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Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X

syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice.

Normalization of APP levels in Fmr1KO mice (Fmr1KO/APPHET mice) rescues many

disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for

FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP

levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO/APPHET slices exhibit complete

rescue of UP states in a neocortical hyperexcitability model and reduced duration of

ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays

a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in

neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular

circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and

under-expression of APP in the context of the Fmr1KO increases seizure propensity

suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by

mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in

relation to novel treatment approaches to restore APP homeostasis in FXS.

Keywords: amyloid-beta, amyloid-beta precursor protein, fragile X mental retardation protein, fragile X syndrome,

hyperexcitability

INTRODUCTION

Amyloid-beta protein precursor (APP) levels are dysregulated in numerous neurological disorders
that are comorbid with a seizure phenotype including fragile X syndrome (FXS) (Westmark, 2013).
FXS is a trinucleotide repeat disorder caused by a CGG repeat expansion at the 5′-end of the
FMR1 gene. Hypermethylation of the repeat expansion results in transcriptional silencing of the
FMR1 gene and loss of expression of fragile X mental retardation protein (FMRP) (Jin andWarren,
2000). FMRP is an RNA binding protein (RBP) that plays a pivotal role in synaptic function. It
is one of numerous RBP that interact with amyloid precursor protein (App) mRNA to regulate
post-transcriptional and/or translational events involved in the synthesis of APP (Westmark and
Malter, 2012). Specifically, FMRP binds to a guanine-rich region in the coding region ofAppmRNA
and regulates APP translation through a metabotropic glutamate receptor 5 (mGluR5)-dependent
pathway (Westmark and Malter, 2007). We hypothesize that altered expression of APP in FXS
contributes to disease severity. In support of this hypothesis, genetic knockout of one App allele in
Fmr1KO mice (Fmr1KO/APPHET mice) reduces APP expression in the Fmr1KO to wild type (WT)
levels and rescues audiogenic-induced seizures (AGS), the percentage of mature spines, open field
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and marble burying behavioral phenotypes, and mGluR-LTD
(Westmark et al., 2011). APP and metabolite levels are altered
in Fmr1KO mice and FXS patients (Sokol et al., 2006; Westmark
et al., 2011; Erickson et al., 2014; Pasciuto et al., 2015; Ray et al.,
2016). Thus, APP is a potential therapeutic target as well as blood-
based biomarker for FXS (Berry-Kravis et al., 2013; Westmark
et al., 2016), and it is of interest to determine the effect(s) of APP
levels on additional disease phenotypes. Herein, we ascertain the
effects of App knockdown on hyperexcitability in the Fmr1KO

mouse.

GENETIC REDUCTION OF APP RESCUES
HYPEREXCITABILITY IN Fmr1KO MICE

The psychiatric phenotype of FXS includes hyperexcitability
traits such as tactile defensiveness, attention deficits,
hyperactivity, and hyperarousal to sensory stimulation
(Tranfaglia, 2011). There is high comorbidity of epilepsy in
FXS with electroencephalogram (EEG) patterns most often
consisting of a centrotemporal spike pattern resembling Benign
Focal Epilepsy of Childhood (BFEC) (Berry-Kravis, 2002).
Hyperexcitability can be modeled in the Fmr1KO mice both in
vivo and in vitro (brain slices). In vivo, the Fmr1KO mice are
susceptible to AGS (Chen and Toth, 2001). In the AGS model,
mice are exposed to 110 dB siren, which elicits out-of-control
(wild) running and jumping followed by convulsive seizures
and often death. There is substantial evidence that dysregulated
APP expression alters seizure propensity. AGS are exacerbated
by overexpression of APP in the Fmr1KO mouse (FRAXAD
mice) and partially rescued by reduced expression of APP in
Fmr1KO/APPHET mice (Westmark et al., 2010, 2011). Alzheimer’s
disease (Tg2576) and Down syndrome (Ts65Dn) mice, which
overexpress human and mouse APP respectively, are highly
susceptible to AGS (Westmark et al., 2010). Numerous mouse
models that express altered APP or metabolite levels exhibit
elevated rates of spontaneous or provoked seizures (Moechars
et al., 1996; Steinbach et al., 1998; Del Vecchio et al., 2004;
Lalonde et al., 2005; Palop et al., 2007; Kobayashi et al., 2008;
Westmark et al., 2008; Minkeviciene et al., 2009; Ziyatdinova
et al., 2011; Sanchez et al., 2012) while suppression of transgenic
APP in Alzheimer’s disease mice during postnatal development
delays the onset of EEG abnormalities (Born et al., 2014).

In brain slices, hyperexcitability can be measured by
recording UP states and epileptiform discharges. UP states
are short periods of local network activity that generate a
steady-state level of depolarization and synchronous firing
among groups of neighboring neurons (Gibson et al., 2008).
Fmr1KO mice exhibit an increased duration of the UP state,
consistent with network hyperexcitability (Gibson et al., 2008;
Goncalves et al., 2013). Specifically, spontaneously occurring
UP states are 38-67% longer in Fmr1KO than in WT slices
(Hays et al., 2011). Deletion of Fmr1 selectively in excitatory
neurons mimics the prolonged UP states whereas knockdown
of mGluR5 rescues the hyperexcitability in the Fmr1KO with
no effect in WT (Hays et al., 2011). To determine if
hyperexcitability was rescued in Fmr1KO mice by knockdown

of App, we recorded UP states in Fmr1KO/AppHET mice and
littermate controls per previously described methods (Gibson
et al., 2008). Briefly, Fmr1HET/AppHET females were bred
with AppHET males to generate WT, Fmr1KO, AppHET and
Fmr1KO/AppHET male littermates. Thalamocortical slices (400
µm) from postnatal day 24–28 (P24-P28) males were transected
parallel to the pia mater to remove the thalamus and midbrain,
and spontaneously generated UP states were recorded in layer
4 of the somatosensory cortex. The increased duration of the
UP states observed in the Fmr1KO was completely rescued in
Fmr1KO/APPHET mice (Figures 1A,B) where UP state duration
decreased from 931 ± 55 milliseconds (ms) in Fmr1KO to 597 ±
30ms in Fmr1KO/APPHET , (p< 0.001). UP state duration was not
significantly different between APPHET and WT slices suggesting
that rescue was not a consequence of a general reduction in
excitability due to lower APP levels.

FIGURE 1 | Rescue of hyperexcitability in Fmr1KO mice by genetic

manipulation of APP. Thalamocortical slices from WT (n = 17), Fmr1KO (n =

22), AppHET (n = 13), and Fmr1KO/AppHET (n = 13) male mice were

assessed for neocortical hyperexcitability. (A) Trace recordings and (B)

histogram depicting a significant increase in UP state activity in Fmr1KO slices

compared to WT, which was completely rescued in the Fmr1KO/AppHET . Error

bars represent SEM. Horizontal bars denote statistically different levels by

one-way ANOVA and Bonferroni’s multiple comparison test (P < 0.0001).

DHPG-induced prolonged epileptiform discharges were assessed in

hippocampal slices from Fmr1KO and Fmr1KO/AppHET male mice (n = 6 mice

per cohort). The recordings were continuous for 3 or more hours in a single

slice per animal. (C) Summary frequency histogram of synchronized

epileptiform discharges from Fmr1KO and Fmr1KO/AppHET slices in the

presence of DHPG (60 min) and after DHPG washout at the indicated times up

to 2 h. The mean durations of epileptiform discharges in Fmr1KO/AppHET

slices at 30, 60, 90, and 120 min after DHPG washout are significantly shorter

than those in Fmr1KO for all times tested (P < 0.001).
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Hyperexcitability can also be evaluated in slices of the CA3
region of the hippocampus in Fmr1KO mice. Prolonged epileptic
bursts can be induced by group 1 mGluR agonists in both WT
and Fmr1KO mice and with a GABAergic antagonist only in
Fmr1KO (Chuang et al., 2005; Zhong et al., 2009). In WT slices,
DHPG elicits short (∼500 ms) synchronized discharges that
gradually extend to reach an average duration of 4.4 ± 0.14 s at
60 min; and in untreated Fmr1KO slices, bicuculline elicits short
<1 ms synchronized discharges that progressively increase in
duration over 60 min (average duration 2.3 ïĆś 0.13 s) (Osterweil
et al., 2013). These prolonged epileptiform discharges resemble
the ictal discharges observed in the CA3 region in epilepsy
(Merlin and Wong, 1997; Wong et al., 2004). The number and
duration of ictal-like discharges were assessed by intracellular
CA3 recordings in juvenile Fmr1KO and Fmr1KO/AppHET slices
in the presence of DHPG (60 min) and after DHPG washout
for up to 2 h as previously described (Chuang et al., 2005)
(Figure 1C, Supplementary Figure 1). In the presence of DHPG,
a distinct population of ictal-like discharges (burst duration >

1500 ms) occurred in both Fmr1KO and Fmr1KO/AppHET slices.
After DHPG washout, the ictal-like discharges remained distinct
for the duration of the recording (up to 2 h post-DHPGwashout)
in the Fmr1KO, but not in the Fmr1KO/AppHET slices. Thus, a
major difference between Fmr1KO and Fmr1KO/AppHET slices
is that while ictal-like discharges were transiently expressed in
both genotypes, they were notmaintained in the Fmr1KO/AppHET

upon termination of receptor stimulation. The seizure activity
modeled in the hippocampal slice paradigm is congruent with
the AGS phenotype observed in Fmr1KO/AppHET mice where
wild running and seizures are attenuated but not completely
rescued to WT levels (Westmark et al., 2011). The two critical
components of plasticity include the initiating factors required
for induction of the modification and the downstream effectors
that maintain expression of the enhanced response (Bianchi et al.,
2012). Our data suggest that genetic reduction of App in the
Fmr1KO background does not prevent the induction of seizure
activity, but can attenuate progression; thus, APP appears to be
a downstream effector that maintains hyperexcitability in the
context of the Fmr1KO.

The complete rescue of hyperexcitability in the neocortex
compared to the partial rescue in the hippocampus in the
Fmr1KO/AppHET mice is in accord with studies in immature
mice demonstrating that the hippocampus has a lower seizure
threshold compared to neocortex (Abdelmalik et al., 2005). This
could be due differential expression and/or activity of group
1 mGluRs (mGluR1 and mGluR5) in the respective neurons
under study. In fast spiking inhibitory neurons (neocortical slice
model), mGluR1 is more highly expressed than mGluR5 (Sun
et al., 2009); however reduced expression of mGluR5 or APP
in the Fmr1KO completely rescues neocortical hyperexcitability
whereas UP states are still longer in the Fmr1KO after treatment
with the mGluR1 inhibitor LY367385 (Hays et al., 2011). These
data suggest that mGluR5 is the critical group 1 mGluR that
modulates Fmr1-dependent hyperexcitability in the neocortex.
Alternatively, in CA3 hippocampal neurons, both group 1
mGluR subtypes are involved in the induction and maintenance
of mGluR-mediated bursts, but mGluR5 plays a greater role in

the induction and mGluR1 in the maintenance of the prolonged
epileptic bursts (Merlin, 2002). As burst duration but not
induction are rescued in the Fmr1KO/APPHET , these data suggest
that the hyperexcitability elicited by elevated APP expression in
the Fmr1KO CA3 region is dependent on mGluR1.

Synaptic dysfunction occurs when the appropriate balance
of excitation and inhibition (E/I) in neural circuits is not
maintained (Gatto and Broadie, 2010). The absence of FMRP
during postnatal development results in an E/I imbalance
dominated by excitation. Our results demonstrate that E/I
balance is predominantly restored when APP expression is
reduced to WT levels in the Fmr1KO. Thus, APP plays a
critical role in modulating excitability. The other half of E/I
balance is the inhibitory feedback on circuits. FMRP normally
binds to multiple GABAAR mRNAs, and their expression is
decreased in juvenile Fmr1KO (Braat et al., 2015) resulting
in delay of the developmental GABA switch in Fmr1KO

(He et al., 2014). Selective deletion of Fmr1 in inhibitory
neurons has no effect on prolonged UP states suggesting
that impaired GABAAR signaling in FXS does not account
for increased hyperexcitability in the neocortex (Hays et al.,
2011). Conversely, a competitive antagonist of GABAAR,
bicuculline, elicits epileptiform discharges in the CA3 region
of the hippocampus (Osterweil et al., 2013). These findings
suggest that inhibitory feedback is differentially regulated in the
neocortex and hippocampus in Fmr1KO. Overall, the neocortical
hyperexcitability and hippocampal epileptiform discharge slice
models share the features of prolonged activity states and
dependence on mGluR5, FMRP, and APP, but differ in
induction mode (neocortical slices exhibit baseline excitation
vs. hippocampal slices require pharmacological stimulation),
inhibitory feedback (hippocampal slices are dependent of
GABAAR), and protein synthesis requirements (CA3 bursts
require extracellular signal-regulated kinase (ERK)1/2 activation
and new protein synthesis) (Zhao et al., 2004; Chuang et al., 2005;
Hays et al., 2011).

A MODEL FOR AN APP-INDUCED SHORT
CIRCUIT IN FRAGILE X

Regarding possible mechanisms for APP-mediated
hyperexcitability, (Westmark, 2013) APP or a metabolite could
interfere with cell surface receptor activation. For example, Aβ

oligomers cause redistribution of mGluR5to synapses (Renner
et al., 2010) and trigger multiple distinct signaling events through
mGluR5/prion protein complexes (Um et al., 2013; Hu et al.,
2014; Haas and Strittmatter, 2016). In neurons that overexpress
APP, Aβ depresses excitatory synaptic transmission (Kamenetz
et al., 2003). In Fmr1KO mice, Aβ levels are elevated in older
mice but reduced in juvenile mice compared to WT controls
(Westmark et al., 2011; Pasciuto et al., 2015). Thus, increased
α-secretase and/or decreased BACE1 processing during postnatal
development could result in decreased Aβ levels and increased
synaptic transmission (Jin and Warren, 2000) Altered APP
expression could affect scaffolding protein interactions at the
postsynaptic density. For example, APP co-immunoprecipitates
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with Homer2 and Homer3 (Parisiadou et al., 2008). These
scaffolding proteins inhibit APP processing, reduce cell surface
APP expression, and prevent maturation of BACE1 (Parisiadou
et al., 2008). Uncoupled Homer1-mGluR5 interactions underlie
Fmr1KO phenotypes, and genetic deletion of Homer1a rescues
prolonged UP states in Fmr1KO mice similar to the complete
rescue observed herein in the Fmr1KO/APPHET mice (Ronesi
et al., 2012). APP does not co-immunoprecipitate with Homer1
(Parisiadou et al., 2008); however, Aβ induces disassembly of
Homer1b and Shank1 clusters (Roselli et al., 2009). (Westmark
and Malter, 2012) APP or metabolites could alter the activity
of intracellular signaling pathways such as ERK and mTOR
(Young et al., 2009; Ma et al., 2010; Caccamo et al., 2011;
Chasseigneaux et al., 2011; Pasciuto et al., 2015). Both of these
pathways play pivotal roles in FXS pathology (Osterweil et al.,
2010; Hoeffer et al., 2012). And Westmark and Malter (2007)
APP metabolites could function in feedback loops to regulate the
aforementioned pathways or even the transcription of the APP
and APP processing enzymes. Aβ binds to the promoter regions
of the APP and BACE1 genes andmay function as a transcription
factor to regulate its own production and/or processing (Bailey
et al., 2011). Thus, there are numerous molecular junctures
where altered expression of APP or metabolites could interfere
with synaptic function and lead to a hyperexcitable circuit.

Overall, these data suggest a model whereby mGluR5

inhibitors act as a circuit breaker, FMRP as an automatic
transfer switch and APP as a rheostat in a circuit that controls
hyperexcitability (Figure 2). The mGluR5 circuit breaker: Genetic
reduction of mGluR5 in the Fmr1KO mouse rescues plasticity
(ocular dominance plasticity, neocortical hyperexcitability),
dendritic spines (density on cortical pyramidal neurons), protein
synthesis, behavior (inhibitory avoidance extinction), and AGS
(Dolen et al., 2007; Hays et al., 2011). Pharmaceutical inhibition
of mGluR5 likewise rescues numerous Fmr1KO phenotypes
(Michalon et al., 2012, 2014). Thus, inhibiting mGluR5 appears
to break a circuit that mediates hyperexcitability in the Fmr1KO

mouse. The FMRP automatic transfer switch: mGluR5 activation
causes a rapid dephosphorylation of FMRP, which permits
protein synthesis (Ceman et al., 2003; Narayanan et al., 2007),
as well as a biphasic change in FMRP levels (initial decrease
followed by increase) (Zhao et al., 2011). Thus, FMRP appears to
function as an automatic transfer switch downstream of mGluR5

to control protein synthesis in response to receptor activation.
In FXS models, loss of the FMRP switch that modulates mGluR5

signaling permits a constitutively-on circuit. The APP rheostat:
Born and colleagues demonstrated that juvenile overexpression
of APP contributes to sharp wave EEG discharges in APP
transgenic mice, and proposed that APP expression functions
as a rheostat that regulates synaptic balance in the brain (Born
et al., 2014). We have observed that both over- and under-
expression of APP increases seizure propensity in juvenile
Fmr1KO mice suggesting that tight regulation of this protein
may be necessary to mitigate hyperexcitability in FXS (Westmark
et al., 2010, 2011). Genetic reduction of APP in Fmr1KO mice
rescues plasticity (mGluR-LTD, neocortical hyperexcitability,
epileptiform discharge duration but not induction), dendritic
spines (percent mature spines but not dendritic spine length),

protein synthesis, behavior (open field, marble burying), and
AGS (Westmark et al., 2011; Pasciuto et al., 2015). The partial
rescue of dendritic spines and epileptiform discharges in the
Fmr1KO/APPHET suggests that APP is necessary but not sufficient
to maintain synaptic homeostasis. Thus, in the context of WT
mice, an APP variable resistor is capable of maintaining an
appropriate E/I balance, but in Fmr1KO and some APP transgenic
mice, excess APP appears to cause a short circuit through
overload of the APP rheostat resulting in hyperexcitability.
Likewise, complete loss of APP would bypass the APP rheostat.
Fmr1KO/AppKO mice exhibit an extremely strong AGS phenotype
(97%, n = 36 mice) (Westmark et al., 2013a), which is not
observed in AppKO mice (11%, n = 36 mice). These data suggest
that exacerbated hyperexcitability is a result of the combined loss
of both FMRP and APP.

APP and metabolites play key roles in regulating synaptic
activity with both Aβ and sAPPα implicated in positive feedback
loops that facilitate mGluR5 signaling (Casley et al., 2009;
Renner et al., 2010; Ferreira and Klein, 2011; Westmark et al.,
2011, 2013b; Pasciuto et al., 2015). Thus, the APP rheostat
may provide a graded response to mGluR5 activation through
feedback loops involving amyloidogenic and non-amyloidogenic
secretase processing. We found that AGS are attenuated in
Fmr1KO mice with BACE1 inhibitor treatment (Supplementary
Figure 2). Prox and colleagues found that seizures are increased
in the ADAM10 conditional knockout mouse (loss of α-
secretase processing) (Prox et al., 2013). The effect of sAPPα

overexpression on hyperexcitability, which could be studied in
TgAPPα (Bailey et al., 2013) and TgAPPα/Fmr1KO mice, remains
to be determined. Thus, multiple APP fragments may play roles
in hyperexcitability and seizure susceptibility. A caveat to this
model is that over-expression of APP alone is not sufficient
to increase seizure propensity in either WT or Fmr1KO mice.
We tested seizures in two alternative Alzheimer’s disease mouse
models, R1.40 and J20, which exhibit elevated APP expression
(Lamb et al., 1997; Mucke et al., 2000). Neither strain exhibited a
strong AGS phenotype (Supplementary Figures 3, 4) in contrast
to Tg2576 and Ts65Dn (Westmark et al., 2010). A genetic cross
of J20 with Fmr1KO mice that produced mice over-expressing
human APP in the context of the Fmr1KO background did
not result in exacerbated AGS rates in comparison to Fmr1KO

unlike the FRAXAD mice (cross of Tg2576 with Fmr1KO)
(Westmark et al., 2010). The inclusion of flanking sequences
in the transgenic constructs used for the R1.40 and J20 mice
are expected to affect posttranscriptional regulation of the APP
gene, which could alter the temporal and spatial expression
of APP and metabolites and thus their contribution to seizure
threshold. Of note, Fmr1HET/J20 female mice exhibited a 50%
wild running rate, which was significantly higher than WT,
Fmr1HET and J20 controls, supporting the assertion that APP
works in synergy with FMRP to regulate hyperexcitability
(Supplementary Figure 4). This synergistic effect is also observed
in mGluR-LTD studies where loss of FMRP and APP modulate
synaptic transmission in opposite directions (Westmark et al.,
2011). The Fmr1KO/APPHET mice used herein were a constitutive
App knockdown. It remains to be determined how conditional
knockdown ofApp during development affects Fmr1 phenotypes.
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FIGURE 2 | Model for an APP-induced short circuit in FXS. APP acts as a rheostat (i.e., variable resistor, dimmer switch) in a circuit where mGluR5 inhibitors are

a circuit breaker and FMRP is an automatic transfer switch that regulate neuronal excitability. The FMRP switch is dependent on a rapid dephosphorylation reaction in

response to mGluR5 activation. In the absence of FMRP, the circuit is constitutively on. In the presence of mGluR5 inhibitors, the circuit is shut down. The downstream

APP circuitry appears to be wired differently dependent on brain region. In the neocortex, knockdown of individual proteins including mGluR5, Homer and APP

completely rescues excitability levels suggesting that these components are arranged in a parallel circuit whereby there is more than one continuous signaling pathway

between mGluR5 activation and excitability output. Rescue of any one of the parallel components is sufficient to restore synaptic homeostasis. In the hippocampus,

ictal burst duration, but not induction, is rescued in Fmr1KO/AppHET slices in response to DHPG treatment. This incomplete rescue suggests that APP and FMRP are

wired in series downstream of mGluR5, and that the APP rheostat is overloaded in the absence of FMRP resulting in a short circuit. This model has important

implications for therapeutic development and suggests that APP should be considered as a drug target for FXS as part of a multi-drug therapeutic strategy.

RELEVANCE TO THERAPEUTIC
DEVELOPMENT

All major Fmr1KO phenotypes can be corrected by inhibition
or knockdown of mGluR5 in mice; however, neural circuitry is
likely more complicated in humans and it may be necessary to
employ pharmaceutical cocktails for disease treatment. Drugs
under study for FXS such as acamprosate, AFQ056, donepezil,
ganaxolone, lithium, lovastatin, memantine, minocycline
and sertraline exhibit on- and/or off-site effects that are
expected to modulate APP, Aβ, BACE1, and/or ADAM10
(Westmark et al., 2013b). Targeting APP and metabolites in
FXS may allow fine tuning of excitability levels as part of a
multi-drug therapeutic approach. Both amyloidogenic and
non-amyloidogenic therapies have been proposed to treat
FXS (Westmark et al., 2013b; Pasciuto et al., 2015). Both
amyloidogenic (Aβ1−42) and non-amyloidogenic (sAPPα)
metabolites of APP stimulate phosphorylation of ERK and
modulate synthesis of multiple synaptic proteins predicted

to be regulated through mGluR5/FMRP and to contribute to
altered synaptic plasticity (Westmark et al., 2011; Pasciuto et al.,
2015). Thus, it may be necessary to simultaneously modulate
both α- and β-secretase processing to attain homeostatic
levels of APP metabolites and rescue hyperexcitability
in FXS.
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