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A multi‑parameter persistence 
framework for mathematical 
morphology
Yu‑Min Chung1*, Sarah Day2 & Chuan‑Shen Hu3

The field of mathematical morphology offers well-studied techniques for image processing and is 
applicable for studies ranging from materials science to ecological pattern formation. In this work, 
we view morphological operations through the lens of persistent homology, a tool at the heart of the 
field of topological data analysis. We demonstrate that morphological operations naturally form a 
multiparameter filtration and that persistent homology can then be used to extract information about 
both topology and geometry in the images as well as to automate methods for optimizing the study 
and rendering of structure in images. For illustration, we develop an automated approach that utilizes 
this framework to denoise binary, grayscale, and color images with salt and pepper and larger spatial 
scale noise. We measure our example unsupervised denoising approach to state-of-the-art supervised, 
deep learning methods to show that our results are comparable.

Digital image data is of importance in scientific applications ranging from materials science (e.g. micro-CT 
images of microstructure) to ecology (e.g. GIS or satellite images of plant and animal populations). Computa-
tional topology and the field of topological data analysis offer powerful tools for analyzing structure in data1–5. 
Persistent homology, in particular, has offered a means of measuring topological features across a filtration, 
or sequence of structures built from the data. A one-filtration is a collection of nested sets where the inclusion 
map enables the tracking of topological information from one set to the next. A multifiltration extends this 
notion to an indexed collection of sets satisfying an inclusion relation between a pair of sets whenever they are 
related under a specified partial order. This allows for the construction of many structures related to image or 
point cloud data, where appropriate inclusion relationships allow for the tracking of topological information 
across the structures. In this work, we use morphological operations to extend previous methods for filtration 
construction for digital images and use the resulting multiparameter filtrations for algorithmic exploration of 
image processing and denoising.

Mathematical morphology, a classic field in the image processing, provides theoretical and practical tech-
niques for processing digital images6–10, such as smoothing, denosing, edge detection just to name a few. Opera-
tions in mathematical morphology are called the morphological operations. There are four fundamental mor-
phological operations: erosion, dilation, opening, and closing. They are the building blocks of the mathematical 
morphology field and have many applications. One of them is to remove small scale features and smooth digital 
images11,12. These are well-developed operations for cleaning images by removing small scale features while keep-
ing the remainder of the image relatively constant (see e.g. standard textbooks in mathematical morphology13–15. 
However, tracking changes of topological information with respect to parameters associated to those operations 
is not well-studied. Our focus in this work is to use multi-parameter persistent homology to tracks such topo-
logical changes.

Previous work in the field of topological data analysis has established one-filtrations for digital images and 
incorporated morphological operations in studies of height functions in Morse theory. In the cubical setting, a 
standard one-filtration for grayscale digital images is the sublevel set filtration obtained via thresholding. For 
example, in16, the authors build a cubical filtration by applying thresholding on probability distributions over 
image cubes. In Morse theory, one considers smooth functionals (called height functions) on a differentiable 
manifold to construct sublevel set filtrations17,18. Analogous construction works in the discrete case. For exam-
ple, the authors in19 apply discrete Morse functions to build discrete Morse complexes, where the topology on 
generated Morse complexes can be used for analyzing tessellated manifolds. In20, the authors compute persistent 
homology of sublevel set filtrations induced from Morse functions on Rn , providing an equivalence relation 
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between persistent homology and morphological dynamics. They use this connection to investigate dynamical 
properties of Morse functions from a topological point of view. In21, the authors provide an interesting method 
for smoothing shapes of objects in 2 and 3-dimensional digital images, which preserves homotopy structure. To 
achieve this, the authors give the definition of homotopic equivalence of discrete images and construct homo-
topic thinning/thickening operations for shape smoothing. However, in image denoising tasks, one often aims 
to remove small scale features that arise due to noise in the image, thus sometimes dramatically changing the 
topology of the image. Therefore, in our approach, we do not impose homotopic equivalence and instead adopt 
a goal of intentionally changing the homological type of rendered structures in order to optimize topological and 
geometric accuracy by removing features most likely due to noise. Filtrations and persistence lend themselves well 
to automation. In22, Chung and Day used persistent homology to track structure in the sublevel set filtrations, 
developing an automated method for extracting topological measurements and thresholding grayscale images.

In this work, we focus on building an algebraic topological framework for the application of the morphological 
operations of erosion, dilation, opening, and closing. In order to track topological information for the resulting 
images, we construct new erosion (11), dilation (12), opening (13), and closing filtrations (14) and their vari-
ants  (15), (16), (17). We then show that under mild assumptions, combinations of these morphological opera-
tions, as well as thresholding, form multiparameter filtrations. This extends the use of multiparameter persistence 
from analyzing point cloud data in previous studies23–28, to now studying digital images. This approach also 
creates an algebraic topological formalism for combining and studying morphological operations, encoding the 
operations in a multifiltration framework with the goal of analyzing digital images in which features appear at 
different spatial scales. This includes noisy images in which the noise is smaller in spatial scale than the underly-
ing structure we wish to uncover. We then demonstrate that it is possible to use this framework and persistent 
homology to extract information about underlying structure in the images as well as to automate the production 
of a denoised image. When combining morphological operations, the dimension of the constructed multiparam-
eter filtration grows rapidly in the numbers of operations and utilized structuring elements (see “Application: 
a denoising algorithm for salt and pepper noise” section). Furthermore, thresholding may be combined with 
opening and closing to form a yet larger multifiltration for studying grayscale and, by extension, color images. 
As illustration, in “Application: a denoising algorithm for salt and pepper noise” section, we use opening, closing, 
and thresholding to construct a multifiltration. In order to demonstrate the utility of this framework, we develop 
a relatively simple algorithm that uses a directed walk through the filtration to remove small spatial scale (“salt 
and pepper”) noise and compare sample results for noisy binary, grayscale, and color images to those produced 
by existing supervised and unsupervised methods29–31.

In what follows, we introduce necessary definitions and properties for morphological operations (“Back-
ground on mathematical morphology” section) and persistent homology (“One‑parameter filtrations and per-
sistent homology” section). “New filtrations based on morphological operations” section shows how to use 
morphological operations (erosion, dilation, opening, and closing) to construct one-parameter filtrations. We 
then use morphological operations and thresholding to build multifiltrations in “Multi‑parameter filtrations” 
section, presenting our main results in Theorem 1 and Corollary 1. This presents the necessary framework to 
combine morphological operations and, if appropriate, thresholding, in a single multiparameter filtration for 
analyzing digital data. As illustration, in “Application: a denoising algorithm for salt and pepper noise” section 
we combine opening, closing, and thresholding to construct a multiparameter filtration to analyze and denoise 
binary, grayscale, and color images with small scale (salt and pepper) noise.

Background on mathematical morphology
In later sections, we will focus on using morphological operations to measure and track topological features 
in images. Here, we focus on establishing properties of the operations that are necessary to this topological 
approach. Two morphological operations that will be of particular interest in what follows are dilation and ero-
sion. In a binary image, dilation enlarges features in the pixel subset for a specified value (e.g. 1, 255, or ‘black’) 
while erosion erases small, isolated features in the pixel subset (see13–15 and references therein).

We denote integers, natural numbers, and real numbers by the standard notation Z , N , and R , respectively. 
We use Z≥0 to denote N ∪ {0} , the set of all non-negative integers. The symbol R≥0 represents the set of all non-
negative real numbers. Elements in Zm are denoted by boldface letters e.g. u ∈ Zm to distinguish vectors and sca-
lars. We use this notation to build towards formalizing operations on digital images, which we define as follows.

Definition 1  (Section 1.1.2.114, p. 6) Let m ∈ N be a positive number, an m-dimensional (digital) image on pixel/
voxel set P ⊆ Zm is a non-negative function g : P → R≥0 . If the range of the function g is {0, 1} , then g is called 
a binary image. Otherwise, we refer to g as a grayscale image. The set of all images on P, denoted IP , is defined 
as IP = {g : P → R≥0}.

In practice, one usually considers a rectangular image whose domain can be expressed as

where ai ≤ bi are integers. Figure  1a is an illustration for the 5× 5 image domain P in Z2 (e.g. 
P = {0, 1, ..., 4} × {0, 1, ..., 4} ). Figure 1b,c are examples of grayscale and binary images defined on P.

P = Zm ∩

(
m∏

i=1

[ai , bi]

)
= {a1, a1 + 1, ..., b1} × · · · × {am, am + 1, ..., bm}
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The following discussion focuses primarily on binary images g : P → {0, 1} , where a value of 1 means the pixel 
is white and a value of 0 means the pixel is black, and 8-bit grayscale images g : P → {0, 1, ..., 255} where 225 is 
white and 0 is black. When feasible, we consider general images g : P → R≥0 so that properties and theorems 

Figure 1.   (a) A 5× 5 image domain P lies in Z2 , where x is a specified point in P. (b) A grayscale image is 
defined on the image domain P, it has pixel values 0, 1, 2,  and 3. (c) A binary image is defined on the image 
domain, where the pixels in the image with 0 are the black pixels and 1 for the white pixels. (d)–(f) Depictions 
of 3× 3 structuring elements B = {0, 1, 2} × {0, 1, 2} , −B = {0,−1,−2} × {0,−1,−2} , and (symmetric) 
C = {−1, 0, 1} × {−1, 0, 1} with 0 = (0, 0) marked. Blue regions in (g)–(i) are the sets (x + B) ∩ P, (x − B) ∩ P , 
(x + C) ∩ P , and (x − C) ∩ P . Rows (j)–(m) and (n)–(q) are illustrations for erosion, dilation, opening, and 
closing operations.
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stated in the paper hold in this general case. This setting is also convenient when considering re-scaling of pixel 
values of images with different range sets.

We now establish the following partial order on the space of images and define image and preimage sub-
sets. Given two images f , g : P → R , we say that f ≤ g if and only if f (p) ≤ g(p) for all p ∈ P . For functions 
f : S → T , A ⊆ S and B ⊆ T , the sets f (A) := {f (a) | a ∈ A} and f −1(B) := {s ∈ S | f (s) ∈ B} are the image 
of A and the preimage of B under f. As an abbreviation, if B = {b} is a singleton set, we write f −1(b) instead of 
f −1({b}) to denote f −1(B).

Definition 2  (Section 3.113 p. 64). For m ∈ N , a structuring element is a specified finite set B satisfying 
0 ∈ B ⊆ Zm . A structuring element B is symmetric if B = −B := {−x | x ∈ B}.

Figure 1d shows an example of a structuring element which is a square defined as B = {0, 1, 2} × {0, 1, 2} . 
It is important to note that the origin (0, 0) is in the structuring element B. In mathematical morphology, 
the reflection of the structuring element over the origin is often used. Figure 1e shows the reflection of B, i.e. 
−B = {0,−1,−2} × {0,−1,−2} . We observe that B  = −B in Fig. 1d,e, giving examples of non-symmetric struc-
turing elements. (If a structuring element is equal to its reflection, it is called symmetric.) Figure 1f shows an 
example of a symmetric structuring element.

Remark 1  In mathematical morphology, structuring elements defined here are called flat structuring elements13. 
In certain applications, a non-flat structuring element B is defined as a function from a finite subset B of Zm to 
R≥0 which records weighted values for elements in B. In this case, a flat structuring element can be viewed as 
a characteristic function χB on a finite set B ⊆ Zm . In this paper, all structuring elements we consider are flat.

Structuring elements will be used to define local windows over which pixel values are considered during pro-
cessing operations. This requires the Minkowski sum and difference for subsets A, B ⊆ Zm , defined respectively as

If either A = {a} or B = {b} are sets of singleton points, we would simply use a + B , a − B , A+ b or A− b 
rather than {a} + B , {a} − B , A+ {b} or A− {b} to denote the Minkowski sum or difference of A and Bs. Con-
sider x + B where x = (2, 3) ∈ P and B = {0, 1, 2}2 . By the above definition of Minkowski sum, we obtain 
t h a t  x+B = {(2, 3)}+{(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)} = {(2, 3), (3, 3), (4, 3), (2, 4),

(3, 4), (4, 4), (2, 5), (3, 5), (4, 5)} . (See also Fig. 1.)
Since 0 ∈ B , one may think of x + B as the B-neighborhood of x in Zm . If g ∈ IP is a binary image and 

g(x + B) = {1} , then the B-neighborhood of x is contained in the white region of the image. On the other hand, 
if g(x + B) = {0, 1} , then the B-neighborhood of x intersects both the white and the black sets in the image.

In this work, we consider four fundamental morphological operations: erosion, dilation, opening, and closing. 
We next review their formal definitions.

Definition 3  (Equations (1.6) and (1.7)14 p. 10) For g ∈ IP and structuring element B ⊆ Zm , the erosion of g 
via B is an image εB(g) ∈ IP defined by

Similarly, the dilation of g via B is an image δB(g) ∈ IP defined by

Since 0 ∈ B and B is finite, (x + B) ∩ P and (x − B) ∩ P are non-empty, finite sets whenever x ∈ P . Therefore, 
εB(g) and δB(g) are well-defined.

The intersection with the image domain P is needed in Definition  3 because (x + B) can be 
beyond the boundary of P. For example, we demonstrated above that x + B = {(2, 3)} + {(0, 0), (1, 0),

(2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)} = {(2, 3), (3, 3), (4, 3), (2, 4), (3, 4), (4, 4), (2, 5), (3, 5), (4, 5)} , where P 
and B are depicted in Fig. 1a,d, respectively. Clearly, some elements of x + B are not in P, e.g. (2, 5)  ∈ P . Examples 
of (x + B) ∩ P and (x − B) ∩ P are shown in Fig. 1g,i. As shown in Definition 3, these sets operation are essen-
tial for εB(g)(x) and δB(g)(x) . Figure 1k–m demonstrate steps to obtain εB(g)(x) where g is given and shown in 
Fig. 1j. Figure 1k shows the set (x + B) ∩ P where the point g(x) is colored as red and their pixel values g(x + B) 
are shaded in the blue color which consist of 0, 0, 0, 0, 3, and 3. Since the minimum value of those blue shaded 
values is 0, εB(g)(x) = 0 as shown in Fig. 1l. Repeat this process for all x and the final processed image is shown in 
Fig. 1m Similarly, Fig. 1o,q demonstrate steps to obtain δB(g)(x) where g is given and shown in Fig. 1n. Figure 1o 
shows the set (x − B) ∩ P where the point g(x) is colored as red and their pixel values g(x + B) are shaded in the 
blue color which consist of 0, 3, 3, 0, 2, 2, 1, 1, and 2. Since the maximum value of those blue shaded values is 3, 
δB(g)(x) = 3 as shown in Fig. 1p. Repeat this process for all x and the final processed image is shown in Fig. 1q.

A+ B := {a + b | a ∈ A, b ∈ B},

A− B := {a − b | a ∈ A, b ∈ B}.

(1)εB(g)(x) = min g

(
(x + B) ∩ P

)
= min{g(x + b) | b ∈ B, x + b ∈ P}.

(2)δB(g)(x) = max g

(
(x − B) ∩ P

)
= max{g(x − b) | b ∈ B, x − b ∈ P}.
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Remark 2  Observe that if B ⊆ Zm is symmetric, then (2) is equivalent to

Remark 3  Dilation and erosion operations in Definition 3 are commonly adopted in the mathematical 
morphology13,14,32. Recently, the work33 uses the terms dilation and erosion, but their definitions and mean-
ings are different than the classic ones. For example, “dilation” � in33 is defined as follows: for a binary image 
g : P → {1, 0} and x ∈ P,

This operation is referred to as the distance transformation in other texts on mathematical morphology13,14,32.

Erosion and dilation serve as the “building blocks” of mathematical morphology and many other morpho-
logical operations are defined as compositions of erosion and dilation. Two examples are opening and closing. 
These operations are commonly used for smoothing images.

Definition 4  (Section 1.2.114, p. 12) Let P,B ⊆ Zm be a pixel set and structuring element respectively. Then open-
ing and closing operations via B, denoted by OB and CB respectively, are functions OB,CB : IP → IP defined as

Figure 2 visualizes the processed images by erosion, dilation, opening, and closing operator. Intuitively speak-
ing, erosion and opening tend to shave off white regions in an image. On the other hand, dilation and closing 
tend to shave off black regions in an image. Observe that Fig. 2a contains small isolated white squares while 
Fig. 2d contains small isolated black squares. Applying the erosion operator with respect to B6 to Fig. 2a results in 
Fig. 2b. Comparing Fig. 2a,b, we observe that small white squares are removed and since too much white regions 
are removed, the resultant kanji character becomes “thinner” as shown in Fig. 2b. Opening operation, which is 
erosion followed by dilation, accounts for such “loss” as shown in Fig. 2c. Similarly, as shown in Fig. 2d–f, the 
image h2 contains small black squares, the dilation δB(h2) would remove them and thicken the overall white 
regions, and the closing CB(h2) would better preserve the structure. For opening and closing operation, not only 

(3)δB(g)(x) = max g

(
(x + B) ∩ P

)
= max{g(x + b) | b ∈ B, x + b ∈ P}.

�(g)(p) := min{�p− x�1 : x ∈ P, g(x) = 1}.

(4)OB = δB
◦ εB and CB = εB

◦ δB.

Figure 2.   Illustration of erosion ( ε ), dilation ( δ ), opening (O), and closing (C) with respect to the structuring 
element B6 which is a 7× 7 square defined in (10).
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the small noises are removed but also the overall kanji character is kept well. This is the reason opening and 
closing are commonly used tools for image filtering (see e.g. the classic textbooks13–15).

The opening and closing operations may be used to remove structure that is smaller than the scale prescribed 
by B while minimizing distortion of larger scale features13,34–36. It is clear that if B = {0} , then εB = δB = idIP 
where idIP : IP → IP denotes the identity function and OB = CB = idIP.

We conclude this section by reviewing some basic properties of these morphological operations. We will use 
these properties to establish our main result.

Proposition 1  (Properties 3.413, p. 71) Let f , g ∈ IP be images and B ⊆ Zm be a structuring element. If f ≤ g , 
then the inequalities δB(f ) ≤ δB(g), εB(f ) ≤ εB(g), OB(f ) ≤ OB(g), and CB(f ) ≤ CB(g) hold.

Proposition 1 states the increasing property, that is, for a fixed structuring element, the basic morphological 
operations preserve the ordering relation on images. In Definition 1, we define images as functions. Our main 
focus in this work is to construct a filtration or collection of sets ordered by set inclusion. We do this for image 
sublevel sets, i.e. subsets of the pixel set P corresponding to pixels with image values at or below a prescribed 
threshold value. When we consider binary images, the filtration property of sublevel sets is naturally related to 
the increasing property as shown in the following proposition.

Proposition 2  (Principle 11.1.113, p. 318). Let f , g ∈ IP be images. If f ≤ g , then g−1(0) ⊆ f −1(0) . In addition, 
if f , g : P → {0, 1} are binary images, then f ≤ g if and only if g−1(0) ⊆ f −1(0) and, similarly, f ≤ g if and only 
if f −1(1) ⊆ g−1(1).

The dilation and erosion operators are defined by a given structural element. We are also interested in the 
increasing property of dilation and erosion operators. More precisely, given two structural elements with subset 
relation, their corresponding dilation and erosion follow certain subset relations.

Proposition 3  If B1 ⊆ B2 ⊆ Zm be structuring elements, then δB1(g) ≤ δB2(g), and εB2(g) ≤ εB1(g) for every 
g ∈ IP.

The proof of Proposition 3 can be derived directly from the Definition 3. There are many ways to produce a 
binary image from a grayscale image. Global thresholding of grayscale image g : P → R≥0 via threshold value t 
produces the binary image

Note that g−1
t (0) = {xεP : g(x) ≤ t} . This set, g−1

t (0) is the t-sublevel set of g. In general, the operations of 
erosion, dilation, opening, and closing do not commute. However, these four operations do commute with the 
operation of global thresholding as follows.

Proposition 4  (Proposition 137) For mεN and pixel set P ⊆ Zm , consider the image g ∈ IP . For each threshold 
t ∈ R≥0 we define τt : IP → IP by g  → gt i.e.,

For any structuring element B ⊆ Zm , the following diagrams are commutative:

i.e., εB ◦ τt = τt ◦ εB and δB ◦ τt = τt ◦ δB . Moreover, by combining these two commutative diagrams, 
OB ◦ τt = τt ◦ OB and CB ◦ τt = τt ◦ CB.

One‑parameter filtrations and persistent homology
In this section, we show that the partial order results for morphological operations presented in “Background on 
mathematical morphology” section naturally yield the structure necessary for computing persistent homology.

Persistent homology, a foundational tool in the field of topological data analysis (TDA), measures and tracks 
topological features. It relies on having a one-parameter filtration, a sequence of nested sets. The goal of this sec-
tion is to introduce two new filtrations based on morphological operations and define and illustrate the meaning 
of persistence diagrams based on these filtrations.

(5)gt(x) =

{
0 if g(x) ≤ t,
1 otherwise.

(6)τt(g)(x) = gt(x) =

{
0 if g(x) ≤ t,
1 otherwise.

.
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Topological features of interest include connected components (or individual connected pieces of the set), 
one-dimensional holes (holes in 2d or tunnels in 3d) and two-dimensional holes (cavities in 3d). Higher dimen-
sional holes may appear in higher dimensional data, but for illustration, we will focus on two and three dimen-
sional data sets here. The framework we present throughout this work applies to higher dimensional data and 
holes as well. For the data sets we study, cubical homology may be summarized using Betti numbers. Betti 
numbers, βk , count holes of various dimensions. More specifically, given a binary image f, if we consider the 
set of black pixels, X := f −1(0) , then β0(X) is the number of connected components, β1(X) is the number of 
1-dimensional holes, or tunnels, β2(X) is the number of 2-dimensional holes, or cavities, etc. They are computed 
using algebraic structure defined by the cubical structure of X and there are now efficient software packages for 
performing these calculations. See, for example38, and references therein for a discussion of the mathematical 
theory behind the definition and computation of Betti numbers as well as their interpretation as direct counts 
of topological features.

Persistent homology extends the topological measurement offered by Betti numbers across a filtration. A 
one-parameter filtration is a sequence of sets {Xi}i∈A , with indexing set A ⊂ Z , satisfying

For ease of notation, we will often write {Xi} when the indexing set has already been specified. For a one-
parameter filtration, persistent homology records the birth and death coordinates at which a given topological 
feature first appears and first disappears respectively in cubical sets. That is, given a one-parameter filtration 
{Xi}i∈A of cubical sets, a feature with birth/death coordinates (b, d), does not exist in the sets Xi with i < b , appears 
first in Xb and persists through all sets Xj with b ≤ j < d and disappears in Xd . Like Betti numbers, birth/death 
coordinates are computed using algebraic structure attached to cubical sets, in this case using the inclusion 
operation to match some features in Xn to their preimages in Xn−1.

The collection of birth/death pairs for all topological features, labeled by dimension of the feature, is called a 
persistence diagram. For a given one-parameter filtration {Xi} , the full persistence diagram is the multiset of all 
birth/death pairs and is denoted by P ({Xi}) , with the k-th persistence diagram, Pk({Xi}) , denoting the subset of 
pairs measuring k-dimensional holes. Note that different hole structures may have the same persistence interval 
(b, d). The persistence diagram is a multiset since any birth/death coordinate (b, d) can appear multiple times. 
By this convention, P ({Xi}) = ∪kPk({Xi}) . For ease of notation, we represent these persistence diagrams by 
P (respectively Pk ) when the filtration {Xi} is understood. Betti numbers may be extracted from persistence 
diagrams as

where

In other words, βk(Xm) counts the number of points in the k-th persistence diagram whose birth/death coor-
dinates indicate that they are present in set Xm . By extension, we also write P (m) := ∪kPk(m) . Furthermore, 
a given feature’s lifespan, l = d − b , measures the length of the interval of set indices over which the feature 
persists. Birth/death coordinates and corresponding lifespans allow us to study the robustness of the feature 
with respect to changes in the index m.

For more information about persistent homology, see e.g.2,4, and references therein. In summary, given a 
one-parameter filtration of cubical sets, persistence diagrams are efficient to compute. The reference39 provides 
an overview of current TDA software. In this work, we use Perseus40 and DIPHA41 for cubical persistent 
homology computations.

Researchers have developed several methods for creating one-parameter filtrations. The most fundamental 
and commonly-used filtration for grayscale digital images is the sublevel set filtration (see, e.g.33,42). Using the 
sublevel set and thresholding operations (6), for thresholds t1 ≤ t2 ≤ · · · ≤ tn,

Setting Xi = g−1
ti (0) yields a sublevel set filtration {Xi} . Cubical homology and sublevel set filtrations have been 

used to study images. For example, in16, the authors develop an image segmentation algorithm by incorporating 
persistence diagrams for sublevel set filtrations on cubical sets into deep learning architecture. For binary images, 
there are techniques for constructing related grayscale images that would then lead to sublevel set filtrations. 
These include, for example, using a signed distance function or density estimator to define grayscale values33,43. 
While44 considers the changes of size functions (the 0-th persistence diagram of the sublevel set filtration) under 
the skeleton operation which combines certain morphological operations, our goal here is build a general filtra-
tion framework using erosion, dilation, opening, and closing. To the best of our knowledge, the proposed work 
is the first to use morphological operations and thresholding to construct a filtration directly.

New filtrations based on morphological operations
We now use morphological operations to form new filtrations for binary and grayscale images. For ease of discus-
sion, throughout the article we use a sequence of structuring elements, {Bi}ni=0 , where each Bi is a (i + 1)× (i + 1) 
square given by

(7)Xi ⊆ Xj , whenever i ≤ j.

(8)βk(Xm) = #Pk(m),

Pk(m) := {(b, d) ∈ Pk | b ≤ m, d > m}.

(9)g−1
t1

(0) ⊆ g−1
t2

(0) ⊆ · · ·g−1
tn

(0).
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where e1 = (1, 0) and e2 = (0, 1) . These may be depicted as

where 0 represents the origin (0, 0) ∈ Z2 . Clearly, B0 ⊆ B1 ⊆ · · · ⊆ Bn . Note that since B0 = {(0, 0)} , the erosion/
dilation, and opening/closing operations with respect to B0 are the identity map.

Other sequences of structuring elements will also give rise to filtrations. In particular, there is a notion of 
shift inclusion that may be used to designate a large class of sequences of structuring elements that may be used 
to form filtrations. That topic is studied in detail in37.

The first new filtrations we propose are for binary images and use the erosion and dilation operations. We 
consider a sequence of erosion and dilation operations with respect to {Bi}ni=0 , i.e. for each i, consider δBi (f ) and 
εBi (f ) for a given binary image f. Similar to the sublevel set filtration in (9), the desired property is that if i ≤ j 
( Bi ⊆ Bj ), then εBi (f )−1(0) ⊆ εBj (f )

−1(0) . Thanks to Proposition 3, it is straightforward to verify that

This shows that for any sequence of nested structuring elements, erosion and dilation form filtrations. We 
call {Xε

i }
n
i=0 , where Xε

i = εBi (f )
−1(0) , the erosion filtration, and {Xδ

j }
0
j=−n , where Xδ

j = δB|j|(f )
−1(0) , the dilation 

filtration. Note that since εB0(f )−1(0) = f −1(0) = δB0(f )
−1(0) , we may form one extended filtration by taking 

{X̃i}
n
i=−n , where for i < 0 , X̃i = Xδ

i  , and for i > 0 , X̃i = Xε
i .

The second new filtrations we propose is related to the opening and closing operations. Since opening and 
closing are compositions of erosion and dilation operations, one may expect that Proposition 3 would extend to 
the case of opening or closing. However, it is not true in general. We refer readers to37 for a counter example and 
more discussion. Essentially, the sequence of structuring elements cannot be arbitrary and requires additional 
assumptions37. Presents a sufficient condition called shift inclusion that guarantees the structure necessary for 
opening and closing to result in appropriately nested sets.

Since our chosen square structuring elements, Bi , satisfy shift inclusion37, OBi and, separately, CBi , also form 
filtrations.

Similar to erosion and dilation filtration, we call {XO

i }ni=0 , where XO

i = OBi (f )
−1(0) , the opening filtration, and 

{X
C

j }0j=−n , where XC

j = CB|j|(f )
−1(0) , the closing filtration. Note that since OB0(f )

−1(0) = f −1(0) = CB0(f )
−1(0) , 

we may form one extended filtration by taking {X̃i}
n
i=−n , where for i < 0 , X̃i = X

C

i  , and for i > 0 , X̃i = X
O

i .
As a byproduct, applications of (13) and (14) lead to three additional filtrations based on the commonly used 

top-hat transformation: the white top hat WTHB(f ) = f − OB(f ) , the black top hat BTHB(f ) = CB(f )− f  , and 
the self complementary top hat transformation STHB(f ) = CB(f )− OB(f )

13,15,45. More precisely, one has

Figure 3 depicts examples of opening and closing filtrations and two of their resulting persistence diagrams. 
Figure 3a shows the original binary image, f, and collection of black pixels X0 := f −1(0) . We observe that there 
are five connected components (disjoint black pieces) depicted as C1, C2, C3, C4, and C5 in Fig. 3d and there 
are 4 holes (isolated white regions) depicted as H1, H2, H3, and H4 in Fig. 3c. Thus, β(X0) = (5, 4) . We also 
observe that the spatial sizes of features C1–C5 and H1-H4 are different but each contribute equally (is counted 
once) to the overall Betti numbers. However, the opening and closing filtrations and their relevant persistence 
diagrams reveal information about spatial sizes of C1–C5 and H1–H4.

Figure 3e–j depicts an opening filtration of f. Opening operations with increasing structuring elements shrink 
the white regions. Thus, an opening filtration is good for discriminating sizes of holes. XO

0 = X0 is the smallest 
set in the opening filtration. We observe that as i increases, holes disappears. For instance, in Fig. 3g, the hole 

(10)
B0 = {(0, 0)},

Bn =

{
Bn−1 ∪ (Bn−1 + e1) ∪ (Bn−1 + e2) ∪ (Bn−1 + e1 + e2) if n is odd
Bn−1 ∪ (Bn−1 − e1) ∪ (Bn−1 − e2) ∪ (Bn−1 − e1 − e2) if n is even, n ≥ 2

,

(11)εB0(f )
−1(0) ⊆ εB1(f )

−1(0) ⊆ · · · ⊆ εBn(f )
−1(0),

(12)δBn(f )
−1(0) ⊆ δBn−1 (f )

−1(0) ⊆ · · · ⊆ δB0(f )
−1(0).

(13)OB0(f )
−1(0) ⊆ OB1(f )

−1(0) ⊆ · · · ⊆ OBn(f )
−1(0);

(14)CBn(f )
−1(0) ⊆ CBn−1 (f )

−1(0) ⊆ · · · ⊆ CB0(f )
−1(0).

(15)WTHBn(f )
−1(0) ⊆ WTHBn−1 (f )

−1(0) ⊆ · · · ⊆ WTHB0(f )
−1(0),

(16)BTHBn(f )
−1(0) ⊆ BTHBn−1 (f )

−1(0) ⊆ · · · ⊆ BTHB0(f )
−1(0),

(17)STHBn(f )
−1(0) ⊆ STHBn−1 (f )

−1(0) ⊆ · · · ⊆ STHB0(f )
−1(0).
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Figure 3.   Opening filtration XO

i := OBi (f )
−1(0) (row 2), closing filtration Yi := X

C

−(5−i) := CBi (f )
−1(0) 

(row 3), and their relevant persistence diagrams (row 4). (a) Original binary image g; (b) noised image f; (c) 
the 1-dimensional holes in X0 that have death < 6 ; (d) the connected components in X0 that have birth > 1 ; 
(e)–(j) binary representations of XO

i := OBi (f )
−1(0) with i = 0, 1, . . . , 5 ; (k)–(p) binary representations of 

Yi := X
C

−(5−i) := CBi (f )
−1(0) with i = 0, 1, . . . , 5 . The structuring elements B0,B1, ...,B5 used here are the 

B0,B2,B4,B6,B8 , and B10 in (10). (q) Persistence diagram P1[{X
O

i }5i=0] . (r) Persistence diagram P0[{Yi}
5
i=0] . 

By diagrams (q) and (r), for the image in (b), the values io and ic derived from the first iteration in Algorithm 1 
are 2 and (5+ 1)− 3 = 3 respectively.
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H1 disappears; in Fig. 3i, the hole H3 disappears; in Fig. 3h, the hole H2 disappears. This behavior can also be 
observed in the corresponding 1st level persistence diagram shown in Fig. 3q. Since XO

0 = X0 , the holes H1, H2, 
and H3 are born at 0. Since H1 disappears in Fig. 3g, H1 has death value 2. Similarly, H3 has death value 3 and 
H2 has death value 2. Therefore, the death values of P1(0) reveal sizes of 1D holes. Also, by (8), we know that 
β1(X

O

0 ) = #P1(0) . This means that given a binary image f, or its black set X0 , individual sizes of β1(X0) can be 
seen through P1(0) , where P1 is the 1-st level persistence diagram for the opening filtration of f.

Figure 3k–p depicts a closing filtration of f. Closing operations shrink the black regions. Thus, a closing filtra-
tion is good for discriminating sizes of connected components. In this case, XC

0 = X0 is the largest black set in 
the closing filtration: XC

−5 ⊆ · · · ⊆ X
C

−1 ⊆ X
C

0  . We define Yi = X
C

−(5−i) for i = 0, 1, ..., 5 for notational purposes 
and rewrite the closing filtration as Y0 ⊆ · · · ⊆ Y5 . Since Y5 = X0 is the largest black set, as Yi decreases, con-
nected components disappear. For instance, starting from Fig. 3p, connect component C3 disappears in Y2 ; C2 
disappears in Y1 ; C1 disappears in Y0 . Since the ordering is reversed, C1 has birth value 0, C2 has birth value 1, 
and C3 has birth value 3. They each have the same death value of 5. Therefore, {(b, 5) ∈ P0({Yi}) reveals sizes of 
connected components. This means that given a binary image f, or its black set X0 , spatial size information for 
connected components contributing to β0(X0) can be seen through {(b, 5) ∈ P0({Yi}) , where P0 is the 0-th level 
persistence diagram for the considered closing filtration of f.

Figure 3q,r also reveal scale information about features. For example, the vertical gap between the points 
labeled H4 and H3 in Fig. 3q results from the separation in scale between the H4 feature and the H3 feature (the 
big “O” and the smaller scale white dot respectively in Fig. 3c). Similarly, the horizontal gap between the points 
labeled C4 and C1 in Fig. 3r corresponds to the separation in scale between the black regions with those labels 
in Fig. 3d. In this case, targeting the removal of features separated from H4 and C4 (and the largest feature C5), 
would result in an image with only the topological features shown in the original image Fig. 3a.

We now return to the more general erosion/dilation and opening/closing one-parameter filtrations presented 
earlier and extend these to form filtrations on grayscale images. Combining either of these filtrations with the 
sublevel set filtration in (9), one may obtain a two-parameter filtration, or bi-filtration. We take the opening filtra-
tion as an illustration. Given a grayscale image g, by (9), we have g−1

ti (0) ⊆ g−1
tj (0) for any ti ≤ tj . Since for each t, 

gt is a binary image, by (13) we have that OBi (gt)
−1(0) ⊆ OBj (gt)

−1(0) . By combining both (9) and (13) we obtain

This is a 2-filtration, an example of a multifiltration defined in Definition 5. In the next section, we formalize 
and extend the class of multifiltrations constructed from opening and closing operations on binary images and 
opening, closing, and thresholding operations for grayscale images.

Multi‑parameter filtrations
At this point, we have seen that erosion, dilation, opening, and closing each form one-parameter filtrations for 
binary images and that combining one of these operations with thresholding forms a 2-filtration (see Defini-
tion 5 below). As we show in the next example, opening and closing operations may also be combined to form 
a 2-filtration for a binary image. In fact, this process may be continued to define k-parameter filtrations, the 
overall goal of this section.

Definition 5  (23) For k ∈ N and u, v ∈ Zk we say that u ≤ v if and only if ui ≤ vi for all i. Given this partial 
order on Zk , a family of sets {Si}i∈A with indexing set A ⊆ Zk is a multifiltration (or k-parameter filtration) if for 
any u, v ∈ A with u ≤ v , Su ⊆ Sv.

Combining an opening filtration and a closing filtration and invoking Proposition 1 yields the following 
2-filtration.

(18)
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Figure 4 shows sample images from this opening/closing bifiltration as applied to an example of a kanji with 
(salt) noise. By visual inspection of the bifiltration depicted in Fig. 4, XO ,C

(−6,7) appears to be the most accurate 
rendering of the underlying kanji image. Since XO ,C

(0,0)  ⊆ X
O ,C
(−6,7) , there is no way to compare XO ,C

(−6,7) directly to 
the original image XO ,C

(0,0)  using a one-filtration. However, multiple one-filtrations within the 2-filtration may be 
used to “connect” the two sets. Figure 3 shows the one-parameter persistent homology of opening and closing 
filtrations that can detect the holes and connected components in an image. However, the rows and columns 
in Figure 4 depict the underlying structure in single parameter opening/closing filtration would be influenced 
by original black/white components. This example illustrates that the 2-filtration build by opening and closing 
operations can keep the underlying structure of the image than one-parameter filtration via opening or closing 
operations. We discuss an approach for using persistent homology information to search for optimal renderings 
within multifiltrations, along with extensions of multifiltrations from “One‑parameter filtrations and persistent 
homology” section for binary images to a larger multifiltration that handles grayscale images, in “Application: a 
denoising algorithm for salt and pepper noise” section.

We now present a general multiparameter persistence framework using morphological operations. Consider a 
sequence of operations Ei : IP → IP (e.g. erosion) and a sequence of operations, Di : IP → IP (e.g. dilation) 
satisfying the following: for any f , g ∈ IP and i, j ∈ {0, 1, 2, . . . , n} , 

	(A1)	 if f ≤ g , then Ei(f ) ≤ Ei(g) and Di(f ) ≤ Di(g);
	(A2)	 if i ≤ j , then Ei(g) ≥ Ej(g) and Di(g) ≤ Dj(g);
	(A3)	 D0(g) = E0(g) = g.

When Ei = OBi and Di = CBi , assumptions (A1), (A2), and (A3) are similar to the sieving axioms in granu-
lometry: anti-extensivity, increasingness, and the absorption property (13,15). Assumption (A1) is the increasing 
property seen also in Proposition 1. Assumption (A2) is the absorption property (14 Sec. 1.2.6, p.20). Finally, 
combining assumptions (A2) and (A3) would lead to the anti-extensive or extensive property.

In what follows, let Ei and Di , i ∈ {0, 1, 2, . . . , n} be sequences satisfying (A1), (A2), and (A3). Consider 
i ∈ {0,±1, ...,±n} and define a function ME ,D

i : IP → IP as

and denote the 0-level set by

When the context is understood, we sometimes abbreviate ME ,D
i  as Mi , and XE ,D

i (g) as Xi . The notation 
(20) unifies the operations E and D in the following way.

Lemma 1  Let i, j ∈ {0,±1, . . . ,±n} and g ∈ IP be a binary image. Suppose Ei and Di satisfy (A1), (A2), and (A3). 
If i ≤ j , then ME ,D

j (g) ≤ M
E ,D
i (g).

Proof  Let i ≤ j . Suppose first that i ≥ 0 . Then ME ,D
j (g) = Ej(g) ≤ Ei(g) = M

E ,D
i (g) . If, on the other hand, 

i < 0 , then there are two cases. In the case when j > 0 , then ME ,D
j (g) = Ej(g) ≤ g ≤ D|i|(g) = M

E ,D
i (g) . 

In  t h e  s e c o n d  c a s e  w h e re  j ≤ 0  ,  t h e n  s i n c e  i ≤ j ≤ 0  ,  |j| ≤ |i| a n d  w e  o b t a i n 
M

E ,D
j (g) = D|j|(g) ≤ D|i|(g) = M

E ,D
i (g) . 	�  �

The essential step in obtaining a multi-parameter filtration is to apply ME ,D inductively. This requires us to 
extend the notation of (20) and (21) to a multi-index i ∈ Zk.

(19)

(20)M
E ,D
i (g) :=

{
Ei(g) for i ≥ 0
D|i|(g) for i < 0

,

(21)X
E ,D
i (g) := {x ∈ P |M

E ,D
i (g)(x) = 0} = M

E ,D
i (g)−1(0).
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Definition 6  Let {Ei} and {Di} be sequences of morphological operations that satisfy (A1), (A2), and (A3). For 
k, n ∈ N and i = (i1, i2, . . . , ik) ∈ {0,±1, ...,±n}k , we define ME ,D

i : IP → IP and XE ,D
i ⊆ P by

Figure 4.   A 2-parameter filtration using structuring elements Bi defined in (10). The notation XO ,C
(−i,j) denotes 

the set of black pixels in the image (CBi ◦ OBj )(f ) where f is the left-top image in the 2-parameter filtration. The 
formal definition can be found in Definition 6.
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and

Similarly, we abbreviate the notation ME ,D
i  as Mi and XE ,D

i (g) as Xi if operations E ,D and image g are 
specified.

For example, for i = (−1, 1) , Mi(g) = M−1(M1(g)) means that the image g is filtered by E1 followed by D1 , 
i.e. Mi(g) = M−1 ◦M1(g) = E1(D1(g)).

Motivated by (19), we consider the sets Xi formed by the application of alternating E and D operations. 
Using (20), we see that alternating these operations corresponds to a multi-index consisting of an alternating 
sequence of integers.

Definition 7  The sequence i = (i1, i2, . . . , ik) ∈ {0,±1, ...,±n}k is an alternating sequence if il · il+1 ≤ 0 for all 
l ∈ {1, 2, ..., k} . By extension, the set A ⊆ {0,±1, ...,±n}k is a set of alternating sequences if it contains only alter-
nating sequences.

We are now ready to present our main theorem: alternating the operations E and D leads to a multi-parameter 
filtration.

Theorem 1  Let g be a binary image, and A ⊆ {0,±1, ...,±n}k be a set of alternating sequences. Assume Ei , 
Di : IP → IP , i ∈ {1, 2, . . . , n} satisfy (A1), (A2) and (A3). Then 

{
X
E ,D
i (g)

}

i∈A
 is a k-parameter filtration.

Proof  Let u = (u1, ..., un), v = (v1, ..., vn) ∈ A and u ≤ v  . By Definition  5, we need to verify that 
Mu(g)

−1(0) ⊆ Mv(g)
−1(0).

By Lemma 1, since un ≤ vn we have that Mvn(g) ≤ Mun(g) . Applying (A1), we see that

Since un−1 ≤ vn−1 by Lemma 1 again, we have

Therefore, by combining (24) and (25), we prove that (Mvn−1
◦Mvn)(g) ≤ (Mun−1

◦Mun)(g) . Finally, by apply-
ing the argument inductively one may conclude that

By Proposition 2, we conclude that Mu(g)
−1(0) ⊆ Mv(g)

−1(0) . 	�  �

Remark 4  For purposes of exposition and to align with common practices in using morphological operations in image 
smoothing, we focused the composition of operations on alternating sequences (see13–15). This is inherent in (A2) as 
well as the stipulation that the indexing set A in Theorem 1 consists of alternating sequences. We note here, however, 
that the theorem holds true even if A contains sequences that are not alternating.

We now discuss examples to illustrate the framework given in Theorem 1. As a first example, consider erosion and 
dilation given as Ei := εBi and Di := δBi . For this pair of operations, (A1) follows from Proposition 1, (A2) follows 
from Proposition 3, and (A3) is clear.

Therefore, by Theorem 1, 
{
Xε,δ
i

}

i∈A
 forms a multi-parameter filtration, where A is any set of alternating sequences. 

As a second example, consider the opening and closing operations and let Ei := OBi and Di := CBi . By Theorem 1, {
X
O ,C
i

}

i∈A
 forms a multi-parameter filtration. In fact, erosion/closing, and opening/dilation would also lead to mul-

tiparameter filtrations. It is important to note that while erosion/dilation and opening/closing lead naturally to multipa-
rameter filtrations, the top-hat transformations do not. As mentioned in “One‑parameter filtrations and persistent 
homology” section, these transformations do not satisfy (A1) and (A3) in general and, therefore, do not satisfy the 
hypotheses of Theorem 1.

At this point, g is assumed to be a binary image. If g is a grayscale image, one may combine the sublevel set filtration 
with the multiparameter filtration described in Theorem 1 to obtain another multiparameter filtration. In the rest of 
this section, we will formulate this concept as an extension of Theorem 1.

Let {Ei}
n
i=1 and {Di}

n
i=1 be sequences of operations IP → IP satisfying (A1), (A2) and (A3). Moreover, we also 

require that for all i ∈ {1, 2, ..., n} and t ∈ {0, 1, , 2...,N} , 

	(A4)	 Ei ◦ τt = τt ◦ Ei and Di ◦ τt = τt ◦Di.

(22)M
E ,D
i (g) = (M

E ,D
i1

◦M
E ,D
i2

◦ · · · ◦M
E ,D
ik

)(g),

(23)X
E ,D
i (g) = {x ∈ P |M

E ,D
i (g)(x) = 0} = M

E ,D
i (g)−1(0).

(24)(Mvn−1 ◦Mvn)(g) ≤ (Mvn−1 ◦Mun)(g).

(25)(Mvn−1 ◦Mun)(g) ≤ (Mun−1 ◦Mun)(g).

Mv(g) = (Mv1 ◦ · · · ◦Mvn)(g) ≤ (Mu1 ◦ · · · ◦Mun)(g) = Mu(g).
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This assumption means that the morphological operations and thresholding operation commute. Proposi-
tion 4 shows that δ , ε , O, C satisfy (A4).

For every u ∈ {0,±1, ...,±n}k let XE ,D
t,u := Mu(f )

−1
t (0). We now show that if (A1)-(A4) are satisfied, then 

{X
E ,D
t,u }(t,u) forms a (k + 1)-parameter filtration. To achieve that, we need to verify that Mv(fs) ≤ Mu(ft) , for all 

(t, u) ≤ (s, v) . By (A4), we have Mu(f )t = Mu(ft) for t ∈ {0, 1, , 2...,N} . Therefore, by (A4) and Theorem 1, one has

We summarize the above discussion into the following result.

Corollary 1  Let g be a grayscale image, and A ⊆ {0,±1, ...,±n}k be a set of alternating sequences. Assume Ei , 
Di : IP → IP , i ∈ {1, 2, . . . , n} satisfy (A1), (A2), (A3), and (A4). Then {XE ,D

t,u (g)}(t,u) is a (k + 1)-parameter 
filtration.

The following is an example of the framework in Theorem 1,

While different methods, including the rank invariant function24 and sheaf theory46,47, have been developed to 
study multi-parameter persistence, for purposes of illustration we will focus on computing persistent homology 
along nondecreasing paths in the constructed multifiltration.

Definition 8  Define a nondecreasing path in indexing set A as a sequence u0, u1, . . . ,ul ∈ A such that ui ≤ ui+1 for all 
i = 0, . . . , l . Then for a multifiltration {Xu}u∈A and nondecreasing path u0, u1, . . . ,ul in A, {Xui }i is a one-parameter 
filtration.

As we outline in the following section, this structure allows us to systematically extract information about geometric 
scale and optimize for certain topological features. Following multiple or successive nondecreasing paths allows for 
greater exploration of the multifiltration.

Application: a denoising algorithm for salt and pepper noise
In this section, we use a multiparameter filtration to construct a denoising algorithm aimed at removing salt and pepper 
noise. In particular, one goal of the proposed algorithm is removing small scale white/black regions from the images 
in order to focus on the larger scale features as shown in Fig. 3 where C1–C3 and H1–H3 are of small scale relative to 
C4–C5 and H4. We note that the proposed multiparameter framework may be extremely large/high dimensional and 
contain a lot of useful information about the image and noise. We propose a denoising algorithm in this section to 
demonstrate one way to extract some useful information from the multiparameter filtration. Investigating additional 
methods for extracting information from large multiparameter filtrations in order to more fully exploit the information 
they contain is an interesting topic for the future work.

The outline of this section is as follows. We first describe the denoising algorithm which is designed for binary images 
(“Denoising algorithm for binary images” section). Some state-of-art denoised algorithms are also considered in the 
experiment, such as the denoiseImage function in Matlab48, adaptive median filter (AMF)29, non-local adaptive 
mean filter (NAMF)31, and a convolutional neural network (CNN) with median layers30. These algorithms and evaluation 
metrics are introduced in “Other methods and evaluation metrics” section. To measure its performance, we demonstrate 
it on synthetic images (“Experiments with salt and pepper noise” section) and extend the algorithm to grayscale images, 
and RGB color images (“Extensions to grayscale and RGB images” section). Throughout, we compare the results of this 
algorithm (Algorithm 1) to those obtained by previous methods. Lastly, to show the difference between Algorithm 1 
and machine learning models, we compare the performance of Algorithm 1 and the CNN with median layers on image 
with big salt and pepper noise.

Mv(fs) ≤ Mu(fs) = Mu(f )s ≤ Mu(f )t = Mu(ft).

(26)
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Denoising algorithm for binary images.  Given a binary image f, we wish to apply alternating opening/closing 
operations to f. Traditionally, this requires visual inspection to tune the size of the utilized structuring elements as well 
as the number of operations performed. We now seek to automate this process by more fully utilizing the full multipa-
rameter persistence framework.

The proposed algorithm is iterative. In each iteration, we will use persistence diagrams computed along a nondecreas-
ing path in the multiparameter filtration to guide the choice of a structuring element used for opening or closing. To 
get started, consider a binary image f contaminated by salt and pepper noise. That is, certain pixels have been switched 
to either white (salt) or black (pepper). To simulate salt and pepper noise, we use the Matlab function imnoise with 
noise density as a parameter to determine the density or proportion of contaminated pixels. For example, if the density 
equals 0.1, the imnoise function randomly changes 10% pixels in the image domain to be black or white. See e.g. the 
first column of Fig. 6 for examples of images contaminated by the salt and pepper noise with different noise densities.

We first consider the closing filtration of f, {Yj}
n
j=0 , where Yj = X

C

n−j for j = 0, 1, ..., n . By (14), we have a filtration 
Y0 ⊆ Y1 ⊆ Y2 ⊆ · · · ⊆ Yn of (n+ 1) sets and the 0-th persistence diagram P C

0 := P0[{Yj}
n
j=0] (cf. Figure 3(r)). 

Similar to the discussion in “New filtrations based on morphological operations” section, the persistence diagram P C

0  
contains features (connected black regions) that are present in the original image XC

0 = f −1(0) , and births b in P C

0  
indicate the size of the corresponding feature by giving the amount of closing required to remove it from the image. 
Since salt and pepper noise creates features that are small in spatial scale, we take a conservative route by choosing a 
level of minimal level of closing that removes at least one, smallest spatial scale feature using

The chosen binary image after the first step is then Xic := CBic (f )
−1(0) . To generalize this approach, we note that a 

gap in the death coordinate values in P C

0  can be used to detect a separation in spatial scales for features in the original 
image. The structuring element index ic could then be chosen to target the beginning of this gap.

At this point ic is chosen and is fixed. Using the new binary image CBic (f ) , we now consider the opening filtration 
of CBic (f ) , {X

O

i }ni=0 , as shown in (13), where in this case XO

i = OBi (CBic (f ))
−1(0) . As discussed in “New filtrations 

based on morphological operations” section, P O

1 := P1({X
O

i }ni=0) reveals size information of the white regions. As 
demonstrated in “One‑parameter filtrations and persistent homology” section, P O

1  contains features that are present 
in the original binary image, XO

0  , and d ∈ P
O

1  indicates the spatial size of the feature, that is, the amount of opening 
required to remove the feature. Similar to our approach in the first step using closing, we now choose the size of the 
structuring element for opening to be

The binary image following the second step is now X(io ,−ic) = OBio (CBic (f ))
−1(0).

We repeat this alternating process. The stopping criterion is when the selected structuring element size exceeds a 
preset maximum, SizeTol . This could be given by the size of the image, or given as an upper bound on the spatial 
size of noisy features or features we wish to remove. The algorithm is summarized in Algorithm 1. Figure 5 illustrates 
Algorithm 1 in a schematic way in the multiparameter space.

ic = (n+ 1)−max{b : (b, n+ 1) ∈ P
C

0 }.

io = min{d : (0, d) ∈ P
O

1 }.
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Figure 5.   Top panel: Schematic illustration of steps in Algorithm 1 in the multiparameter filtration that would 
produce the alternating sequence (2,−2, 1,−1) . Red dotted lines highlight a bifiltration layer, and blue dotted 
lines highlight a different bifiltration layer. The black solid line represents the path and selections made by 
Algorithm 1. Bottom panel: An application. (a) Ground truth binary image. (b) Ground truth with salt and 
pepper noise with noisy density 0.4. (c) Denoised image produced by Algorithm 1. The parameters used for 
Algorithm 1 are MaxIter=10 and Sizetol=5. The resulting alternating opening/closing sequences u of (c) 
is (−2, 4,−1, 3,−1, 2,−1, 1,−1).
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To demonstrate Algorithm 1, we use the 190× 190 binary image shown in the bottom panel of Fig. 5a as the 
ground truth. We add salt and pepper noise with noise density 0.4 to the ground truth and the contaminated 
image is shown in Fig. 5b. The denoised image produced by Algorithm 1 can be found in Fig. 5c. The alternating 
sequence obtained by Algorithm 1 is (−2, 4,−1, 3,−1, 2,−1, 1,−1) , which means that the denoised image in 
Figure 5(c) is obtained by alternating opening and closing operations in the following order: CB2 , OB4 , CB1 , OB3 , 
· · · , CB1 . We also observe that Algorithm 1 is unsupervised, meaning that it does not involve any training pro-
cess. It solely uses information from the persistence diagrams as well as the preset upper bound on the utilized 
structuring elements. Visually, the denoised image produced by Algorithm 1 is close to the ground truth. We now 
turn our focus to testing Algorithm 1 in a variety of settings, and gauging its performance through comparison 
with existing methods.

Other methods and evaluation metrics.  To compare, we consider the following algorithms in the liter-
ature: the denoiseImage function provided by Matlab 2019, adaptive median filter (AMF)29, non-local adap-
tive mean filter (NAMF)31, and a convolutional neural network (CNN) with median layers30. The denoiseIm-
age function is deep learning based48. AMF is a typical method for erasing salt and pepper noise by computing 
median pixels values of local image regions. The NAMF algorithm uses non-local means (NLM)31 to detect and 
estimate the locations and strengths of salt and pepper noise features. The CNN with median layers integrates 
median layers into the convolutional neural network for removing salt and pepper noise and is considered to 
be a state-of-art method for removing salt and pepper noise. Note that among these methods, AMF and NAMF 
are unsupervised while denoiseImage and CNN with median layers are supervised (deep learning based).

In this work, for the denoiseImage, AMF, NAMF, and CNN with median layers method, we use each 
code’s default parameters, where only Algorithm 1 and NAMF provide manual parameters. For each prescribed 
noise density, 100 images were formed, Algorithm 1 with MaxIter=10 and SizeTol=5 was applied to each. 
The parameters Ds, ds and B of the NAMF algorithm were 2, 20,  and 0.8 suggested in the demo code that was 
released by the authors. The algorithm denoiseImage is a built-in Matlab function for denoising the image 
by using the deep neural network trained on the dataset provided by Zhang et al.48. On the other hand, Liang et 
al. generated the dataset of images with salt/pepper noises for training the CNN with median layers method30.

We now introduce metrics to further measure the performances of these denoising algorithms. First, 
we consider the Betti numbers: β0 and β1 . As shown in Fig. 5a, the Betti numbers for the ground truth are 
(β0,β1) = (6, 5) . In addition, we consider some more standard metrics: the intersection over union (IOU)49, peak 
signal-to-noise ratio (PSNR)50,51, and structural similarity (SSIM)52. We use jaccard , psnr , and ssim in Matlab 
to compute IOU, PSNR, and SSIM, respectively. For reference, we include the definitions of these metrics below. 
Let f and f̂  be binary images. The IOU score of binary images f , f̂  is defined as

If the IOU score is 1, this means that two binary images f and f̂  are identical, so the higher the IOU, the better. 
The PSNR score is defined as

IOU(f , f̂ ) =
|f −1(0) ∩ f̂ −1(0)|

|f −1(0) ∪ f̂ −1(0)|
.
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Note that the IOU score is defined for the binary images while the PSNR can be used for grayscale images. The 
higher the PSNR, the better. Generally speaking, when the PSNR is greater than 30, it is difficult for human eyes 
to distinguish the difference between the two images53. Lastly, the SSIM score of (f , f̂ ) based on various windows 
of images. The measure between two windows (subimages) W and V is defined as

PSNR(f , f̂ ) = 10 · log10

((
maxx∈P f (x)

)2

MSE(f , f̂ )

)
, where MSE(f , f̂ ) =

1

|P|

∑

x∈P

(f (x)− f̂ (x))2.

Figure 6.   Conceptual images with salt and pepper noise and the results of different denoised algorithms: 
AMF29, denoiseImage, NAMF31, Algorithm 1, and CNN with median layers30. The parameters for 
Algorithm 1 are MaxIter=10 and Sizetol=5. Figure 5a is the ground truth image of the experiment.
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Figure 7.   Mean (solid) plus standard deviation (dashed) curves of IOU, log(β0) , log(β1) , PSNR, and SSIM 
scores for 100 trials at each computed salt and pepper noise density. Images in Fig. 6 are the representatives of 
images for obtaining the results. See also Supplementary Table S1.
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where µW represents the average of W, σ 2
W represents the variance of W, and σWV represents the covariance of 

W and V. For the typical choice of W, V, C1 , and C2 , we refer readers to52. As mentioned above, we use Matlab 
built-in function ssim with default parameters. Similar to other scores, a higher SSIM score indicates that two 
images have a higher degree of similarity. If SSIM score of (f , f̂ ) is 1, this means that two images are identical. 
The SSIM and PSNR scores are typical metrics used in image denoising tasks30,31. On the other hand, in the 
image segmentation tasks54,55, the IOU score (or the Jaccard index49) measures the distances between two binary 
masks of images.

Experiments with salt and pepper noise.  To further test Algorithm  1, we again use the 190× 190 
binary image shown in Fig. 5a as the ground truth. We add salt and pepper noise to the ground truth with 
various levels of noise densities. Specifically, we use the Matlab built-in function imnoise along with a speci-
fied noise density parameter d with range {0.1, 0.2, . . . , 1.0} . As illustration, resulting contaminated images with 
noise density 0.1, 0.3, 0.5, 0.7, and 0.9 can be found in the first column of Fig. 6. For each noise density, we con-
struct 100 contaminated images with the prescribed noise density. We then apply various denoising algorithms 
on each collection of contaminated images and measure their accuracy by comparing results to the ground truth.

Figure 6 demonstrates sample contaminated images with different noise densities as well as the processed 
images produced by the various denoising methods. From first to seventh column of Fig. 6, they are contami-
nated images, denoised images by AMF, denoiseImage, NAMF, Algorithm 1, and CNN with median layers, 
respectively. Visually, the denoised images produced by CNN with median layers (7th column of Fig. 6) are the 
closest to the ground truth. Compared with the unsupervised methods (i.e., AMF and NAMF), denoised images 
by Algorithm 1 are closest to the ground truth. Even in the case with high noise density 0.7, the denoised image 
returned by Algorithm 1 still recovers much of the core structure of the ground truth Fig. 5a. On the other hand, 
denoised images by AMF (2nd column of Fig. 6) and denoiseImage (3rd column of Fig. 6) still appear pix-
elated. We also see that although salt and pepper features seem to be removed by NAMF (4th column of Fig. 6), 
features from the ground truth image are also changed drastically.

Figure 7 shows results for studies of 100 noisy images with the prescribed noise densities. Since the AMF 
algorithm requires more computing costs ( ≈ 2 minutes per 190× 190 binary image) and NAMF has been shown 
to perform better among principal non-learning based methods31, we omit AMF from this experiment. General 
speaking, in Fig. 7, one may consider the curves labeled as “Noise” in each subplots as the baseline or the worst 
case scenario. Figure 7a shows a plot of the resulting IOU scores. We observe that in Fig. 7a, CNN with median 
layers performs the best followed by our proposed Algorithm 1. Figure 7b,c shows the log plot of Betti numbers. 
The ground truth of Betti numbers (6, 5) are labeled as “Ground Truth” in both Fig. 7b,c. In other words, in 
(b)-(c), curves that are close to the horizontal line “Ground Truth” are better. We observe that in Fig. 7b,c CNN 
with median layers and Algorithm 1 outperform the rest methods. Figure 7d shows the resulting values of PSNR. 
We observe in Fig. 7d that Algorithm 1 performs better than CNN with median layers at noise density 0.1, and 
better than denoiseImage and NAMF. Figure 7e shows the resulting values of SSIM. In (e), we observe that 
NAMF seems to be unchanged as noise density increases. We again see that the performance of Algorithm 1 is 
in between that of CNN with median layers and denoiseImage . The numerical values computed to produce 
Fig. 7 can be found in Supplementary Table S1.

Extensions to grayscale and RGB images. 

Combining Algorithm 1 with the thresholding techniques in Proposition 4 extends this approach to grayscale 
images. For a grayscale image g : P → {0, 1, ..., 255} , consider its binary images via global thresholding (6): 
g0, g1, ..., g255 . We apply Algorithm 1 to each binary image gi and obtain a denoised binary image ĝi . The final 
output grayscale image would be the sum of 

∑255
i=0 ĝi as shown in Algorithm 2. We apply Algorithm 2 with the 

parameters (SizeTol,MaxIter) = (4, 10) to a grayscale image as shown in Fig. 8b, and the denoised image 

SSIM(W,V) =
(2µWµV + C1)(2σWV + C2)

(µ2
W + µ2

V + C1)(σ
2
W + σ 2

V + C2)
,
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is shown in Fig. 8i. We observe that in Fig. 8i, the salt and pepper noise is removed, and some portions of images 
(e.g. the mouth of the man, the camera) are blurry. Note that since each thresholded image, gi , is treated sepa-
rately by Algorithm 1, the resulting images ĝi may not form a filtration, i.e. ĝi−1

(0) � ĝj
−1

(0) for i ≤ j . It would 
be interesting to extend Algorithm 1 to an approach that would preserve the subset relations on the denoised 
images, ensuring that they form a filtration.

By comparison, the denoised images produced by AMF, denoiseImage, NAMF, Algorithm 2, and CNN 
with Median Layers are shown in the Fig. 8e–h, respectively. We observe that, visually, denoised images produced 
by NAMF, Algorithm 2, and CNN with Median Layers seem to perform the best, while the image produced 
by denoiseImage seems to be pixelated and the one produced by AMF seems to be problematic on the 
boundaries of the image. To quantify the performances, Fig. 8o shows the IOU, PSNR, and SSIM scores when 
comparing the ground truth image Fig. 8a with denoised images (e)–(i), respectively. In this case, the denoised 

Figure 8.   The ground truth images are (a), (c) where (a) is one of images from the open domain database Flickr 
Material Database70 and the full database can be accessed at https://​people.​csail.​mit.​edu/​celiu/​CVPR2​010/​FMD/. 
(c) Adopted from the Wikipedia page https://​en.​wikip​edia.​org/​wiki/​File:​Mona_​Lisa.​jpg. The unprocessed 
images with noise are (b) and (d). The first two rows are the denoised images obtained by the following 
algorithms: AMF29, denoiseImage, NAMF31, Algorithm 2, 3, and CNN with median layers30. The last row is 
the averaged IOU, PSNR, and SSIM scores for the noised grayscale image for (a) and by color channel for (c).

https://people.csail.mit.edu/celiu/CVPR2010/FMD/
https://en.wikipedia.org/wiki/File:Mona_Lisa.jpg
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image produced by NAMF as shown in Fig. 8g earns the best scores and the image produced by Algorithm 2 as 
shown in Fig. 8h earns one of the top 3 scores among these methods.

Using a similar procedure, we may also extend the Algorithm 1 approach to RGB color images. Here, we 
treat each of the three color channels as a grayscale image and follow the same procedure described for grayscale 
images above as shown in Algorithm 3. The results for the 3 channels are then viewed together as an RGB image. 
Figure 8d shows the constructed noisy image from the original RGB image Fig. 8c. Figure 8m is the image pro-
duced by Algorithm 3 with the parameter (SizeTol,MaxIter) = (7, 10) . We observe that almost all of the 
salt and pepper noise is removed, and moreover, the denoised image still preserves the original image well. As 
a comparison, the denoised images by AMF, denoiseImage, NAMF, Algorithm 3, and CNN with Median 
Layers are shown in the Fig. 8j–n, respectively. Their IOU, PSNR, and SSIM scores can be found in Fig. 8o, and 
we find that again Algorithm 3 performs in the top 3 among these methods.

Our focus in this section has been to demonstrate that the multiparameter filtration contains useful informa-
tion and that automation may be used to extract it. Our proposed denoising algorithm works well on binary, 
grayscale, and color images with salt and pepper noise where the separation in spatial scale between the noise and 
true features may be used to effectively remove noise. Recently, others have developed salt and pepper denoising 
algorithms using deep learning e.g.56,57, where a training process is required. Our unsupervised approach does 
not require training and it would be interesting to investigate whether combining the two approaches could lead 
to even better results.

Hyper parameter tuning for the proposed method is also an important task. Currently, we choose the param-
eters based on the assumption that features due to noise have a relatively small spatial scale which we estimate 
based on empirical results. An interesting direction for future work is to more fully develop an automatic criterion 
for locating the gap in the persistence diagram that indicates a separation in spatial scales, using this information 
to set the appropriate hyper parameters.

Experiments with larger spatial scale noise.  At this point, we have seen that the proposed algorithms, 
Algorithm 1 and extensions Algorithm 2 and 3, are capable of processing and removing salt and pepper noise. 
They are unsupervised and use information from the proposed multi-parameter filtration. Their performances 
can be better than the general purpose deep learning based denoising algorithm, denoiseImage (as shown 
in Fig. 7). The performance of CNN with Median Layers seems to be the best among methods we tested. The 
focus of this subsection is to conduct a new experiment to further compare Algorithm 1 and CNN with Median 
Layers.

As mentioned in “One‑parameter filtrations and persistent homology” section, persistence diagrams for 
opening/closing filtrations reveal spatial scale information about features. If there exists a gap in the persistence 
diagrams, it may suggest that features exist in at least two different spatial scales. To quantify this, we consider a 
type of noise called “large salt and pepper” on binary images. For this noise, we randomly add white and black 
squares of size 1× 1 , 2× 2 , 4× 4 , and 8× 8 to the binary image. For instance, Fig. 9a illustrates an image con-
taminated by large salt noise.

Figure 9 also shows processed images using CNN with Median Layers and Algorithm 1. We observe in 
Fig. 9d–f that the CNN with Median Layers method fails to remove the larger features due to noise. This is most 
likely due to the CNN with Median Layer model being trained solely on images with typical, small scale salt and 
pepper noise and, therefore, that an expanded training set would be required for that approach to perform better 
on these images. On the other hand, Fig. 9g–i show denoised images produced by the unsupervised method given 

Figure 9.   First row: (a) An example of image with larger spatial scale salt and pepper noise. (b) Corresponding 
denoised images produced by CNN with Median Layers. (c) Corresponding denoised images produced by 
Algorithm 1. Second row: The table of evaluation scores IOU, β0 , β1 , PSNR, and SSIM of CNN with median 
layers and Algorithm 1. For each noise type, 100 images were formed and tested. All scores are recorded by 
mean ± standard deviation for the 100 trials. The ground truth of the pair (β0,β1) is (6, 5).
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in Algorithm 1. We observe that these images are very clean and close to the ground truth. To further quantify 
their performances, similar to the experiment in “Experiments with salt and pepper noise” section, for each type 
of noise, we randomly generate 100 noised images and test the performance of these two algorithms by measur-
ing IOU, PSNR, SSIM scores as well as calculating Betti numbers. The result is shown in Fig. 9j. We observe that 
Algorithm 1 performs better than CNN with Median Layers on this test set under all metrics.

Conclusion
In this work, we establish that, under mild conditions, the morphological operations of erosion, dilation, open-
ing, and closing may be combined to form multiparameter filtrations useful for studying binary images. These 
operations may also be combined with thresholding to form yet larger multiparameter filtrations useful for 
studying grayscale, and, by extension, color images. The dimension of the filtration grows with the number of 
operations and structuring elements, forming a potentially high dimensional framework in which to explore 
image structure and features. As demonstrated through the automated removal of salt and pepper and other 
small spatial scale noise from binary, grayscale, and color images in “Application: a denoising algorithm for salt 
and pepper noise” section, this framework can be used to create automated approaches to image analysis and 
processing. We believe that this work opens up a wide range of directions to pursue. We conclude this paper by 
mentioning a few of them. The experiment shows that the proposed algorithm outperforms classic algorithms 
on binary images that have salt and pepper noise, such as AMF and NAMF. On the other hand, although the 
CNN with median layers has better performance on erasing salt and pepper noise, the experiment in “Experi-
ments with larger spatial scale noise” section shows that the proposed algorithm outperforms even CNN for 
larger spatial scale salt-and-pepper.

There is a much broader class of methods for extracting information from multiparameter filtrations than 
just the approach of calculating persistence along nondecreasing paths that we describe in Definition 8 and use 
in “Application: a denoising algorithm for salt and pepper noise” section. Persistent homology may be general-
ized as a cellular sheaf defined on a partially ordered set (P,≤) , that is, a functor from P to the category of vector 
spaces58–61. Cellular sheaves were originally developed for studying nerve theory in topology62 and have recently 
been used for describing the persistence of objects in applied topology. Because the order in Definition 5 is also 
a partial order on Zk , persistent homology defined on a multifiltration has a natural cellular sheaf structure. 
The persistence of the structure is much more complicated since the totally ordered property fails on the new 
order. However, we do see a variety of approaches for analyzing topological features in this setting, such as sheaf 
cohomology59,63,64, zig-zag homology65, multi-graded Betti numbers25, and rank invariants24. The multiparameter 
filtration we create here offers a constructive class of examples on which to explore these methods.

Recently, some studies have incorporated information from persistence diagrams into deep learning archi-
tecture (see e.g.16,66–68). Since the proposed (larger) multi-parameter filtration contains an even greater level of 
information about studied images, it would be interesting to incorporate such information into deep learning 
architecture. In addition, mathematical morphology, a classic topic in image processing, offers a wide range of 
operations for different image processing tasks. In this paper, we only consider four fundamental morphological 
operations. It will be interesting to investigate whether other types of morphological operations yield one/multi-
parameter filtrations. For instance, an immediate application of this work is to form a bi-filtration by combining 
thresholding with the distance transform69, incorporating these operations into the existing framework to form 
a comprehensive, multi-parameter filtration. Lastly, as we mentioned in “New filtrations based on morphologi-
cal operations” section, sequences of structuring elements satisfying the shift inclusion37 property also satisfy 
conditions (A1), (A2), and (A3) of Theorem 1 and can therefore also be used for constructing multi-parameter 
filtrations. In this paper, we mainly consider the sequence of n× n squares to approximate the geometry of local 
regions in images. Because different structuring elements can uncover different local geometric information, it 
will be interesting to consider other types of structuring elements (e.g. straight lines and discrete star shapes13) 
in building multi-parameter filtrations.

Data and code availability
No datasets were generated or analysed during the current study. Our codes are available on https://​github.​com/​
peter​billhu/​MM_​Persi​stent​Homol​ogy.
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