolution in this genus.

Past studies on the broad-scale distributions of Leptasterias spp. 
do not account for the fine-scale cryptic diversity within the genus 
and previous studies addressed the need for fine-scale analysis 
(Foltz, Nguyen, Nguyen, & Kiger, 2007, 2008). Indeed, a recent study 
used one mitochondrial locus to reveal the presence of a previously 
undescribed clade, Clade Y, localized around the San Francisco Bay 
outflow (Melroy et al., 2017). Here, we investigate temporal and spa-
tial population structure using nuclear and mitochondrial sequence 
data with widespread contemporary sampling and historic museum 
sampling. Previous range estimates of Leptasterias might be incor-
rect as museum samples were historically identified based on unreli-
able morphological characters; molecular identification in this study 
could contradict early classifications. Multilocus sequence data 
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will be used to (a) clarify the phylogenetic relationship of California 
Leptasterias lineages, and (b) assess temporal and spatial patterns of 
population structure. We predict high population structure and high 
temporal stability in structure over time due to the low-dispersal po-
tential of Leptasterias.

2  | METHODS

2.1 | Sample collection and DNA extraction

Three hundred forty-five adult Leptasterias individuals were col-
lected from 17 intertidal sites on the Pacific Coast between 
December 2008 and July 2014 (Table 1, DFW Scientific Collecting 
Permit SC-12882). One ray was collected from each individual and 
individuals were collected if there was at least one meter of sepa-
ration to avoid family groups. Ray tissue was stored in 95% etha-
nol. Samples are stored at San Francisco State University. Alaskan 
samples were provided courtesy of Marnie Chapman, Sara Caldwell, 
and Sherry Tamone from the University of Alaska Southeast. Several 
tube feet from each ray sample were used for DNA extraction.

Historic samples of Leptasterias spp. collected between 1897 
and 1998 were obtained from the Invertebrate Zoology collection 
at the California Academy of Sciences or gifted from David W. Foltz 
(Louisiana State University). Whole stars were collected on the 
Pacific coast ranging from Lonesome Cove, Washington to Diablo 
Canyon, California (Table  1). Several tube feet from each sea star 
were transferred from ethanol into milli-Q water and left on a shaker 
for 2 days to remove excess ethanol prior to extraction. Sampling 
was meant to be non-destructive with minimal tissue removal and 
whole stars were placed back into the invertebrate collection upon 
tube feet removal. All DNA extractions were carried out using 
NucleoSpin Tissue Columns (Macherey-Nagel Inc), except for sam-
ples collected in 2008 from Marshall Gulch, Bodega Bay, and Mussel 
Rock, which were extracted with a phenol-chloroform extraction.

2.2 | Control region amplification

Forward primer E16Sa (Smith et al., 1993) and reverse primer Star-L 
(Flowers & Foltz,  2001) were used for amplification of 286  bp of 
the putative control region and 8 bp of the conserved 3’ end of the 
large ribosomal subunit 16S gene (henceforth referred to in entirety 
as D-Loop for simplicity). PCR reactions for contemporary samples 
had the following components: 5–500 ng DNA template, 0.2 µM of 
each primer, 1X PE II Buffer, 1 mM dNTPs, 2.5 mM MgCl₂, 1.25 µg 
BSA, 1 unit of Taq DNA polymerase (New England Biolabs, NEB) and 
milli-Q water up to 25 uL final volume. Thermal cycling conditions 
were: initial denaturation at 94°C for 120 s, 30 cycles of denatura-
tion at 94°C for 30 s, annealing at 45°C for 60 s, extension at 72°C 
for 60 s, and a final extension at 72°C for 300 s. If amplification in 
historic samples was not successful after 30 cycles, a new reaction 
was amplified using 35 cycles.

2.3 | COI amplification

Primers were designed for this study from published mitochondrial 
cytochrome oxidase subunit I (COI) sequences of L. aequalis and L. hex-
actis (Foltz et al., 2008; Hrincevich et al., 2000). Forward primer COILF, 
5′ GCA-GGA-TTT-ACC-CAC-TGA-TTT-C 3′ and reverse primer COILR, 
5′CCT-GGC-TTC-ACA-GGC-AGA-T 3′ amplified 378 bp of COI, 68 bp 
of tRNA-Arg, and 90 bp of ND4L genes (henceforth referred to as COI 
for simplicity). PCR reactions were carried out using the same reaction 
concentrations and volumes as in D-Loop amplification. Thermal cy-
cling conditions were: initial denaturation at 96°C for 120 s, 35 cycles 
of denaturation at 94°C for 30 s, annealing at 46°C for 30 s, extension 
at 72°C for 60 s, and a final extension at 72°C for 300 s. For all historic 
samples, thermocycling conditions were run for 40 cycles.

2.4 | Intron amplification

Five Exon Primed Intron Crossing (EPIC) loci (Chenuil et  al.,  2010; 
Gérard et  al.,  2013) were screened for amplification in Leptasterias 
based on successful amplification in other echinoderm taxa: i1, i9, 
i39, i43, and i51. One EPIC locus which offered the highest resolution 
among sites and clades was chosen and optimized for population ge-
netic analyses. The i51 primer pair amplified a region in the gene group 
UDP-N-acetylglucosaminyl-transferase (Chenuil et al., 2010). Primers 
were redesigned for i51 to decrease primer degeneracy. Forward 
primer i51LF GAT-CGA-CCC-AGC-CAC-ATT and reverse primer i51LR 
TTG-AAG-CAA-CAG-GGG-AGA-AG were exclusively used to am-
plify a 277 base-pair intronic region. PCR reactions were the same 
as D-Loop and COI, but used 0.1 µM of each primer. Thermal cycling 
conditions were: initial denaturation at 96°C for 60 s, 35 cycles of de-
naturation at 94°C for 40 s, annealing at 45°C for 30 s, extension at 
72°C for 40 s, and a final extension at 72°C for 120 s.

2.5 | Sequencing reactions

Amplification of PCR templates was assessed with gel electropho-
resis using a 1.5% agarose gel stained with ethidium bromide. PCR 
products were cleaned using a SAP/EXO reaction following manu-
facturer's instructions (Affymetrix). Cycle sequencing reactions 
were carried out in the reverse direction using the 1/8 reaction 
BigDyeTerminator v3.1 (Applied Biosystems, ABI). Products were 
sequenced using an ABI 3130 genetic analyzer. Cloning was used to 
resolve and confirm a subset of alleles for i51 in heterozygous indi-
viduals using Vector System II, pGEM-T (Promega).

2.6 | Phylogenetic analysis

COI, D-Loop, and i51 sequences were edited by eye in Geneious 
v7.1.7 (Kearse et al., 2012) and aligned separately using the MUSCLE 
algorithm. The COI alignment was translated in Mesquite v3.0.4 
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TA B L E  1   Summary data for each sampling locality and year sampled

Location

Site

Lat, Long Year Region

COI D-Loop i51

Code N Nh (Pr) N
Nh 
(Pr) N

Na 
(Pr)

Contemporary 
Sites

305 73 (34) 322 59 
(45)

289 46 
(27)

Auke Bay, AK AB 58.38, −134.64 2014 Alaska 5 2 (1) 5 3 (1) 5 2 (1)

Sage Bay, AK SB 57.05, −135.34 2014 Alaska 5 1 5 2 5 5 (1)

Griffin Bay, WA GB 48.50, −123.02 2014 Washington 19 4 (4) 19 4 (4) 17 6 (2)

Twin Cove, CA TC 38.43, −123.12 2011 Northern 20 10 (6) 20 7 (5) 20 9 (2)

Marshall Gulch, 
CA

MG 38.37, −123.07 2008 Northern 14 6 (4) 14 5 (3) 6 6

Bodega Bay, CA BB 38.30, −123.06 2008 Northern 8 3 7 4 (2) 8 9 (1)

Duxbury Reef, 
CA

DR 37.89, −122.70 2014 Bay-proximal 16 2 (2) 16 2 (1) 16 4

Slide Ranch, CA SR 37.87, −122.60 2014 Bay-proximal 21 3 (2) 21 4 (3) 21 4

Muir Beach, CA MB 37.86, −122.59 2013 Bay-proximal 27 4 (1) 44 7 (4) 25 9 (4)

Rodeo Beach, CA RB 37.82, −122.53 2014 Bay-proximal 31 4 (2) 31 4 (1) 31 7 (2)

Point Bonita, CA PB 37.81, −122.53 2014 Bay-proximal 20 4 20 6 (2) 20 8 (2)

Lands End, CA LE 37.78, −122.50 2013 Bay-proximal 20 1 20 2 (1) 20 6 (3)

Mussel Rock, CA MR 37.50, −122.49 2008 Bay-proximal 20 2 (1) 20 1 19 4

Half Moon Bay, 
CA

HMB 37.18, −122.39 2011–14 Southern 7 4 (3) 8 5 (4) 8 9 (2)

Pigeon Point, CA PP 37.18, −122.39 2013–14 Southern 32 9 (1) 33 14 (8) 32 12 (3)

Point Pinos, CA PN 36.64, −121.95 2014 Southern 20 6 (2) 20 7 (3) 20 9 (4)

Carmel Point, CA CP 36.54, −121.93 2014 Southern 20 8 (5) 20 5 (3) 16 5

Historic Sites CAS ID 61 73, (7)

Crescent City, CA CC 201227 1897 6 2 (1)

Pacific Grove, CA PG 191756 1897 9 2

Pacific Grove, CA PG 108854 1909 6 1

San Simeon, CA SS 115491 1916 2 2

Bodega Head, CA BB 115521 1963 3 1

Pigeon Point, CA PP 7676 1971 3 2

Pigeon Point, CA PP 191755, 7642 1972 4 3 (1)

Franklin Point, 
CA

FP 7645 1972 1 1

Point Bonita, CA PB 115524 1973 2 1

Diablo Canyon, 
CA

DC 135003 1974 1 1

SE Farallon 
Islands, CA

FI 4826 1977 3 2 (1)

Piedras Blancas, 
CA

PE 164031, 115497 1978 4 4

Duxbury Reef, 
CA

DR 115493 1998 1 1

Lonesome Cove, 
WA

LC DF 1998 2 2

Pigeon Point, CA PP DF 1998 8 8 (4)

Franklin Point, 
CA

FP DF 1998 2 2 (1)

Note: Estimated latitude and longitude coordinates for collection sites (Lat, Long), number of samples successfully sequenced for each locus (N), 
number of haplotypes found per site (Nh), number of alleles found at each site (Na), number of singletons per site (Pr) are provided for each collection 
site and time point. Region indicates grouping used for AMOVA analysis. Site code indicates population abbreviations found in figures. CAS ID is the 
specimen identification number for the California Academy of Sciences Invertebrate Zoology Collection and DF indicates samples from David Foltz 
(Louisiana State University). Year indicates the collection date.
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(Maddison & Maddison, 2007) to ensure the correct reading frame 
was used and to determine base saturation and nucleotide posi-
tion changes. D-Loop and COI haplotypes were aligned to pub-
lished Leptasterias sequences for phylogenetic analyses (Table S1). 
Leptasterias camtschatica was chosen as an outgroup based on previ-
ous phylogenetic analysis identifying it as a sister group to L. hexactis 
and L. aequalis (Foltz et al., 2008). Maximum likelihood (ML) analy-
ses were performed in PAUP* v.4.0 (Swofford,  2001) for D-Loop, 
COI and i51 haplotypes. Indels were treated as both missing and 
informative in separate analyses. The automated model selection 
feature was used to choose the most appropriate nucleotide sub-
stitution model using the Akaike Information Criterion (AIC; Posada 
& Crandall, 1998). TN93 with gamma site heterogeneity (Tamura & 
Nei, 1993) was used for D-Loop and COI and HKY + G (Hasegawa 
et al., 1985) was used for i51 after phasing (see below). Bootstrap 
analyses were performed using a Jukes-Cantor neighbor-joining tree 
as the starting tree for a heuristic search with 1,000 replicates. ML 
analysis was performed on the full COI dataset, and then again on 
the dataset excluding third-position changes.

Bayesian's analysis was performed in MrBayes v.3.2 (Huelsenbeck 
& Ronquist, 2001). Metropolis-coupled Markov Chain Monte Carlo's 
(MCMCMC) methods were employed for all loci using the HKY + G 
model of nucleotide evolution. With each tree search, four paral-
lel searches were run for 2 million generations with chains sampled 
every 500 generations. Trees prior to a split frequency value of 0.01 
were discarded as the burn-in. Trees were constructed for D-Loop 
and COI separately, and constructed with D-Loop and COI concate-
nated. The PHASE (Stephens et al., 2001) algorithm in DnaSP v5.10 
(Rozas et al., 2003) was used to resolve the allelic phase for single 
nucleotide polymorphisms in i51 sequences. Allelic phase that could 
not be resolved with greater than 60% confidence were not used 
in the analysis (only one individual was excluded for less than 60% 
confidence). Only three individuals were assigned a phase with con-
fidence less than 98%. The i51 phased haplotype alignment was im-
ported into Seqstate v.1.4.1 (Müller, 2005) to code indels as simple 
characters (Simmons & Ochoterena, 2000) and complex characters 
(Müller,  2006). A phylogenetic tree was estimated in MrBayes for 
i51 using indels as both missing characters and coded as informative 
characters.

A log-likelihood value was calculated to determine whether a 
molecular clock was appropriate for the data using BEAST v1.8.2 
(Drummond et  al.,  2012), and the p-value was non-significant in-
dicating the application of a molecular clock to be appropriate. 
Divergence times were measured between concatenated historic 
and contemporary mtDNA haplotypes to estimate the time of dif-
ferentiation between previously undescribed clades within L. aequa-
lis in BEAST. Nuclear data were omitted due to low resolution. The 
TN93  + G substitution model was employed in BEAST. An uncor-
related lognormal relaxed clock with an estimated substitution rate 
was used with all tips set to zero. Leptasterias aequalis was con-
strained as monophyletic, but taxon sets within L. aequalis were not 
constrained as monophyletic. Foltz et al.,  (2008) used a molecular 
clock calibrated with the crossover of Leptasterias muelleri through 

the Bering Strait as the prior probability. The estimated divergence 
between L. hexactis and L. aequalis using the putative mitochondrial 
control region and COI was 2.56 Mya and 3.08 Mya, respectively. 
Both estimates were averaged for the combined mtDNA divergence 
time and set as the normal distribution calibration point in this study. 
Starting trees were randomly generated and the tree prior assumed 
a Yule speciation process. For each BEAST analysis, the MCMC was 
performed for 107 generations, sampling every 1,000 generations 
with a burn-in of 10%. Summary statistics were generated and vi-
sualized in Tracer v1.6.0 (Drummond et al., 2012). Maximum clade 
credibility trees with median node heights of >50% posterior prob-
abilities were calculated with TreeAnnotator v1.8.2 (Drummond 
et al., 2012) and were drawn in FigTree v1.4.0 (Rambaut, 2009). The 
analysis was run five times to confirm convergence and the com-
bined results are reported.

2.7 | Population analysis

D-Loop and COI were analyzed both separately and as a single locus 
in all analyses below. The program DnaSP was used to calculate 
standard diversity indices including haplotype diversity (h) and nu-
cleotide diversity (π1) for each population. DnaSP was used to calcu-
late Tajima's D, Fu and Li's D, and Fu and Li's F. Neutrality statistics 
were considered significant when p < 0.05 and corrected for mul-
tiple comparisons. MEGA v5.2.2 (Tamura et al., 2011) was used to 
generate mean genetic distances between and within clades for all 
loci using the TN93 model for COI and D-Loop and the HKY model 
for phased i51 haplotypes.

Arlequin v3.5 (Excoffier et  al.,  2005) was used to test for 
signatures of non-neutral evolutionary forces on all loci by cal-
culating Fu's FS neutrality statistic (considered significant when 
p < 0.05). Arlequin was used to calculate fixation indices FST and 
ΦST (significant when p < 0.05). ΦST was calculated with the TN93 
model of evolution for D-Loop and COI and HKY was used for i51. 
Population structure was examined using an Analysis of Molecular 
Variance (AMOVA) across California populations grouped into 
three regions to test for previous structure found in Leptasterias 
populations around San Francisco Bay (Melroy et al., 2017) in ad-
ditional sites and using more samples (Table  2): northern (pop-
ulations north of Point Reyes), bay-proximal (populations from 
Duxbury Reef to Mussel Rock), and southern (populations south of 
Half Moon Bay). Genetic differentiation was compared between 
(a) all three groupings (northern, southern, and bay-proximal pop-
ulations), and (b) northern and southern populations versus bay-
proximal populations. Mismatch distributions were generated in 
Arlequin and DnaSP for L. aequalis K and Clade Y samples. Other 
clades were omitted due to low sample sizes. Haplotype connec-
tions were exported from Arlequin and imported into HapStar 
v0.7 (Teacher & Griffiths, 2011) to build a minimum spanning net-
work for all loci. Haplotype maps and haplotype network for i51 
were constructed using indels as both informative and uninforma-
tive characters.
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3  | RESULTS

Historic samples amplified preferentially at COI but were often un-
successful for amplification of D-Loop or i51 (Table S2), therefore, 
historic population analysis uses only COI sequence data. Of 367 
total COI sequences, 305 sea stars were collected between 2008 
and 2014, and 61 sea stars were collected between 1897 and 1998 
(Table 1). A 536 base-pair region of COI showed 85 variable sites, 
60 of which were parsimony-informative. Seventy-three haplotypes 
were identified, 34 of which were private haplotypes in contem-
porary samples and seven of which were private haplotypes found 
only in historic samples. A 297 base-pair region of D-Loop ampli-
fied in 322 individuals showed 48 variable sites, 40 of which were 
parsimony-informative. There were 59 haplotypes of the amplified 
D-Loop region and six indels within the region. Of the 59 total hap-
lotypes, 45 were private. There were 55 variable sites within the 
197 base-pair intron region of i51, 15 of which were parsimony-
informative. There were a total of 46 i51 alleles and 27 of the al-
leles were private. Alleles consisted of 10 polymorphic sites and two 
indels. One indel consisted of a 13 base-pair sequence repeat with 
alleles having between one and seven perfect repeats.

3.1 | Phylogenetic analysis of contemporary and 
historical samples

The first 378 bases of the COI locus were used to calculate base 
position changes for only COI (omitting N4DL and tRNA-Arg); this 
region included 56 total variable sites: 14 first-position changes, 
4  s-position changes, and 38 third-position changes. When ML 
analyses were performed excluding third-position changes for COI 
sequences overall topology was unchanged, though nodal support 
values increased slightly. Phylogenetic trees built with D-Loop and 
COI separately had the same topology regardless of the method 
used to estimate the tree. Therefore, loci were concatenated for fur-
ther phylogenetic analyses (Figure 1).

The concatenated haplotype phylogeny resolved six monophy-
letic clades with high statistical nodal support with the exception of 
four haplotypes, which are referred to as “Group 1” (Figure 1). The 
tree resolved all L. aequalis clades previously characterized by Foltz 
et al., (1996), Foltz et al., (2008): L. aequalis K, D, A, and B. We con-
firmed the presence of a monophyletic undescribed clade, Clade Y 
(Coleman et al., 2009; Melroy et al., 2017; Smith & Cohen, 2013), 
and uncovered an additional monophyletic undescribed clade, here 
termed Clade Z.

Genetic distances were calculated for concatenated D-Loop and 
COI using the TN93 + G model (Table 2). Two main groups emerged 
from phylogenetic analysis: Grouping (A) L.  aequalis B, L.  aequalis 
K, and Group 1, and Grouping (B) L. aequalis D, L. aequalis A, Clade 
Y, and Clade Z. Genetic distances of clades within the two group-
ings ranged from 0.9%–2.0% within the first group and 1.3%–2.0% 
within Grouping B. Genetic distance ranged from 2.4%–2.9% be-
tween clades within the two groups. Intra-clade genetic distances TA
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F I G U R E  1   Maximum Likelihood 
tree for concatenated D-Loop and COI 
mtDNA haplotypes of Leptasterias. Circles 
represent nodal support: right side 
shading represents bootstrap values of 70 
or greater and left side shading represents 
Bayesian Posterior Probabilities of 95% 
or greater. Colors indicate groupings 
of haplotypes into clades. Reference 
sequences for L. aequalis clades D, K, A, 
and B and L. hexactis were obtained from 
GenBank
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ranged from 0.10%–1.30%, with a mean genetic distance of 0.70%. 
Leptasterias aequalis K had the highest within-clade genetic distance 
(1.30%). Mean inter-clade genetic distance was higher (1.97%) with 
a range of 0.9%–2.9%.

Bayesian reconstruction in BEAST resulted in a tree with over-
all similar topology to that of Figure 1. The estimated mean rate of 
evolution for mtDNA was 0.0135 ± 0.0001 substitutions/site/My. 
Divergence times were estimated between clades and time to most 
recent common ancestor (TMRCA) was estimated within each clade 
(Figure 2). All effective sample sizes were over 1,000 with the ex-
ception of the split between L. aequalis A and Clade Z (nESS = 949), 
TMRCA for Clade Y (nESS = 517) and TMRCA for Clade Z (nESS = 987). 
The two main groupings of lineages (A and B) were estimated to have 
diverged between 1.74 and 1.25 Mya.

ML and Bayesian analysis of i51 alleles produced trees with the 
same topology. Samples obtained from Alaska populations, alleles 
CC, G, and SS, were used as outgroup sequences, as these sam-
ples were identified as L. hexactis through D-Loop and COI barcod-
ing. Alleles within L.  aequalis were not phylogenetically resolved 
(Figure S1). The topology of the i51 phylogeny was unchanged when 
the 13 base-pair repeat indel was used as informative. The i51 phy-
logenetic tree showed low resolution and did not further resolve the 
relationships within lineages of the putative L. aequalis complex.

3.2 | Population genetic analysis

Analysis of Leptasterias populations revealed 59 D-Loop haplotypes 
and 46 i51 alleles across 17 sites and 73 COI haplotypes across 
33 sampling sites and times. Mitochondrial haplotypes revealed a 
strong contemporary geographic pattern in which there were shared 
haplotypes proximal to the bay bracketed by distinct, shared haplo-
types north and south of the bay (Figure S2). When mitochondrial 
haplotypes were delineated into clades, a genetic disconnect was 
confirmed with Clade Y found as bay-associated, bracketed by dis-
tinct populations made up predominantly of L.  aequalis K (Melroy 
et al., 2017; Smith & Cohen, 2013; Figure 3a). Clade Z was also found 
as bay-proximal. Northern and southern populations were com-
prised of haplotypes that resolved into L. aequalis K and L. aequalis B. 
Leptasterias aequalis D was found in all regions. Leptasterias aequalis 
K and Clade Y were the most abundant clades found in the contem-
porary samples. Alaska population haplotypes were delineated as 
L. hexactis, and the Washington population comprised of haplotypes 
delineated as L. aequalis B and L. aequalis A. There were high num-
bers of private haplotypes for mtDNA and fewer private alleles for 
nuclear DNA (Table  1, Figure  S2). The haplotype map for nuclear 
DNA revealed patterns in which high-frequency haplotypes were 
abundant at central sites and present in almost all sites, revealing 
shared alleles between populations (Figure S2).

The mtDNA minimum spanning network revealed many low-
frequency haplotypes separated by a large number of mutations 
(Figure 4). Haplotypes in Clade Y showed a more typical pattern of 
one high-frequency haplotype with many low-frequency haplotypes 

separated by one or two mutations. Leptasterias aequalis K was com-
prised of haplotypes found both north and south of San Francisco 
Bay, while Clade Y was comprised almost completely of haplo-
types that were bay-proximal. The i51 minimum spanning network 
(Figure  4) revealed four common alleles with other low-frequency 
alleles separated by one or two mutations. Indels were included in 
the minimum spanning network and resulted in many mutations sep-
arating each cluster of alleles. When indels were excluded from the 
minimum spanning tree, alleles were separated by fewer mutations; 
however, a geographic pattern was still not evident (Figure S3).

Haplotype diversity for all populations ranged from 0.0 to 0.95 
for mtDNA and 0.10 to 0.87 for i51 (Table 3). The lowest haplotype 
diversity values for both mitochondrial and nuclear loci were mea-
sured at sites with predominant Clade Y abundance, whereas, the 
highest haplotype diversities occurred at sites with high abundances 
of L. aequalis K. Nucleotide diversity at all sites ranged from 0.00 to 
0.025 for mtDNA and 0.0004 to 0.010 for i51 (Table 3).

Leptasterias spp. pairwise comparisons (FST and ΦST) for contempo-
rary samples revealed significant population structure between most 
localities (Table S3). All but four mtDNA FST and ΦST values showed 
significant population differentiation for California sites. The only pop-
ulations without significant differentiation were northern sites: Twin 
Cove and Marshall Gulch, and bay-proximal sites: Rodeo Beach and 
Mussel Rock, Rodeo Beach and Lands End, and Lands End and Mussel 
Rock. Pairwise comparison values of mitochondrial and nuclear hap-
lotypes between northern and southern sites were low, indicating ge-
netic similarity. The AMOVA analysis for mtDNA and i51 reflected the 
genetic similarity between populations north of San Francisco Bay and 
south of San Francisco Bay. In both analyses, the predominant varia-
tion accounted for between-group variation (Table S4) when northern 
and southern populations were grouped together and compared with 
central populations. High within-population variation indicates the 
presence of sympatric clades.

Significant negative Tajima's D, Fu's Fs, Fu and Li's Fs, and Fu, 
and Li's D statistics were calculated at Lands End, Muir Beach, and 
Mussel Rock across both mitochondrial and nuclear loci (Table  3). 
Mismatch distributions of mtDNA haplotypes for L. aequalis K and 
Clade Y did not differ significantly from the unimodal curves ex-
pected for a sudden demographic expansion or for a rapid spatial ex-
pansion (Figure 5). The raggedness index values were not significant 
for either clade and a hypothesis of sudden expansion could not be 
rejected (Table S5). Clade Y showed a steep peak in the distribution, 
consistent with a recent bottleneck or expansion event. The L. aequa-
lis K distribution was slightly more ragged, but still consistent with 
a demographic expansion. While the unimodal distributions of both 
clades indicate recent population expansion, both expansion events 
and selective processes can result in a distribution of low diversity.

3.3 | Historic samples

Historic samples successfully amplified at COI, however, successful 
amplification of D-Loop or i51 was variable. COI haplotypes (from 
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historic and contemporary samples) were used to build ML and 
Bayesian phylogenetic trees (not shown; the topology of supported 
branches did not differ from the concatenated mtDNA tree). Two 
dominant haplotypes resolved into Clades Z and Y, respectively, 
which were historically widespread (Figure  3), in contrast to con-
temporary samples, where these two dominant haplotypes were 
only found in bay-proximal populations (with the exception of one 
individual at Pigeon Point). Historical sampling revealed two clades, 
Clades Z and Y, as more widespread and abundant than indicated by 
contemporary sampling. Historic samples showed Clade Z was once 
found across 800 km of coastline from Crescent City, CA to Diablo 
Canyon, CA and Clade Y was found across 750 km of coastline from 
Crescent City, CA to Piedras Blancas, CA (Figure 6). In contemporary 
samples, Clade Y was found at sites across 100 km of coastline with 
one individual found at Pigeon Point as the southern range limit. 
Clade Z was less abundant in contemporary samples, found only at 
Slide and Rodeo Beach, two sites separated by 8 km. Both clades 
were only found localized around San Francisco Bay in contempo-
rary samples. One Clade Y individual (out of six total) was found in 
Pacific Grove in 1897. In 1909, all six individuals sampled in Pacific 
Grove were Clade Y. In 2014, zero Clade Y individuals were found in 

Pacific Grove. At Pigeon Point, one, one, and four individuals were 
found in 1971, 1972, and 1998, respectively. In 2014, one Clade Y 
individual was found at Pigeon Point with a more robust sampling 
scheme of 32 individuals. Leptasterias aequalis K was the most abun-
dant clade at both Pigeon Point and Pacific Grove in contemporary 
samples.

4  | DISCUSSION

4.1 | Divergence times and phylogenetics

COI coupled with D-Loop offered higher resolution of lineages 
within the Leptasterias genus than analysis using D-Loop alone 
(Melroy et al., 2017) and revealed the presence of two potential spe-
cies complexes historically grouped into one. Previously, L. aequalis D 
has been interchangeably referred to as L. pusilla (Foltz et al., 2008), 
implying the phylogenetic grouping found in this study of L. aequalis 
D, L. aequalis A, Clade Y, and Clade Z makes up a nominal species 
complex of L. pusilla that is separate from the L. aequalis complex. 
Genetic distances between the two potential species complexes 

F I G U R E  2   BEAST consensus tree for Leptasterias concatenated D-Loop and COI mtDNA haplotypes constructed with Bayesian MCMC 
analysis (Drummond et al., 2012). Leptasterias camtshatica was included as the outgroup sister taxon. The L. hexactis and L. aequalis split, 
marked with a red asterisk, was estimated by Foltz et al., (2008) and used for calibration. Reference sequences were included from GenBank 
(see text for accession numbers). Black circles represent Bayesian Posterior Probability nodal support of 95% or greater. Estimates of 
divergence times are shown in millions of years and numbers in parentheses are 95% highest posterior density intervals. The scale bar shows 
the expected number of substitutions per site and the bottom grid axis represents time in millions of years with 0.0 as present day. Colors 
represent clades and are consistent with colors from Figure 1. Time to most recent common ancestor (TMRCA) is shown for each clade

1.01.5

0.3

2.02.5 0.5 0.0
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(0.9%–2.9%, with a 1.97% mean genetic distance) are comparable 
to differences found in other divergent, brooding asteroid lineages 
(1.1%–4.3%, Hart et al., 2003). While genetic distances do not alone 
support the separation of clades into distinct species, additional loci 
and behavioral, morphological, or physiological analyses will help 
to resolve the relationship of lineages within the Leptasterias genus 
(e.g., Shaw & Cohen, 2015; Gong et al., 2019; Jaffe, 2020; Johnson 
et al., 2018; Johnson, 2020; Rupert, 2020).

The nuclear intron locus showed lower levels of variation than 
mitochondrial loci and did not resolve the putative L. aequalis into 
monophyletic lineages. Introns tend to accumulate mutations at a 
higher rate than exons and have a slower time to coalescence than 
mitochondrial loci (Hung et al., 2016), however, i51 is a short intron 
and might be experiencing genetic hitchhiking through selection on 
the exons. Hitchhiking would result in reduced observed variability 

compared with expected variability. The nuclear tree showed a star-
burst pattern, which could indicate recent speciation with shared 
ancestral polymorphisms or recurrent gene flow, however, it is chal-
lenging to draw conclusions using only this small locus.

Using mitochondrial data, divergence time between Leptasterias 
clades L.  pusilla and L.  aequalis was estimated to have occurred 
1.74 Mya. TMRCA of Leptasterias spp. clades ranged from 0.15 to 
1.74  Mya, suggestive of a recent species radiation event. Given 
these divergence times, Leptasterias clades were likely geographi-
cally and genetically isolated due to range fragmentation caused by 
glaciation events and sea-level changes during the Pleistocene (Foltz 
et  al.,  2008). Following isolation in the Pleistocene, range expan-
sion in the Holocene likely occurred, as seen in other taxa (Dawson 
et  al.,  2011; Ellingson & Krug,  2006; Hellberg et  al.,  2001; Jacobs 
et al., 2004; Marko, 1998). While Pleistocene glaciations may have 

F I G U R E  3   Clade frequencies 
of Leptasterias populations for (a) 
contemporary samples from central 
California to Alaska, and (b) historic 
samples collected in California. Colors 
represent clades and correspond to those 
found in Figure 1. Letters represent 
sample site, see Table 1, (n = sample size), 
numbers above the circles represent 
the collection year, and circle size is 
representative of sample size

(a)

(b)
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driven speciation in Leptasterias, additional neutral and adaptive pro-
cesses of divergence likely contributed to the maintenance of diver-
gence and population structure.

4.2 | Patterns of population structure

A previous study by Je Lee and Boulding (2009) found higher levels 
of temporal genetic stability for brooding littorinid gastropods than 
planktonic-dispersing littorinids in British Columbia. However, this 
sea star study found seemingly low levels of temporal stability and 
high genetic turnover in a relatively short time period, 117 years, for 
low-dispersing stars along the California coastline. Historic sampling 
revealed a widespread range of Clade Y and Clade Z, while contem-
porary sampling revealed restricted and localized ranges of both 
clades around the San Francisco Bay.

The dramatic shift in population structure for two clades over 
117  years brings into question the processes that are maintaining 
divergence and driving genetic distribution of populations along 
the California coastline. The contemporary distribution of Clade 
Y around San Francisco Bay cannot be attributed to the formation 
of San Francisco Bay approximately 10,000  years ago (Atwater 
et al., 1977; Axelrod, 1981), as the speciation event of Clade Y pre-
dates the bay formation. While stochastic events such as variable 
hydrodynamic processes can affect low-dispersing organisms, pat-
terns of contemporary clade distribution might be more specifically 
explained by several mechanisms, including: (a) colonization events 

during the San Francisco bay formation, (b) ocean circulation and 
transport processes, (c) local adaptation of Clade Y to bay effluent 
conditions, or (d) competitive success of L. aequalis K.

4.2.1 | Colonization events during the San Francisco 
bay formation

The historically widespread and abundant Clade Y or Clade Z haplo-
types could represent a source of founders colonizing the bay area. 
It is possible Clade Y individuals inhabited the area that eventually 
formed San Francisco Bay and colonized coastal areas around the 
bay following formation, resulting in their current localized distribu-
tion. Colonization events are supported by negative neutrality sta-
tistics and low haplotype diversities at Clade Y sites, as seen in other 
taxa experiencing genetic bottlenecks and reduced diversity associ-
ated with colonization (Marko, 1998; Hess et al., 2011) Concurrently, 
the unimodal mismatch curve for Clade Y suggested a recent popu-
lation expansion and could reflect expansion around San Francisco 
Bay.

4.2.2 | Ocean circulation and transport processes

Leptasterias lack a planktonic dispersal stage, however, they can be 
considered epi-planktonic through long-distance dispersal on algal 
rafts (Highsmith, 1985). While these events are likely infrequent, 

F I G U R E  4   Haplotype network for concatenated D-Loop and COI mtDNA haplotypes (middle) and nuclear i51 haplotypes with indels as 
informative characters (right). Circles represent haplotypes and circle size represents the frequency of haplotypes. Black circles represent 
missing haplotypes. Colors indicate population regions corresponding to the map (left). Grey shading represents clade delineation of 
haplotypes from phylogenetic analysis
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when they do occur, rafters could be affected by ocean circula-
tion processes much as planktonic dispersers are. The central CA 
region of coastline in this study has two potential physical barri-
ers to dispersal for rafting organisms: San Francisco Bay and Point 
Reyes.

Estuarine outflow from San Francisco Bay is a potential bar-
rier to dispersal due to uninhabitable effluent conditions. Young or 
adults on rafts might experience mortality due to conditions asso-
ciated with San Francisco Bay effluent: low salinity, high tempera-
tures, pollutants from wastewater run-off (Conomos et al., 1985; 
Luoma & Cloern,  1982; Nichols et  al.,  1986), or even facilitated 
offshore transport. Puritz and Toonen (2011) found reduced ge-
netic diversity and connectivity in the planktonic disperser Patiria 
miniata across areas of high human impact and pollutant run-off 
in the Southern California Bight attributed to larval mortality. San 
Francisco Bay effluent could act as a similar barrier to dispersal in 
Leptasterias, though additional genetic assays of other intertidal or-
ganisms around the bay outflow would help elucidate this theory.

The Point Reyes peninsula is a prominent geographic feature in 
the range of Leptasterias. Several studies indicate Point Reyes is a bar-
rier to dispersal for other taxa: in the low-dispersing genera, Alderia 
(Ellingson & Krug,  2006), Tigriopus (Edmands,  2001), and Nucella 
(Marko,  1998), and in the high dispersing species, Mesocentrotus 
franciscanus (Moberg & Burton, 2000). Retention embayments occur 

both north and south of Point Reyes, which can retain nearshore 
waters and entrain non-local propagules (Morgan et al., 2009; Wing 
et al., 1998). These retention zones could effectively limit connectiv-
ity between southern and bay-proximal Leptasterias populations and 
populations north of Point Reyes.

The Monterey Bay region also has documented retention zones 
(Graham & Largier, 1997; Vander Woude et al., 2006) which could 
facilitate connectivity between northern populations and south-
ern populations. The California current is southward driven during 
upwelling months (Checkley & Barth,  2009; Huyer,  1983; Largier 
et al., 1993) and water entrained in the Point Reyes eddy will even-
tually move offshore or south to Monterey (Rosenfeld et al., 1994; 
Steger et al., 2000). Oceanic current conditions along the coastline 
provide a potential for water transport north to south, which could 
connect northern and southern populations while reducing move-
ment of water toward the San Francisco Bay gateway.

4.2.3 | Local adaptation of Clade Y to bay 
effluent conditions

Rather than divergence due to neutral processes, Leptasterias di-
vergence could be the result of adaptive processes. Interestingly, 
Leptasterias patterns of clade distributions appear to coincide with 
regions of upwelling exposure in central California. Clade Y might be 
locally adapted to warm, low salinity conditions from San Francisco 
effluent affecting local coastal areas (Melroy et al., 2017; Smith & 
Cohen, 2013).

Intense upwelling zones span from Point Arena to Cape Mendocino 
(Bakun,  1990; Huyer & Kosro,  1987), and occur near Año Nuevo 
(Rosenfeld et al., 1994). Leptasterias aequalis K and L. aequalis B occur 
at upwelling exposed regions north of Point Reyes and south of Half-
Moon Bay (Figure 6). Bay-proximal populations are exposed to the 
warm, low salinity effluent from San Francisco Bay. Low haplotype 
diversities and negative neutrality statistics at the mitochondrial and 
nuclear loci used in this study could reflect selection upon other genes 
favoring Clade Y individuals at bay-proximal sites. Adaptive diver-
gence is consistent with expectations of brooders that lack a highly 
dispersive life stage (reviewed by Sanford & Kelly, 2011; Sotka, 2012; 
Strathmann,  1986). While the genetic break of Leptasterias clades 
around the bay area appears to be upwelling associated, other factors 
associated with estuarine effluent may be causing further differenti-
ation of Clade Y. Behavioral assays assessing the tolerance of clades 
to variable temperature and salinity conditions are an area of ongoing 
investigation (Contreras & Cohen, 2014; Shaw & Cohen, 2015, Braun 
et al., 2016; Rupert, 2020), though are made difficult due to population 
declines from SSWD, discussed below.

4.2.4 | Competitive success of L. aequalis K

Competition between clades could be another viable hypothesis 
for the distribution of Leptasterias clades in the central California 

F I G U R E  5   Mismatch distribution of pairwise distances 
among concatenated D-Loop and COI mtDNA haplotypes for (a) 
Leptasterias spp. Clade Y haplotypes (Harpening's raggedness value 
r = 0, p-value = 1), and (b) L. aequalis K haplotypes (Harpening's 
raggedness value r = 0.15, p-value = 0.41) compared to expected 
frequencies (calculated in DnaSP v5.10 and Arlequin v3.5)

Clade Y

(b) L. aequalis K 

(a)
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region. Leptasterias aequalis K could outcompete Clade Y except at 
bay-proximal sites where Clade Y is locally adapted. While historic 
sample sizes are low, the presence of L. aequalis K was detected in 
only four populations between 1977 and 1998 (and not detected in 
any before 1977). In comparison, L. aequalis K was the second most 
abundant clade in contemporary samples. It is possible that L. aequa-
lis K has increased in abundance at sites that are not bay-proximal, 
but were once presumably dominated by Clades Z or Y. Low sam-
ple sizes of historic collections make this hypothesis difficult to test, 
though physiological assays could reveal differences in clade toler-
ances to local conditions.

4.3 | Conclusions

Pleistocene dated divergence times for Leptasterias clades suggest 
glacial cycles contributed to reproductive isolation. Phylogenetic 
analysis and genetic distances indicate the presence of two distinct 
species complexes. Historic genetic sampling revealed Clades Y and 
Z as previously widespread and abundant along the California coast-
line, while contemporary sampling revealed these clades as bay-
localized. Both selection and demographic events can result in low 
haplotype diversities, negative neutrality statistics, and unimodal 
mismatch distributions; the maintenance of divergence between 
Leptasterias clades might be due to both neutral and adaptive pro-
cesses of divergence.

Findings by Je Lee and Boulding (2009) led us to predict high 
temporal stability for the low-dispersing Leptasterias, largely at-
tributed to low juvenile mortality between generations. Instead, 
high levels of population structure on a spatial scale (over 1,500 km 
of Pacific coastline) and high genetic variability on a temporal 
scale (117 years) were observed. Another study also reported high 
temporal variability for brooding lineages of Pygospio elegans, in-
dicating patterns may vary across taxa and across time periods 
(Kesäniemi et al., 2014). There are likely several factors contrib-
uting to the contradictions of our temporal prediction including 
stochastic processes affecting rafting organisms and mass mor-
tality events. Low-dispersers have low effective population sizes 
and are vulnerable to extinction and colonization events. These 
types of demographic events could cause high temporal variability 
depending upon the timescale of each.

Mass mortality events have the ability to dramatically alter 
the distribution and composition of clades at local sites, especially 
for brooding organisms. There are many examples of population 
density variation over short timescales in echinoderms through 
mass die-offs and sharp population increases (Uthicke et al., 2009). 
Indeed, in just the timescale of sample collection for this study be-
tween 2008 and 2014, several such die-offs of Leptasterias were 
observed at local sites. In 2010–11, Leptasterias disappeared from 
Mussel Rock, a sampling site where they were previously abundant, 
and where they have since not been found as of October 2020 (Jaffe 
et al., 2019; pers. obs., M. Duncan, M. Kelley, B. Huey). A harmful 

F I G U R E  6   Frequency clade map for Leptasterias spp. between 1897 and 2014. Clades were delineated from COI haplotypes. Letters 
represent site code, size of circles represent sample size (see Table 1) and colors represent clade delineation (see Figure 1)
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algal bloom was the attributed cause of mortality for Leptasterias 
populations along the Sonoma coast in 2011 (Jurgens et al., 2015). 
Beginning in 2013, SSWD, putatively attributed to a densovirus, 
caused massive population declines in Leptasterias and many other 
sea star genera (Harvell et al., 2019; Hewson et al., 2014, but see 
Hewson et al., 2018; Hewson et al., 2019; MARINe, 2015; Miner 
et al., 2018; Menge et al., 2016; Jaffe et al., 2019) and allele fre-
quency shifts in Pisaster ochraceus (Schiebelhut et  al., 2018). The 
frequency of these documented events over 10  years suggests 
local extinction events might have been common in the evolu-
tionary history of Leptasterias as they have been for other echino-
derms (Uthicke et al., 2009). The decline in abundance and range 
of Clades Y and Z illustrate brooding species’ susceptibility to vari-
ation in population density. This study provides a record of popu-
lation structure in Leptasterias sea stars over 117 years along the 
California coastline and can be used to understand changing popu-
lation dynamics caused by large-scale mortality events.

Range shifts of native species have the potential to heavily im-
pact community structure and function in regions experiencing ex-
pansions (Sorte et  al., 2010) and poleward range shifts have been 
documented in many invertebrate species (Lonhart et  al.,  2019; 
Sanford et  al.,  2019; Sorte et  al.,  2010). We cannot rule out cli-
mate change as a potential factor in the range shifts found in this 
study. Leptasterias function as important predators in the inter-
tidal environment by preying upon snails, limpets, barnacles, and 
juvenile mussels. Changes in population abundance of Leptasterias 
could impact standing algal stocks by indirectly affecting grazing 
by herbivores (Gravem & Morgan, 2019). Long-term changes in up-
welling processes associated with climate change such as stronger 
upwelling-favorable winds, colder water, and a higher frequency of 
upwelling occurrences (García-Reyes & Largier, 2010) have the po-
tential to impact selective and demographic forces that can lead to 
further shifts in population dynamics.

Historic genetic sampling has important implications in con-
servation management practices through monitoring population 
genetic diversity and interpreting environmental influences on di-
versity (Fenderson et al., 2020; Nielsen & Hansen, 2008). We found 
dramatic change in a genus of sea stars over a relatively short time 
span on the California coastline and we suggest several mechanisms 
for how the environmental landscape has shaped the recent evo-
lutionary history of a low-dispersing sea star. We recommend fur-
ther studies to understand the species delineation within this genus 
through morphological and physiological analysis. Additional moni-
toring of genetic diversity over time following sea star wasting dis-
ease, paired with this dataset, would be a valuable look at changing 
genetic diversity caused by mass mortality events.
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