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1  | INTRODUC TION

Morphological diversity is a central facet enabling species to occupy 
new habitats. Fish with paired fins are ecologically and evolutionarily 
the most diversified group in vertebrates. They exhibit a full spec-
trum of morphological diversity which allows them to inhabit diverse 
environments from 8,000 m deep up to the surface of the ocean, 
providing ambulatory locomotion and even flight above the water 
in some species (Nelson, 2006). A rich amount of fossil evidence, as 
well as living taxa, reveal the remarkable morphological disparity of 
paired fins; such varied form is thought to be linked to the success 

of this broad class of vertebrates. However, fin morphology is also 
quite consistent even across broad taxonomic comparisons. The 
cause of this canalization may stem from developmental constraints 
in shaping morphological complexity available for selection.

It has been hypothesized that paired fins would have assisted 
fish with maneuvering in their aqueous environment and increased 
stability while in motion (Harris, 1936, 1937, 1938). Pectoral and 
pelvic fins in some species have even acquired novel functions, 
such as threatening predators, sensing taste, walking, or flying 
(Dasilao & Sasaki, 1998; Gosline, 1994; Harvey & Batty, 2002; 
Jung et al., 2018). Modifications of basal bones and distal fin rays 
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Abstract
The fish fin is a breathtaking repository full of evolutionary diversity, novelty, and 
convergence. Over 500 million years, the adaptation to novel habitats has provided 
landscapes of fin diversity. Although comparative anatomy of evolutionarily divergent 
patterns over centuries has highlighted the fundamental architectures and evolution-
ary trends of fins, including convergent evolution, the developmental constraints on 
fin evolution, which bias the evolutionary trajectories of fin morphology, largely re-
main elusive. Here, we review the evolutionary history, developmental mechanisms, 
and evolutionary underpinnings of paired fins, illuminating possible developmental 
constraints on fin evolution. Our compilation of anatomical and genetic knowledge 
of fin development sheds light on the canalized and the unpredictable aspects of fin 
shape in evolution. Leveraged by an arsenal of genomic and genetic tools within the 
working arena of spectacular fin diversity, evolutionary developmental biology em-
barks on the establishment of conceptual framework for developmental constraints, 
previously enigmatic properties of evolution.
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underlie many of these changes and are tied to an individual's abil-
ity to thrive in their respective habitats. However, in the wide spec-
trum of fin morphologies, remarkably similar evolutionary patterns 
are discerned in separate lineages. Exceptionally wide paired fins, 
for instance, evolved in multiple teleost lineages independently (De 
Meyer & Geerinckx, 2014). Similar morphologies achieved in differ-
ent lineages are convergent, often taking place under specific eco-
logical demands. Despite broad recognition of these coincidences in 
morphology, the genetic and environmental causes underlying con-
vergence have remained undefined. Are only specific domains of fins 
susceptible to change during development? Are the same genes or 
genetic pathways involved in convergent evolution? How does the 
genetic regulation of these structures bias phenotypic trends seen 
in evolution of fin morphologies?

Developmental constraints, which could restrict the morpho-
space of body patterning during the ontogeny, have been proposed 
as a key factor shaping the character of fin form (Beldade, Koops, & 
Brakefield, 2002; Cheverud, 1984; Gould & Lewontin, 1979). One 
of the well-recognized causes of the constraints in development is 
the reuse of genes during development in new contexts. Animals re-
peatedly deploy the limited number of genes and genetic cascades 
in different developmental processes and physiological functions 
(Hodgkin, 1998; Williams, 1957). This pleiotropy of gene function 
leads to inter-dependencies between traits and limitations on vari-
ability (Lonfat, Montavon, Darbellay, Gitto, & Duboule, 2014). One 
benefit of the pleiotropy is the conservation of genes and genetic 
pathways during evolution (He & Zhang, 2006). The repetitive use 
of the same genes in multiple pathways, however, imposes limitation 
on changes in function of those genes to maintain viability. Thus, as 
a by-product of evolving a complexity, pleiotropy limits evolvabil-
ity and rapid adaptation to new environments (Morris et al., 2019). 
Despite the common acceptance of pleiotropy as a developmental 
constraint, a broader understanding of the structure of developmen-
tal constraints and its implications on morphology remains incom-
plete due to the lack of amenable models to test hypotheses.

Rapid advancements of genomics and molecular biology make 
these questions within our reach, even deploying non-model organ-
isms into lab experiments. De novo sequencing of genomes in non-
model organisms is becoming much more frequent and attainable 
due to the appearance of new technologies that produce long-read 
fragments (McCombie, McPherson, & Mardis, 2019). Moreover, ge-
netic manipulations, including functional knockout and transgenesis, 
are expanding functional testing to non-model organisms – fueling 
paradigm shifts in evolutionary developmental biology (Barman 
et al., 2017). With the background of these dramatic changes in ex-
perimental biology, an analysis of the underlying regulation of fin 
morphology, which holds both robustly conserved and extremely 
divergent aspects, serves as one of the prominent models to reveal 
underlying mechanisms of developmental constraints.

Here, we review the existing knowledge of morphology and 
patterns of diversity in an assessment of the evolutionary history 
of the paired fins, emphasizing conserved and divergent architec-
tures. Next, we summarize the developmental processes of paired 

fins with underlying genetic networks, which provide fundamental 
insights into the developmental constraints of fins. Finally, we com-
pare the genetic alterations responsible for extremely deviated fin 
morphology in teleosts and cartilaginous fishes to gain a deeper un-
derstanding of developmental constraints of fin morphology. The in-
tegration of newly emerging concepts in the evolution of paired fins 
sheds light on different layers of developmental constraints for fin 
diversity, enabling us to grasp the evolutionary trends of paired fins.

2  | LIMITED MORPHOSPACE OF PAIRED 
FINS

It is hypothesized that the appearance of paired appendages, specifi-
cally pectoral fins, increased the body stability and optimized mobil-
ity in vertebrate evolution as fish began to explore and move around 
their environment (Harris, 1936). In Anaspida, a group of extinct 
jawless fish, some species possessed a fin-like flap with spines pos-
terior to the external branchial openings (Figure 1a) (Janvier, 1996). 
These flaps did not encompass endoskeletal components, but were 
constructed of fin-ray like structures. These paired appendage 
structures had indications of radial muscles, although Anaspida's 
flaps may not represent the ancestral state of paired fins due to the 
possibility of their convergent evolution with paired fins of other 
species (Blom, 2012; Coates, 2003; Keating & Donoghue, 2016; 
Ritchie, 1964; Smith, 1957; Stensio, 1964) (Figure 1a). Following, 
Osteostraci, another group of fossil jawless vertebrates, had pec-
toral fins constructed of a single cartilaginous plate positioned pos-
terolaterally to the skull shield (Janvier, 1996; Janvier, Arsenault, & 
Desbiens, 2004). A well-preserved dermal skull shield of Norselaspis, 
in Osteostraci, reveals foramina for a nerve supply to the pectoral 
fin, suggesting the presence of muscles and nerves in the pectoral 
fin (Figure 1a) (Wängsjö, 1952). The endoskeletal remains of paired 
fins are also observed in Placodermi, a jawed fish, and most likely 
their fins evolved as environmental demands for robust maneuver-
ability increased (Stensiö, 1959).

Of note, placoderm lineages, such as represented by Antiarchi, 
possessed simple monobasic fins, composed of one endoskele-
tal element, surrounded by dermal bony plates (Long, Trinajstic, & 
Johanson, 2009; Westoll, 1947) (Figure 1a). These paired fins appear 
to be innervated by spinal nerves considering the presence of fo-
ramina of the girdle bones, which indicates that placoderm groups 
actively move their pectoral fins with robust endoskeletons (Stensiö, 
1959). Overall, Placoderms display intraspecific variation within their 
pectoral fins with the number of basal bones diverged from single 
to three in their evolution (Goujet, 2001; Goujet & Young, 2004; 
Westoll, 1947).

As pectoral fins continued to evolve throughout the gna-
thostome lineage, similar anatomical elements of the pectoral 
fin become shared among multiple groups (Coates, 2003). The 
gnathostome paired fin skeleton (excluding certain placoderms) 
typically consists of proximal bones and distal fin rays. The prox-
imal bones include anteroposteriorly arrayed radials and basals, 
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F I G U R E  1   The evolutionary history of fin diversity. (a) The evolutionary trajectory of paired fins in six major fish groups. From top; 
Rhyncholepis (Anaspida), Norselaspis (Osteostraci), Bothriolepis (Placodermi), Squalus (Chondrichthyes), Acanthodes (Acanthodii), and Danio 
(Actinopterygii). Rhyncholepis possessed fin-like flaps with spines (s). The length of flaps varies depending on species. Endoskeleton of 
Norselaspis fin is unknown. Bothriolepis evolved the pectoral fin with nerves, muscles, and blood vessels, which seem to be used for active 
fin movement. Later, a tribasal fin, often exhibiting fin spines, evolved in chondrichthyans and actinopterygians. (b) Diversity of paired 
fin skeletons. While the number of fin rays is susceptible to change during evolution, the number of proximal radials generally do not go 
over four in most species. The left is hillstream loach (Beaufortia kweichowensis) with four broad proximal radials and the right top is jelly 
nose fish (Ijimaia antillarum) with the fusion of proximal radials into one bone. The right bottom is eel cod (Muraenolepis Kuderskii) with 13 
radials, which is not the typical number of radials in Actinopterygii. (c) Innervation and musculature of the dorsal and pectoral fin. Top; the 
developing dorsal fin of sharks (Scyllium canicula). Each muscle bud (pink) associated with a radial is innervated by a spinal nerve (blue). 
Bottom; the adult pectoral fin of zebrafish. Four spinal nerves innervate the fin musculature that moves fin rays. Abductor superficialis 
(a.s.) articulate the girdle and proximal fin rays and arrector ventralis (a.v.) connects to the first fin rays. The number of somites in paired 
fin development could be related to the number of proximal radials seen (see the text). a.s.; abductor superficialis, a.v.; arrector ventralis, 
dr; distal radial, dsa; distal segment of exoskeleton fin armor, dse; distal segment of endoskeleton, m; muscle, meso; mesopterygium, 
meta; metapterygium, pr; proximal radial, pro; propterygium, psa; proximal segment of exoskeleton fin armor, pse; proximal segment of 
endoskeleton, r; radial, and s.n.; spinal nerve. All illustrations are after: (Balushkin & Prirodina, 2007; Goodrich, 1906; Grandel & Schulte-
Merker, 1998; Hara et al., 2018; Janvier, 1996; Kardong, 2012; Matsubara, 1963; Ritchie, 1980; Schaeffer & Williams, 1977; Stensiö, 1959; 
Stensio, 1964; Yano et al., 2012)
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which presumably originated via the fusion of some radials 
(Goodrich, 1930) (Figure 1a). The fin rays are called by ceratotrichia 
in cartilaginous fishes (chondrichthyans, class of Chondrichthyes) 
or lepidotrichia in ray-finned fishes (actinopterygians, class of 
Actinopterygii) (Carroll, 1988; Goodrich, 1930; Janvier, 1996) 
(Figure 1a). Cartilaginous fishes, and some families of ray-finned 
fishes, possess three types of basal bones: the metapterygium, 
mesopterygium, and propterygium (arranged from the posterior 
to anterior), which articulate to the girdle (”Chondrichthyes” and 
“Acanthodii” in Figure 1a). In the teleost lineage of ray-finned 
fishes, which comprises over half of all vertebrate species, it is 
hypothesized that they lost the ancestral metapterygium and pos-
sess only propterygium and mesopterygium (Daniel, 1934; Davis, 
Shubin, & Force, 2004). In teleosts, at the distal end of proximal 
radials, small endochondral bones, called distal radials, reside from 
which dermal fin rays extend off (Grandel & Schulte-Merker, 1998) 
(Figure 1a). Radials and fin rays are ontogenetically and histo-
logically different bones; radials have perichondral ossification, 
whereas fin rays are dermal bones that develop via intramembra-
nous ossification without a cartilaginous stage (Hall, 2005; Wood 
& Nakamura, 2018).

Over time, fin structures have been remodeled by specific lo-
comotion types; however, some features of their morphology are 
remarkably converged to the specific patterns. For example, in tele-
osts, the exceptionally wide paired fins of hillstream loach allow op-
timal maneuverability and overall adaptation to a fast-moving stream 
environment (De Meyer & Geerinckx, 2014). Despite the peculiar 
size of its pectoral fin, the hillstream loach does retain a simple set of 
four wide proximal radials, achieving its large paired fins (De Meyer 
& Geerinckx, 2014) (Figure 1b). A group of gurnard also possesses 
large pectoral fins using them for threatening predators. Their fins 
stem from large, but not extra, radial elements distally (Breder, 1963; 
Finger & Kalil, 1985; Gosline, 1994). Generally, the number of proxi-
mal radials in teleosts is four, with some exceptions, including some 
eel cods or jelly nose fishes (Figure 1b) (Balushkin & Prirodina, 2007; 
Matsubara, 1963) while the number of fin rays often increases or 
decreases, even intraspecifically (Balushkin & Prirodina, 2006; Giles 
et al., 2015; Miller, Cloutier, & Turner, 2003) (Figure 1b). This rule 
does not apply to some cartilaginous fishes or Acanthodii fishes as 
they have more than four proximal bones (Maisey et al., 2017). For 
example, the pectoral fins of some sharks, skates, and rays expand 
anteroposteriorly and have multiple segmentations in their radials, 
despite the possession of the conserved tribasal patterns (Coates & 
Sequeira, 2001; Daniel, 1934). Thus, “the four-basal rule” seems to 
be a constraint arising in stem and crown groups of teleosts.

The maximum number of the proximal radials in teleosts may 
depend on their developmental origins and interaction with other 
tissues. During teleost evolution, the size of paired fins became 
smaller, presumably causing overcrowding of mesenchymal cells 
within them, and then procartilaginous rudiments for fin radials 
evolutionarily fused together (Goodrich, 1930). Thus, the radials in 
modern teleosts develop from one continuous mesenchymal plate 
at the early stage and then divide into each rudiment. This derived 

developmental process implies that, even though modern teleost 
radials develop from a single large plate, the prospective procarti-
laginous rudiments in the plate may retain their original topological 
information by which they develop as completely separated bones in 
ancestral paired fins (Balfour, 1881; Goodrich, 1906).

Unpaired fins, such as dorsal fins, may hold the key to reveal de-
velopmental constraints on the number of proximal radials in paired 
appendages. Unpaired fins typically develop with a ridge of the epi-
dermis that covers the median mesenchyme plate, which later devel-
ops the basal radials of the fin skeleton (Balfour, 1881). Importantly, 
each muscle bud stems from a single somite, which is innervated by 
spinal nerves, and is associated with one radial during unpaired fin 
development (Balfour, 1881; Dohrn, 1884; Mayer, 1885). The phy-
logenetic and comparative studies indicate that unpaired fins evo-
lutionarily preceded paired fins in fish, which is currently explained 
by two debated hypotheses (Balfour, 1881; Gegenbaur, 1878; 
Goodrich, 1930; Mivart, 1879; Thacher, 1877). One of them, 
the lateral fin-fold theory, hypothesizes that longitudinal lateral 
folds ultimately separated into paired appendages (Balfour, 1881; 
Mivart, 1879; Thacher, 1877). The morphology of hypothetical lon-
gitudinal folds is similar to that of long stretched unpaired fins, pos-
iting that the developmental programs of unpaired fins are co-opted 
into the lateral folds. Therefore, the correspondence between a mus-
cle-bud and radial in unpaired fins may be evolutionarily maintained 
in paired fins (Balfour, 1877; Goodrich, 1930); following, the devel-
opment of proximal radials may be shaped, or constrained, by the 
number of somites (Goodrich, 1906) (Figure 1c). Alternatively, the 
functional necessity may constrain the number of proximal radials 
as if excessive division of the proximal radials into smaller elements 
may inhibit their proper function, such as producing propulsion; 
there are exceptions to this generality among teleosts such as eel 
cods of which pectoral fins possess up to 13 proximal radials, yet 
these radials are embedded in a large cartilaginous plate (Balushkin 
& Prirodina, 2006).

3  | GENETIC ARCHITEC TURES FOR THE 
REGUL ATION OF FIN SHAPE

The fish fin is one of the prominent systems to understand devel-
opmental mechanisms of vertebrate appendages due to its thin 
and transparent structure (Grandel & Schulte-Merker, 1998). While 
decades of studies have identified the developmental logics of tet-
rapod limbs mainly using mice and chickens (Mariani, Fernandez-
Teran, & Ros, 2017; Sheeba & Logan, 2017; Tickle & Towers, 2017; 
Zeller, López-Ríos, & Zuniga, 2009), recent extension of gene ex-
pression studies into cartilaginous fishes and ray-finned fishes per-
mits interrogation of the genetic mechanisms of fin development 
and, through comparison, their evolution (Ahn & Ho, 2008; Dahn, 
Davis, Pappano, & Shubin, 2007; Davis, Dahn, & Shubin, 2007; 
Freitas, Gómez-Skarmeta, & Rodrigues, 2014; Tulenko et al., 2017; 
Woltering, Holzem, Schneider, Nanos, & Meyer, 2018). These stud-
ies have highlighted the conserved and diverse genetic networks 
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underlying fin evolution (Davis, 2013; Petit, Sears, & Ahituv, 2017; 
Zuniga, 2015). Here we highlight a few mechanisms and variation in 
their use through development of diverse fins.

3.1 | Early fin initiation

The growth of the fin bud occurs in the lateral plate mesoderm 
(LPM). Tbx5, a T-box transcription factor, of which mutations cause 
heart and limb defects such as Holt-Oram syndrome (Bruneau 
et al., 2001), is one of the early markers of pectoral fin formation 
(Figure 2a). Previous studies showed that the expression pattern and 
function of Tbx5 in the pectoral fin/forelimb domain are conserved 

from fish to tetrapods as an ancient feature of jawed vertebrates 
(Adachi, Robinson, Goolsbee, & Shubin, 2016; Ahn, Kourakis, Rohde, 
Slivert, & Ho, 2002; Pi-Roig, Martin-Blanco, & Minguillon, 2014; 
Tamura, Yonei-Tamura, & Belmonte, 1999). Without Tbx5 function, 
the fin bud development fails and all its derivatives, including the 
pectoral girdle, are malformed (Ahn et al., 2002; Garrity, Childs, & 
Fishman, 2002; Mao, Stinnett, & Ho, 2015).

Once the fin starts to grow, the Apical Ectodermal Ridge (AER), 
a thickened ectodermal structure, is formed along the distal edge 
of the fin bud overlying the mesenchymal cells (Grandel & Schulte-
Merker, 1998) (Figure 2a). The fin AER stimulates bud outgrowth 
in the distal direction, expressing key growth factors such as 
Fibroblast growth factor 8 or Wnt 3, which promote the permissive 

F I G U R E  2   The developmental mechanisms of fish fins. (a) Developmental mechanisms of the pectoral fin. Left; at the early stage, apical 
ectodermal ridge (AER) expresses Fgf8 and other growth factors which stimulate cell proliferation via the positive feedback with Shh in ZPA. 
Hox genes establish the nested expression patterns from the posterior to anterior fin and set positional information for fin patterning. Right; 
at the late stage, AER transforms into apical fold (AF), in which actinotrichia develop. Hoxa13 genes are expressed in the distal mesenchyme 
of the endoskeletal disc and these cell populations migrate into the AF. Hoxd11-d13 genes are expressed in the posterior mesenchyme and 
regulate skeletal patterning (Freitas, Gómez-Marín, Wilson, Casares, & Gómez-Skarmeta, 2012; Nakamura et al., 2016). (b) The diagram 
for the transformation of AER into AF in unpaired fins. AER establishes the thickened ectodermal layer during the early fin development. 
Then, AER changes to AF, in which the distal Apical Fold (dAF) forms two layers of the ectodermal tissue. Once AER transforms into AF, 
mesenchymal cells migrate into the proximal Apical Fold (pAF). Actinotrichia Forming Cells (AFC) which express And1 gene are in the 
ectoderm and mesenchyme, developing actinotrichia. (c) Concurrent development of skeletons, muscles, and nerves around 120 hpf of 
zebrafish pectoral fin. In the proximal fin, the endoskeletal disc consists of two layers of cells. Muscle cells are at the dorsal and ventral to 
the endoskeletal disc, and will give rise to adductor and abductor muscles later. Marginal blood vessel is at the distal to the endoskeletal disc. 
Spinal nerves enter the pectoral fin and innervate dorsal and ventral fin muscles (Grandel & Schulte-Merker, 1998)
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growth of the fin bud. Disruption of these signaling functions in 
AER formation results in the early truncation of the fin (Fischer, 
Draper, & Neumann, 2003; Nagayoshi et al., 2008). Growth and 
positional information along the anteroposterior (AP) axis in fin/
limb development are accurately coordinated by another signal-
ing center which is located in the posterior fin mesenchyme, Zone 
of Polarizing Activity (ZPA) (Akimenko & Ekker, 1995; Hoffman, 
Miles, Avaron, Laforest, & Akimenko, 2002) (Figure 2a). In ZPA, 
Sonic Hedgehog (Shh), a secreted signaling protein, is expressed 
and sets a gradient of the signaling across the fin bud, providing 
the AP positional information with stimulating fin growth (Ahn & 
Joyner, 2004; Akimenko & Ekker, 1995; Harfe et al., 2004). The 
effect of Shh on fin patterning is evolutionarily conserved with 
tetrapod limb; functional perturbation or knockout analysis of Shh 
in chondrichthyans and teleost fishes shows the loss of AP pat-
terning and reduction of the fin size (Dahn et al., 2007; Neumann, 
Grandel, Gaffield, Schulte-Merker, & Nüsslein-Volhard, 1999), 
whereas its upregulation exerts opposite effects (Chen, Wang, 
Yu, Wu, & Pai, 2009). Though the expression of Shh in the pos-
terior fin is conserved among bony and cartilaginous fishes, the 
timing of onset varies, contributing to the fin/limb shape diver-
sity (Dahn et al., 2007; Sakamoto et al., 2009; Shapiro, Hanken, & 
Rosenthal, 2003).

The Shh activity from ZPA is also required for the proximodistal 
fin growth in fishes by establishing the positive feedback loop with 
AER (Niswander, Jeffrey, Martin, & Tickle, 1994; Zeller et al., 2009). 
Shh expressed in ZPA induces Fgf8 expression in AER and, in turn, 
Fgf8 upregulates Shh, creating a reciprocal signaling loop critical for 
the expansion of the fin bud (Figure 2a) (Mercader, 2007; Nomura 
et al., 2006). The loss of components in this feedback loop leads 
to severe phenotypes in fin development; Fgf10 mutant zebrafish 
(Danio rerio) have defective AER formation, resulting in a truncated 
pectoral fin (Norton, Ledin, Grandel, & Neumann, 2005). This feed-
back loop between AER and ZPA is most likely conserved in other 
fishes, as skate pectoral fin displays similar expression patterns of 
Fgf8 and Fgf10 in AER and underlying mesenchyme, respectively 
(Nakamura et al., 2015). As the alteration of Shh or Ptch1 expression 
patterns leads to changes of digit number in tetrapods (Lopez-Rios 
et al., 2014), fine tunings of the parameters in this conserved feed-
back loop are likely to underlie the diversity of paired fin shape.

3.2 | Extension of fin growth and patterning

In contrast to tetrapod limbs that develop exclusively with AER, fins 
of chondrichthyans and actinopterygians transform the early AER 
to an extended ectodermal structure called the Apical Fold (AF) 
(Figure 2a,b) (Thorogood, 1991; Yano, Abe, Yokoyama, Kawakami, 
& Tamura, 2012). The thickened ectodermal structure of the AER 
separates into two layers as the distal fin mesenchyme distally 
migrates between these two layers, extending the AF domain 
(Figure 2b) (Yano et al., 2012). Subsequently, actinotrichia forming 
cells (AFC) differentiate, of which the developmental origin remains 

elusive, and form the actinotrichia, the embryonic predecessor of 
the fin rays (Figure 2b) (Durán, Marí-Beffa, Santamaría, Becerra, 
& Santos-Ruiz, 2011). Actinotrichia is an assembly of collagen and 
non-collagen components synthesized by and gene products (Zhang 
et al., 2010). During later development, actinotrichia is replaced by 
the dermal bones called lepidotrichia, a major component of fin rays.

Recent genetic studies have highlighted remarkable conserva-
tion and functional differences of key developmental genes in ap-
pendage diversity, including the tetrapod distal limb (prospective 
endochondral bones) and fish AF (prospective dermal fin rays), which 
are ontogenetically and structurally different. Hox transcription fac-
tors are central to body patterning in vertebrates (Deschamps & 
van Nes, 2005; Mallo, 2018; Young & Deschamps, 2009) and ex-
hibit nested expression patterns in appendage primordia (Figure 2a) 
(Pérez-Gómez, Haro, Fernández-Guerrero, Bastida, & Ros, 2018; 
Zakany & Duboule, 2007). Strikingly, comparative studies in cat-
shark (Freitas, Zhang, & Cohn, 2007), paddlefish (Davis et al., 2007; 
Tulenko et al., 2016), medaka (Takamatsu et al., 2007), and zebrafish 
(Ahn & Ho, 2008) all showed nested expression patterns of Hoxa and 
d genes in the endochondral disc and even in the AF, emphasizing 
that nested Hox expression patterns in appendage development are 
deeply conserved features from fins to limbs beyond their apparent 
morphological disparity (Davis, 2013; Lalonde & Akimenko, 2018; 
Tulenko et al., 2016). Not only Hox genes but also other gene expres-
sions such as Ectodysplasin receptor (Edar) are conserved between 
fish fins and mouse limbs. Edar is expressed in the distal endochon-
dral radials and forming lepidotrichial rays, and the mutation in Edar 
gene disrupts the development of radials and fin rays in zebrafish 
(Harris et al., 2008). In the mouse limb bud, it is expressed in AER and 
necessary for the sweat gland formation (Pispa, Mikkola, Mustonen, 
& Thesleff, 2003). Given that the mouse limb only consists of endo-
chondral bones without fin rays, the downstream networks of Edar in 
lepidotrichial rays seems to be lost from appendages during the fin-
to-limb transition. These unexpected conservations of tool-kit genes 
in the AF and tetrapod limbs imply that the ground plan of the AF 
domain is established via the conserved genetic mechanisms among 
diverse appendages. Yet modifications of their downstream network 
could have produced morphological diversity such as fins and limbs 
(Nakamura, Gehrke, Lemberg, Szymaszek, & Shubin, 2016).

In contrast to the conserved repertoire of genes active in ap-
pendage development and their evolution, fin development also 
deploys lineage-specific mechanisms. In teleosts, diversification of 
Fgf signaling underlies early divergence. The fish-specific gene Fgf24 
(Jovelin et al., 2010), which is expressed in the early fin bud mesen-
chyme and late fin AER, activates Fgf10 expression and regulates cell 
migrations into the fin bud (Fischer et al., 2003; Mao et al., 2015). 
The Fgf24 mutant fish (ikaraus) results in the complete absence of 
the pectoral fin. Intriguingly, Fgf24 was lost during the fish-to-tet-
rapod transition and could be critical for the fin-to-limb change. 
Moreover, zebrafish Fgf16 is indispensable for the proliferation of 
mesenchymal cells and differentiation of AER, but its function for 
the tetrapod limb development is unknown (Nomura et al., 2006). 
These genetic mechanisms for fin development could be driving 
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factors of fin diversity in teleost fishes, and even in other fish includ-
ing cartilaginous fishes.

3.3 | In patterning the fin

In fin development, skeletons, muscles, and nerves form under the 
precise coordination in a spatial and temporal manner (Figure 2c) 
(Thorsen & Hale, 2005; Thorsen & Hale, 2007). The pectoral fin of 
zebrafish develops in the LPM adjacent to the somite one to four 
(Mao et al., 2015) and other teleosts develop their pectoral fins at the 
comparable position, at least at the initial stage of fin development 
(Ahn et al., 2002; Richards, 2005). Muscle precursor cells develop 
from the somitic mesoderm, and in zebrafish, cells from somites two 
to four migrate into the pectoral fin bud with the expression of Lbx2, 
a homologue of amniote Lbx1 and a marker of migrating muscle pre-
cursor cells (Neyt et al., 2000; Ochi & Westerfield, 2009) (Figure 2c). 
Muscle development through the migration of Lbx2-positive cells 
occurs as skeletal development with the mesenchyme of the LPM 
and blood vessel development proceeds (Grandel & Schulte-
Merker, 1998). This suggests that the fin bud grows as a highly het-
erogeneous tissue with physical and molecular interactions among 
multiple types of cells (Figure 2c).

Intriguingly, in tetrapods, the paraxial mesoderm cells and LPM 
cells retain their original topological relationship throughout the de-
velopment of the girdle which supports the limbs at their proximal 
end (Huang, Zhi, Patel, Wilting, & Christ, 2000; Shearman, Tulenko, 
& Burke, 2011; Wang et al., 2005). An analogous process occurs 
during the development of pectoral fins in cartilaginous fish, where 
muscles and nerves develop closely associated with forming rays 
(Goodrich, 1930; Lopez-Rios et al., 2014; Turner et al., 2019), main-
taining their segmental order. Given that the somitic mesoderm and 
LPM in adjacent positions interact by diffusible molecules such as 
retinoic acid and Wnts (Gibert, Gajewski, Meyer, & Begemann, 2006) 
which, in turn, affect collinear Hox expression patterns (Prince, Joly, 
Ekker, & Ho, 1998), it would be intriguing to test whether the skel-
etons originating from the LPM are affected by signaling from the 
somitic mesoderm or by physical interactions between these tissues. 
Testing the mutual effects between LPM and the somatic mesoderm 
during fin development would help to answer how skeletons and 
muscles simultaneously evolve to achieve functional fin structures 
in the evolution of morphological diversity in paired fins.

4  | RELE A SE FROM DE VELOPMENTAL 
CONSTR AINTS – FINS OF BENTHIC 
DWELLERS

Adaption to benthic habitats is one of the fascinating examples of 
fin evolution, in which the size of the pectoral fins repeatedly and 
independently expands in multiple lineages (Cooper et al., 2010; 
Muschick, Indermaur, & Salzburger, 2012; Recknagel, Elmer, & 
Meyer, 2014). Wide fins exert novel essential functions for fish 

survival, such as burying body into sand (Hauser, 2011), threaten-
ing predators (Gosline, 1994), or clinging rocks in fast currents (De 
Meyer & Geerinckx, 2014). Recent careful examinations of their 
anatomy and development highlight distinct evolutionary modes and 
genetic differences between teleosts and cartilaginous fishes, shed-
ding light on developmental potential and constraints in fins.

Several species of cichlids, living in African lakes, have inde-
pendently adapted to benthic habitats for foraging and show con-
vergent morphological trends; the number of fin rays is increased 
and they have a concordant widening of the abductor superficialis 
(ABS), the muscle which articulates the girdle to the proximal fin 
rays (Figure 3a) (Hulsey, Roberts, Loh, Rupp, & Streelman, 2013). To 
reveal genetic basis underlying this recurrent evolution of benthic 
fin morphology, Quantitative Trait Loci (QTL) was employed (Navon, 
Olearczyk, & Albertson, 2017). Two benthic species, blue mbuna 
(Labeotropheus fuelleborni:LF) and Tropheops sp. ‘red cheek’ (TRC), in 
which the pectoral fin in LF possesses more fin rays than that in TRC, 
were crossed with each other and their F2 were analyzed by mor-
phometrics with mapping to identify responsible loci for the ‘wide 
fin’ phenotypes (Navon et al., 2017). One of the identified single 
nucleotide polymorphisms (SNPs) is located approximately 40 kbp 
away from Wnt7aa, of which homologue is expressed in the dorsal 
ectoderm of the tetrapod limb regulating the dorsoventral asymme-
try (Kengaku et al., 1998; Parr, Shea, Vassileva, & McMahon, 1993). 
Because Wnt7aa expression was found in the developing fin of LF 
but not in that of TRC, the gain of novel Wnt7aa expression domain 
seems to evolve the wide fin in LF (Figure 3a). Moreover, alterations 
of several other gene expressions as well as Wnt7aa might coopera-
tively contribute to the wide paired fins in cichlids as a SNP close to 
Col1a1(type 1 collagen gene), a bone differentiation marker (Fisher, 
Jagadeeswaran, & Halpern, 2003), was also identified as a loci asso-
ciating with wide fin phenotypes. This raises a possibility that the 
alteration of expression levels of multiple genes might synergistically 
produce the evolutionary diversity of the fin width. The next chal-
lenge would be to test how Wnt7aa, Col1a1, and other genes have 
been involved in convergent evolution of benthic teleost fins, such 
as hillstream loach; whether all the same genes, some of them, or 
utterly different gene sets are involved in convergent evolution of 
wide fins.

Cartilaginous fish, including skate and rays (Batoidea), and an-
gelsharks (Selachii), also evolved wide paired fins for benthic hab-
itats (Figure 3b), however, their developmental and genetic basis 
seems to be fundamentally different from ones found in teleosts. 
Exceptionally wide paired fins of skates develop from the signifi-
cantly wide fin bud and constitute a large part of the flat body 
(Martinez, Rohlf, & Frisk, 2016). Despite their exceedingly devi-
ated shape from other fins, the internal skeletons primarily consist 
of three basal bones: metapterygium, mesopterygium, and prop-
terygium (Figure 1a, Figure 3b). Intriguingly, skates and rays, and 
angelsharks independently achieved their peculiar but similar wide 
fins with comparable skeletal architectures from their common an-
cestors (Carrier, Musick, & Heithaus, 2012) – a striking example of 
convergent evolution.
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F I G U R E  3   Distinct mechanisms of the fin expansion in teleosts and cartilaginous fishes. (a) The recurrent evolution of wide paired fins 
in African cichlid fishes. Black circles indicate limnetic species and white circles indicate benthic species that evolved in separate lineages 
in multiple times (Hulsey et al., 2013). Right box; the generalized adult pectoral fin of cichlid fish (Hulsey et al., 2013) and the expression 
pattern of Lef1 and Wnt7aa in the developing pectoral fins of LF and TRC (Navon et al., 2017). The dorsoventral and anteroposterior axes 
are indicated. (b) Repeated evolution of wide paired fins in cartilaginous fishes. Note that basal bones (propterygium, mesopterygium, 
and metapterygium) evolved to be very wide in angelsharks, skates, guitarfishes, and stingrays. Wide paired fins of angelsharks and rays 
are the consequence of convergent evolution (red nodes). (c) Developmental mechanisms of paired fins in zebrafish (teleosts) and skates 
(cartilaginous fish). In teleosts, Hox4 and 5 PGs (red) are expressed in the LPM and are likely important to induce the fin bud as tetrapods. 
Hoxc9 (blue), which functions as a repressor of Tbx5 induction in tetrapods, is expressed in the posterior lateral plate mesoderm. However, 
in cartilaginous fish, HoxC cluster genes were decreased or completely lost. In addition, skate embryos exhibit the reorganization of Hox 
expression patterns, such as the expansion of Hox4 and 5 to the posterior body, evolving strikingly wide fins. In the pectoral fin, skates 
possess 3′Hox module which anteriorly extends the fin, in addition to 5′Hox module which elongates the fin to the posterior direction. 
ABS; abductor superficialis, AR; arrector ventralis, and fr; fin rays, meso; mesopterygium, meta; metapterygium, and pro; propterygium. 
All illustrations are after: (Comer, Klochko, Pauly, Cousteau, & Parenti, 2008; Carvalho et al., 2008; Ebert & Gon, 2017; Hulsey et al., 2013; 
Nakamura et al., 2015)
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In the LPM of tetrapods, Hox4 and Hox5 paralogous groups 
(PGs) were suggested to induce Tbx5 expression (Minguillon 
et al., 2012), which promotes the limb growth (Agarwal et al., 2003; 
Ahn et al., 2002; Rallis et al., 2003). To restrict the expression do-
main of Tbx5 to a certain degree in the LPM, Hoxc9 plays an oppo-
site role, repressing Tbx5 expression via the competitive binding to 
the Tbx5 enhancer (Nishimoto, Minguillon, Wood, & Logan, 2014). 
Notably, in skates, the expression patterns of Hox family genes, 
including Hox4, 5, and 9 PGs, have been extensively reorganized 
(Figure 3c). In situ hybridization and immunofluorescence stain-
ing identified that the expression domains of Hox4 and 5 PGs are 
wider in skate embryos than those of amniotes (Jung et al., 2018; 
Turner et al., 2019), suggesting that the evolution of wide pecto-
ral fins in skates attributes to the expansion of Hox4 and 5 PGs 
domains. Furthermore, posterior Hox genes (5' Hox genes, such as 
Hoxa9) shifted to far more posterior, which is also likely to contrib-
ute to the fin expansion synergistically. Intriguingly, the upstream 
regulators of Hox genes in skates, such as Raldh2, Wnt3, and Fgf8, 
exhibited comparable expression patterns with those of other 
vertebrates, implying that cis-regulatory changes of Hox genes 
underlie the posterior shifts of the nested expression patterns in 
cartilaginous fish (Turner et al., 2019).

During late development of the fin, the pectoral fin bud of 
skates further expands along the AP axis from the wide fin bud. 
The molecular mechanisms for this late expansion of the pectoral 
fin have been uncovered as well as the genetic mechanisms under-
lying generation of a wide fin bud. (Barry & Crow, 2017; Nakamura 
et al., 2015). RNA-sequencing and subsequent in situ hybridization 
revealed that skate pectoral fin possesses an extra AER in the an-
terior fin in addition to the canonical AER that limbed vertebrates 
form. The posterior AER in skate fins is regulated by the conserved 
5' Hox module, in which 5′ Hox genes induce Fgf10 expression and 
then Fgf10 upregulates the expression of AER genes such as Fgf8 
or Wnt3 (Sheth et al., 2013). In contrast, the anterior AER in skate 
is maintained by 3' Hox genetic network in which 3′Hox genes reg-
ulate the expression of Fgf7. Intriguingly, Fgf7 binds to the same 
Fgf receptor as Fgf10, which is a component of the canonical 5′Hox 
module (Jin, Wu, Bellusci, & Zhang, 2019; Nakamura et al., 2015; 
Sheth et al., 2013) (Figure 3c). Thus, despite the differences of in-
volved genes in 5′Hox and 3′ Hox genetic networks, two distinct 
modules achieve morphologically similar structures in the anterior 
and posterior fin formation.

The convergent evolution of wide paired fins in teleosts and 
cartilaginous fishes highlights possible developmental constraints 
on fin evolvability. Whereas repeated evolution of wide paired fins 
in teleosts mainly has modified the length and number of fin rays 
without drastic changes of the number of proximal radials (De Meyer 
& Geerinckx, 2014; Klingenberg & Ekau, 1996), cartilaginous fishes 
have evolved wide paired fins with significant modifications of the 
number of basal bones. Despite the limited information on genetic 
mechanisms of fin development, this difference may originate from 
the erosion or loss of HoxC cluster genes in sharks and rays (Hara 
et al., 2018; King, Gillis, Carlisle, & Dahn, 2011). As HoxC cluster 

genes are suggested to repress Tbx5 expression in the LPM during 
limb development (Nishimoto et al., 2014), the decrease or complete 
loss of HoxC genes in cartilaginous fish provides fins opportuni-
ties to escape from the ontogenetic restriction of fin base width, 
increasing morphospace of pectoral fins. However, as knockout 
mice of the entire HoxC cluster did not show obvious phenotypes 
in appendage width but with homeotic shifts of vertebrae (Saegusa, 
Takahashi, Noguchi, & Suemori, 1996; Suemori & Noguchi, 2000), 
not only the release from HoxC repression but also the expansion 
of Hox4 or 5 domains seems to be imperative for evolution of wide 
fins. Accordingly, HoxC repression is hypothesized to be one of the 
developmental constraints that limit the evolvability of fin width and 
the loss of HoxC genes might grant an evolutionary possibility for 
wide fins to cartilaginous fish such as by expanding Hox4 and 5 PG 
domains.

5  | TOWARDS A DE VELOPMENTAL 
E VOLUTIONARY MODEL OF FIN DIVERSIT Y

Cumulative knowledge from disparate disciplines highlights distinct 
aspects of developmental constraints that shape fin evolution op-
erating at different levels of development such as tissue and cell 
behavior. Only through the integration of anatomy, embryology, 
and comparative genomics are we able to understand evolutionary 
trends underlying transitions in fin diversity. Here, we summarize 
current hypotheses and next questions for the developmental con-
straints of fin evolution.

5.1 | The primary shape of paired fins is predictable 
by the width of fin bud base

The fin shape of cartilaginous fishes is extraordinarily diverse as 
skates and rays exhibit the most extreme pectoral fin forms of the 
group (Carrier et al., 2012; Daniel, 1934). This diversity is produced 
during the ontogenetic process; the width of early fin bud is likely de-
termined by Hox genes, and then the fin anteroposteriorly extends 
during later development (Maxwell, Fröbisch, & Heppleston, 2008; 
Nakamura et al., 2015; Turner et al., 2019). Intriguingly, the width 
of the fin anlagen and the AP elongation of the fin, seem to be posi-
tively correlated; the width of fin attachment site to the body trunk 
in angelshark pectoral fin is slightly wider and the fin extends more 
anteriorly than other sharks, whereas skates and stingrays show the 
extraordinarily wide fin bud at the early developmental stage with 
the full elongation of the fin to the head at the late stage (Carvalho, 
Kriwet, & Thies, 2008; Maxwell et al., 2008). Although the genetic 
linkages of these two different developmental processes are un-
known, it appears to be possible to predict somewhat how long the 
pectoral fins extend towards the head by observing the width of fin 
anlagen. The same genes or genetic pathways may be involved in 
both cases; hox genes that regulate the width of fin bud anlagen, for 
example, could also be involved in the anterior elongation of the fin.
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5.2 | The number of radials is regulated by species-
specific genetic modifications

Cartilaginous fish, including extinct sharks, exhibit remarkable di-
versity in the number of basal bones. Some extinct species, such as 
Antarctilamna or Expleuracanthus, possessed a long series of basal 
radial bones within the pectoral fin – the segmented metapterygium 
(Janvier, 1996). The number of basal bones is partly correlated to 
the overall size and shape of the fin as it increases with the fin size. 
However, given the specific alterations of branching and segmen-
tation patterns of fin cartilages by retinoic acid treatment (Dahn 
et al., 2007), each bone morphology must be specified in a dynamic 
fashion that occurs in a taxon-specific manner. This fact underscores 
the necessity for thorough comprehensive and comparative stud-
ies to fully resolve the underlying mechanisms. In contrast to car-
tilaginous fish, the number of proximal radials in modern teleosts is 
conserved up to four. The upper limit of the radial number may be an 
attribute to the number of somites that contribute to the fin devel-
opment. This process of constraining the radial number and decou-
pling the act of increasing radial number and fin size in teleost fishes 
hinders simple prediction of fin shape by radial number (Balushkin & 
Prirodina, 2006). Continuous efforts, including fine mapping of ge-
netic loci responsible for fin diversity, will provide a comprehensive 
view of the genetic regulation that generates radial variations in tel-
eosts (Kawajiri, Fujimoto, Yoshida, Yamahira, & Kitano, 2015; Keong, 
Siraj, Daud, Panandam, & Rahman, 2014; Navon et al., 2017).

5.3 | The correlated evolution of associated tissues 
in fins

For any novel morphology to function, the complex interactions of 
multiple tissues need to be coordinated to permit functional utility. 
How such coordination occurs in development is a conundrum - how 
do different tissues such as skeletons, muscles and nerves simul-
taneously evolve and how do interactions among these structures 
constrain their transformation with each other during evolution? 
(Tsutsumi, Tran, & Cooper, 2017). Recent progress showed that the 
proximodistal pattern of muscles, joints, and skeletons are all inte-
grated through common genetic signaling pathways in part regulated 
by Hox11 genes, suggesting that these integrated tissue interactions 
may be in part an emergent property of development (Hawkins, 
Henke, & Harris, 2019). An understanding of how such integration 
is regulated will be insightful and add additional layers to our under-
standing of developmental constraints on fin morphology.

5.4 | Fin diversity hidden by selection

The ultimate understanding of fin diversity with the underlying de-
velopmental constraints may originate from an assimilation of evo-
lutionary biology, ecology, and embryology. Since fin morphology 
has been a key character under selective pressures in many differing 

environments, such as water, land, and air, for greater than 500 mil-
lion years, the ecological niche consistently biases evolutionary 
trajectories of fins, thus shaping specific underlying developmental 
programs. The concept of "developmental constraints" can be used 
to help understand the types of form and diversity seen in evolution. 
Yet, if we can release this constraint, as can be done in a laboratory 
setting, we would endeavor to decipher how much evolutionary pos-
sibility is invisible to us by natural selections. A direct comparison to 
natural forms can reveal the broader spectrum of what development 
can do, the constraints development imposes on form, and ecologi-
cal constrictions on developmental potential.
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