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Abstract

A significant number of discrepancies exist within the literature regarding ALDEFLUOR-positive 

stem cell populations in cell lines. We hypothesized that these inconsistencies resulted from 

differences in culture conditions, particularly cell density. We cultured several colon cancer cell 

lines (N=8) at high and low densities and found a significant decrease in ALDEFLUOR-positive 

cell populations at high density. However, we found no changes in the CD166-positive stem cell 

population, self-renewal, or cell cycle distribution of cells cultured at different densities. 

Interestingly, when we sorted both ALDEFLUOR positive and negative populations from the 

different density cultures, we identified a significant number of Aldehyde dehydrogenase (ALDH) 

isoforms whose expression was decreased in ALDEFLUOR-positive stem cells cultured at high 

density. This novel finding suggests that multiple ALDH isoforms contribute to ALDEFLUOR 

activity in colon cancer stem cells and decreases in ALDEFLUOR-positive stem cells at high cell 

density are due to decreased expression of multiple ALDH isoforms. Thus, designing therapeutics 

to target ALDEFLUOR-positive cancer stem cells may require inhibition of multiple ALDH 

isoforms.
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INTRODUCTION

With the increased use of the ALDEFLUOR assay to isolate and identify Cancer Stem Cells 

(CSCs), we noticed different published papers reported different percent ALDEFLUOR-

positive cells for the same cancer cell lines.1–4 This difference was also seen in our own cell 

cultures especially when the colon cancer cell lines were grown in low or high densities. We 

hypothesized that the variation in ALDEFLUOR results was due to cultures being grown at 

different densities and that ALDEFLUOR-positive stem cell populations might express 

different Aldehyde dehydrogenase (ALDH) isoforms dependent on culture density. There is 

a paucity of data reported on cell culture density in papers giving results on the number of 

CSCs using the ALDEFLUOR assay. However, there are a few articles and reviews that 

acknowledge that gene expression can change with respect to the changing characteristics of 

stem cells observed at different culture densities.5–9

Aldehyde dehydrogenase (ALDH) is part of a family of enzymes localized in the cytoplasm, 

mitochondria or nucleus.10 In recent years, ALDH has been used to identify CSCs in various 

solid tumors and it has become a universal marker for CSCs in epithelial cancers.10,11 The 

ALDEFLUOR assay allows for the isolation of viable CSCs from patient tissue samples and 

for further analysis involving in vitro and in vivo studies. This assay measures the ALDH 

enzyme activity via cleavage of a fluorescent substrate, BODIPY-Aminoacetaldehyde 

(BAAA), that consists of an aminoacetaldehyde moiety bonded to the BODIPY 

fluorochrome.12 To measure the exact percent of cells with high ALDH activity, an ALDH 

inhibitor, Diethylaminobenzaldehyde (DEAB), is used as a control.

There are 19 known isoforms of ALDH and several have been implicated in different types 

of cancers. Isoform expression is cell and tissue type dependent. In breast cancer, ALDH1, 

ALDH1A1, 1A3, and 3A1 have all been identified and correlated with aggression, 

progression, or poor survival.13–16 ALDH1A3 has also been identified as the main isoform 

responsible for ALDEFLUOR activity in breast cancer cells.17 In ovarian cancer, ALDH1A1 

overexpression was tumor-type specific. Overexpression of isoforms 1A3, 3A2 and 7A1 in 

ovarian cancer appear to be a more consistent finding.18 ALDH7A1 overexpression is 

reported to contribute to metastasis in prostate cancer.19 Overexpression of ALDH3A1 has 

also been identified in prostate cancer and hepatocellular carcinoma. In colon, ALDH1B1 

was identified as a potential CSC biomarker in patient samples.20 Particularly in colon, a 

pan-ALDH1 antibody has been used to identify expression patterns. Expression of the 

ALDH1 family in colon cancer cell lines and patient samples have been utilized by several 

lab groups to identify and isolate CSCs.2,11,21,22 While many isoforms have been identified 

as biomarkers and indicators of tumorigenicity and cancer progression, several other 

isoforms still remain to be investigated.

Each of the different ALDH isoforms has a particular specificity for different substrates 

linked to their role in cellular function. For example, ALDH1A1, ALDH1A2, ALDH1A3 

and ALDH8A1 have been linked to retinoic acid cell signaling via retinoic acid production 

due to the oxidation of All-Trans-Retinoic Acid (ATRA) and 9-cis retinoic acid.23 The other 

isoforms are not directly related to retinoic acid signaling and instead have slightly different 
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roles. Their substrate preferences also depend on the intra-cellular location of the isoforms, 

as some isoforms are mitochondrial and others are found in the cytoplasm.

In our current study, we analyzed colon cancer cell lines cultured in low and high densities 

to ascertain the effects of density on the ALDH population size via the ALDEFLUOR assay. 

Our goal was to investigate how density culture conditions contribute to changes to the 

ALDEFLUOR cell population size and whether or not this regulation occurs due to changes 

in a specific ALDH isoform, particularly one that might be unique to colon cancer cells. To 

our knowledge, this is the first report of density differences observed with the ALDEFLUOR 

assay and an attempt of looking at the possible causes behind these differences.

METHODS

Cell Culture

HT29 and HCT116 cells obtained from American Type Culture Collection (ATCC; 

Manassas, VA, USA) were grown in monolayer cultures and maintained in: McCoys 

medium (GIBCO/Life Technologies) supplemented with 5% Fetal Bovine Serum (FBS) and 

100 units/ml penicillin and 100 ug/ml streptomycin (P/S). SW480 cells obtained from ATCC 

were maintained in Leibovitz’s 15 (L-15) medium (GIBCO/Life Technologies) 

supplemented with 5% FBS and P/S. LoVo, Colo320 and DiFi cells were maintained in 

Roswell Park Memorial Institute (RPMI-1640) medium (GIBCO/Life Technologies) 

supplemented with 5% FBS and P/S. Hepatocellular carcinoma (HepG2) and Human 

embryonic kidney cells (HEK293) cell lines were maintained in Dulbecco’s Modified 

Eagle’s medium (DMEM) supplemented with 5% FBS and P/S. All cell cultures were 

maintained at 37 °C in humidified air at 5% CO2. To achieve the desired low and high cell 

densities, cells were plated at 400,000 cells/100 mm culture dish (Greiner, VWR 

International) for low density and 800,000 cells/100 mm dishes for high density. Cells were 

allowed to grow for 3–5 days until a confluency of 30–40% was achieved for low density 

and 70–80% was achieved for high density. Culture medium for all cell lines was changed 

every 48 hours. Cell cultures never reached full confluency at the time of analysis. All 

experiments in this study were conducted within ten passages.

ALDEFLUOR Assay

Protocol was followed according to the manufacturer (STEMCELL Technologies). Briefly, 

cells were grown to 80% confluence and lifted using 0.25% Trypsin-EDTA (Fisher 

Scientific). Cells were spun for five minutes to pellet and washed once with PBS. Cells were 

resuspended in ALDEFLUOR assay buffer at a concentration of one million cells/ml. Two 

tubes were labeled as control and sample. To the control tube, 5 µl of the DEAB inhibitor 

was added. To the sample tube, 5 µl of the activated ALDEFLUOR reagent was added, 

mixed and immediately 500 µl of the suspension was taken out and put in the control tube 

with the inhibitor. Cells were incubated for 40 minutes at 37 °C. After incubation, cells were 

spun for five minutes to pellet and washed once with ALDEFLUOR buffer. Cell were 

resuspended in 500 µl ALDEFLUOR buffer and passed through a BD round bottom tube 

with a 50 µm cell strainer (BD Biosciences). Samples were placed on ice and covered from 

light until ready for analysis on the BD FACSAria II Flow Cytometer.
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Flow Cytometry

All cells were grown to the appropriate low and high culture densities and lifted using an 

(Ethylenedinitrilo)tetraacetic acid (EDTA) based solution called Cell Stripper (Fisher 

Scientific). Cells were spun for five minutes to pellet and resuspended in a 3% BSA 

blocking solution made in PBS. Cells were incubated for 1 hour on ice in this blocking 

solution before 5 µl of CD166-PE conjugated antibody (BD Biosciences) was added to the 

cells. An appropriate PE conjugated IgG control (BD Biosciences) was used at an equal 

concentration to the CD166 antibody. Cells were incubated on ice for 30 minutes. Following 

primary antibody and IgG incubation, cells were washed twice with PBS, and then 

resuspended in PBS. Cell suspensions were passed through a BD round bottom tube with a 

50 µm cell strainer (BD Biosciences). Cell surface staining was analyzed using the BD 

FACSAria II Flow Cytometer.

Colonosphere Assay

Cells were plated at a cell density of 200 cells per 100 µl of stem cell media which is 

composed of serum free DMEM/F12 (GIBCO Inc.) with the addition of Epidermal Growth 

Factor (EGF) and basic Fibroblast Growth Factor (bFGF) and B-27 complex without 

Vitamin A (Life Technologies, Carlsbad, CA, USA). The method and culture medium used 

to perform the colonosphere assay was from a previously published article.24 Ultra low 

attachment plates (BD Biosciences) were used for this assay and colon spheres were 

analyzed for their size (diameter) and numbers per well on day ten using the 10× objective 

of a phase contrast microscope.

Cell Cycle

Cells were plated at low and high densities in 100 mm cell culture dishes and harvested 

using trypsin. The cells were washed two times with PBS and then fixed in 1 mL ice cold 

70% ethanol. Ethanol was added dropwise to the cells while vortexing to avoid clumping. 

Cells were fixed for at least 48 hours before analysis and stored in 4 °C until ready to stain 

with propidium iodide. When ready to stain and analyze samples, fixed cells were washed 

twice with PBS and spun down at 2000 rpm for 5 minutes each time. Cells were 

resuspended in 1mL Fx-Cycle PI/RNase staining solution (Invitrogen) and allowed to 

incubate for 15 minutes at room temperature and covered from light. Cells were transferred 

to a BD tube and analyzed on the BD FACSAria II Flow Cytometer with the PE channel.

Reverse Transcriptase-Polymerase Chain Reaction

Ribonucleic acid (RNA) was isolated from ALDEFLUOR positive and negative sorted cells 

that were cultured at high and low densities. RNA was isolated using the TRIzol reagent 

(Thermo Fisher Scientific) and the protocol provided by the manufacturer. Briefly, cells 

were pelleted and lysed in TRIzol reagent. After a brief incubation at RT, chloroform was 

added and samples were incubated for 2–3 minutes at RT. Samples were centrifuged and the 

aqueous phase was removed. RNA was precipitated with isopropyl alcohol, washed with 

ethanol and resuspended in sterile water. RNA was Deoxyribonuclease (DNAse) treated with 

the Deoxyribonucleic acid (DNA)-free DNA Removal Kit (Ambion) per the manufacturer’s 

protocol. Concentration of the RNA was determined using the Tecan Group Ltd. (TECAN) 
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Infinite 200 PRO microplate reader. Equal amounts of RNA were used for the reverse 

transcriptase reaction. Using the SuperScript III First-Strand Synthesis System (Life 

Technologies) and the provided protocol, complementary DNA (Cdna) was generated. 

Polymerase Chain Reaction (PCR) was performed using 50 ng cDNA and the GoTaq Green 

PCR Mastermix (Promega). Primers and reaction conditions for the 19 ALDH isoforms 

were previously published.17 PCR products were analyzed on a 1.5% agarose gel and 

imaged on the Syngene imaging system.

Statistics

All statistics were performed using Student’s t-test using Microsoft excel or a Paired t-test 

using Graph Pad Prism software analysis.

RESULTS

Our laboratory observed significant variations in the percent of ALDEFLUOR positive cells 

from one experiment to the next and between scientist to scientist. In order to understand 

why such large variations occurred, we looked at several different cell lines and plated them 

at different cell densities (Figure 1A). We found that when most cells were harvested at a 

lower density (30–40%) they had a higher percent of ALDEFLUOR positive cells. However, 

when the cells were harvested at a higher density (70–80%), but not confluent, the percent 

ALDEFLUOR activity was much lower (Figure 1B). This difference between the percent 

ALDEFLUOR positive cells in low and high density was statistically significant in 6 of the 8 

cell lines (Figure 1C). The DiFi and HCT116 did show the same trend with decreased 

ALDEFLUOR activity in high density cultures, but they did not reach a statistically 

significant difference in the percent ALDEFLUOR positive cells between the two cell 

densities (Figure 1C).

While the ALDEFLUOR assay is a commonly used method to identify and isolate stem 

cells, another marker often used to identify colonic stem cells is CD166. To investigate if the 

changes we see in ALDEFLUOR activity at different densities correlates with changes in the 

stem cell population based on another marker, we evaluated the percent of CD166 positive 

cells in three cell lines at low and high densities. In the three cell lines we studied, none of 

them showed differences in CD166 expression with cell density (Figure 1D). To further 

assess changes in the stem cell characteristics based on density differences, we performed a 

colonosphere assay for self-renewal ability. Cells were cultured under the conditions that 

yield high or low density, and at that point, the same number of cells derived from each 

culture condition was dissociated and plated for the sphere formation assay. After 10 days, 

there was no change in the number or sizes of the spheres formed from either condition 

(Figure 1E). This indicates that whatever changes are occurring are culture dependent and 

when cells are removed from these culturing conditions, they do not retain the changes in the 

ALDH-positive stem cell population.

The progression of cells through the cell cycle could possibility explain the decreased 

number of ALDEFLUOR positive cells at high density. Stem cells are believed to have slow 

cycling times as compared to other cell types found in the colonic epithelium. If the higher 

ALDEFLUOR positive population observed at low density is a result of increased number of 

Opdenaker et al. Page 5

Cancer Stud Mol Med. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stem cells, then fewer cells present in S phase would correlate with this finding. However, at 

high density, there is no substantial change in the percent of cells at any of the stages of the 

cell cycle when compared to the lower density cultures (Figure 2).

Based on these findings described above, we haven’t seen any change to explain why there 

is a higher percentage of ALDEFLUOR positive cells at lower cell densities. We then 

surmised that the level of ALDH expression might decrease at high density. In the literature, 

there are 19 different ALDH isoforms that have been identified. Accordingly, we sorted out 

the ALDEFLUOR positive and negative populations from cells grown in both the high and 

low density and performed PCR for each of the 19 isoforms. In HT29 cells, several isoforms 

were decreased in the high density ALDEFLUOR positive populations (Figure 3). 

Compared to the high density ALDH negative population, approximately 50% of the 

isoforms expressed show a decreased presence in the ALDH positive samples. Some of the 

same isoforms follow this pattern in the SW480 cells as well, but not to the extent as seen in 

HT29 cells (Figure 3). Based on several different sets of cells that were screened, the 

expression of the 19 ALDH isoforms is summarized in Table 1. Our results indicate 

expression of several ALDH isoforms in colorectal cancer becomes decreased at high 

density.

DISCUSSION

Large differences were observed in ALDEFLUOR activity between cell cultures grown in 

low and high densities. We evaluated several different colon cancer cell lines, as well as 

HepG2 and HEK293 cells, and all lines except DiFi and HCT116 cells, showed a significant 

difference in ALDEFLUOR activity when cultured at different densities. In the literature, 

there are many reports of different percentages of ALDH or ALDEFLUOR positive cells in 

various colon cancer cell lines. In the current study we found SW480 cells have an average 

of 38% ALDH positive cells in low density growth conditions and 19% ALDH positive cells 

in high density conditions. In comparison, others have cited the SW480 cell population to 

have percentages of ALDH positive cells approximately 17.5±0.07% which resemble our 

values for cultures grown in high density conditions, or 48.3% ALDH positive cells which 

resemble more of our cultures grown in low density conditions.3 HCT116 cells also had a 

wide range of ALDH positive cells, but while trending to a decreased ALDEFLUOR 

positivity in high density cultures, HCT116 populations did not reach statistical significance 

in our analysis. However, in the literature, there is a large range of HCT116 ALDH positive 

cells (~4.0–49% ALDH positive) with no clear mention of culture density conditions.1–4 

Overall, these reports illustrate the discrepancy between the ALDEFLUOR assay and 

quantification of stem cell populations. Our data herein shows a significant difference 

between the population of stem cells based on low and high density growth cultures. It is of 

interest to note that the experiments conducted in this study were done within ten passages 

and based on our results there was no correlation between passage number and 

ALDEFLUOR activity. Our findings suggest a standard needs to be set, according to cell 

density, when performing experiments in order to be able to compare experimental results on 

stem cell populations based on the ALDEFLUOR assay.
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After discovering this change in ALDH positive cells in low and high density cultures, we 

wanted to see if this difference translated to other colon cancer stem cell markers. Research 

suggests that there are several subpopulations of stem cells that reside within a tissue.25 

Therefore, we looked specifically at CD166 expression since it is known that this is another 

marker for identification of colon cancer stem cells.26,27 We see that CD166 and ALDH1 

identify different sub-populations of colon CSCs as immunostaining marks distinct subsets 

of cells. Interestingly, the density-based changes we noted to be associated with 

ALDEFLUOR assay are unique to the sub-population of ALDH-positive cells, but not to the 

CD166-positive cells. Thus, the stem cells marked by high ALDEFLUOR activity appear to 

be sensitive to changes in cell density, but the sub-population of stem cells marked by 

CD166 expression is not affected.

Since we saw a significant difference in ALDEFLUOR activity in low and high density 

cultures, we examined sphere formation to corroborate the effect of density on the stem cell 

property of self-renewal of these cells. Colonosphere assays showed that no significant 

change occurred in sphere formation or sphere size with cell density.

We then measured the distribution of cells in the different phases of the cell cycle between 

cells grown in low and high cell density. There was no statistically significant change in the 

percent of cells in each phase of the cell cycle with different density cultures. It is important 

to note that the cell cycle analysis shows cells are still proliferating at high density. It could 

be possible that the cells are distributed similarly throughout the cell cycle, but that the time 

it takes the cells to transverse the cycle is slower.

Up to this point we had not seen any changes between cell cultures grown in low and high 

density other than the change in ALDEFLUOR assay. To try to discern what might cause 

these observed differences, we grew cells to low and high density and then sorted the 

ALDEFLUOR positive and ALDEFLUOR negative populations to assess changes in the 

ALDH messenger RNA (mRNA) level. Although not widely published, researchers have 

observed changes in gene expression when cells are cultured at different densities.8 One 

group has looked at changes in gene expression in mesenchymal stem cells. They observed 

that less dense cultures upregulate genes involved in proliferation and when the cultures 

become more confluent these genes are down-regulated and genes involved in secretion of 

cytokines are upregulated.7 It is possible that this is similar in our cultures. At lower 

densities, genes involved in proliferation could be upregulated and increased stem cell 

population size could occur to maintain the proliferative capacity of the culture. At higher 

cells densities, while still not yet confluent, cells could begin the process of maturation, thus 

causing the stem cell population size to contract.

In order to look at changes at the mRNA level of ALDEFLUOR positive and negative cells 

grown in low and high cell densities, we profiled the entire spectrum of ALDH isoforms. 

There are 19 different isoforms of ALDH and not one specific type of isoform is linked 

directly to ALDEFLUOR assay, although the manufacturer Stem Cell Technologies Inc. 

reports that the assay was optimized for the ALDH1A1 isoform. However, based on our 

PCR data, there may be other isoforms responsible for the ALDEFLUOR activity in colon 

cancer stem cells. Indeed, our study demonstrated the involvement of several isoforms 
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previously not identified in colon cancer. While data exists linking ALDH1B1 to colon 

cancer as a potential biomarker20 and modulator of the Wnt/β-catenin, Notch and PI3K/Akt 

signaling pathways,28 few other studies have looked specifically at this isoform. Changes in 

the ALDH1A3 isoform is interesting, as this isoform has been linked to many other cancer 

types and often follows the same pattern of ALDH1A1. In fact, ALDH1A3 was identified as 

the dominant isoform in breast cancer responsible for ALDEFLUOR activity.17 In colon 

cancer cell lines, ALDH1A3 is upregulated in chemoresistant lines29 and its regulation in 

chemoresistant lines may be due to changes in expression.30 While there is no data, to our 

knowledge, showing any links between ALDH4A1, ALDH6A1, and ALDH7A1 expression 

and colon cancer, our findings show changes in expression of these three isoforms at the 

mRNA level. Thus, it appears that the activity detected by the ALDEFLUOR assay may be 

attributed to several different isoforms. It is possible that identification of these other 

isoforms in CSCs will allow us other means to distinguish colon CSCs from normal stem 

cells.

CONCLUSION

Our study discovered a considerable effect of cell density on the degree of ALDH activity 

using the ALDEFLUOR assay. When cells are cultured in either low or high density there is 

a significant decrease in ALDH activity, but no drastic changes in CD166 positive cells, 

sphere formation, or cell cycle distribution. The fact that most of the cancer cell lines in this 

study showed a significant decrease in ALDH activity when cultured at high density, we 

surmised there must be a difference in the specific isoform of ALDH that is expressed or not 

expressed. Indeed, our study identified several unique ALDH isoforms that are differentially 

expressed in ALDH positive cells that were grown at different densities. Moreover, our 

findings indicate that there are different ALDH isoforms expressed that have not been 

previously linked to colorectal cancer. Results from our study could open up new approaches 

toward targeting colon CSCs. Effective stem-cell-targeted treatments may result, not from 

the targeting of a single isoform, but multiple ALDH isoforms. Targeting and destroying 

different sub-populations of CSCs may necessitate inhibiting multiple ALDH isoforms, 

resulting in growth suppression and lowering the tumor’s self-renewal ability.
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CSCs Cancer stem cells

ALDH Aldehyde dehydrogenase

BAAA BODIPY-Aminoacetaldehyde

DEAB Diethylaminobenzaldehyde

Opdenaker et al. Page 8

Cancer Stud Mol Med. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ATRA All-Trans-Retinoic Acid

ATCC American Type Culture Collection

FBS Fetal Bovine Serum

HepG2 Hepatocellular carcinoma

HEK293 Human embryonic kidney cells

DMEM Dulbecco’s Modified Eagle’s Medium

EDTA (Ethylenedinitrilo)tetraacetic acid

EGF Epidermal Growth Factor

CTCR Center for Translational Cancer Research

RNA Ribonucleic acid

DNA Deoxyribonucleic acid

DNAse Deoxyribonuclease

TECAN Tecan Group Ltd

PCR Polymerase Chain Reaction
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Figure 1. 
Cell density affects ALDEFLUOR activity without changing other stem cell characteristics. 

Representative images of HT29 and SW480 cells grown ay low (30–40%) and high (70–

80%) cell densities (A). It is important to note that the cells never reach full confluence 

before analysis. Cells from low and high density were cultured and ALDEFLUOR assay was 

performed. Representative histograms from one set of analysis on HT29 and SW480 cells 

grown at low and high density (B). Different colon cancer cell lines were cultured at low and 

high densities and ALDEFLUOR was performed. The average values of percent positive 

cells is graphed to show significant changes in ALDEFLUOR positive cells at low and high 

densities (C). Expression of CD166 on three different colon cancer cell lines grown at low 

and high densities (D). Cells were grown at low and high density and then plated for 

colonosphere assay. Graph represents average number of spheres formed under each culture 

condition (E). All experiments were N=3 except ALDEFLUOR assay was performed with 

multiple relicates (N=10). *=p<0.05, **= p<0.01, ***=p<0.001.
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Figure 2. 
Cell cycle does not change with density. Cells were plated at low and high densities and then 

fixed before propidium iodide analysis. HT29 (A), SW480 (B), and HCT116 (C) cells were 

analyzed for different phases of the cell cycle and there was no significant changes seen 

between each phase (N=3).

Opdenaker et al. Page 13

Cancer Stud Mol Med. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Expression of several ALDH isoforms change with density in HT29 cells. Images are 

representative of RT-PCR data obtained from multiple experiments. All isoforms shown, 

except ALDH1A1, demonstrate reduced or absent expression in the high density ALDH 

positive samples.
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