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Summary

Interferon-inducible transmembrane (IFITM) proteins are a family of

small homologous proteins, localized in the plasma and endolysosomal

membranes, which confer cellular resistance to many viruses. In addition,

several distinct functions have been associated with different IFITM fam-

ily members, including germ cell specification (IFITM1–IFITM3), osteo-

blast function and bone mineralization (IFITM5) and immune functions

(IFITM1–3, IFITM6). IFITM1–3 are expressed by T cells and recent

experiments have shown that the IFITM proteins are directly involved in

adaptive immunity and that they regulate CD4+ T helper cell differentia-

tion in a T-cell-intrinsic manner. Here we review the role of the IFITM

proteins in T-cell differentiation and function.

Keywords: differentiation; interferon-inducible transmembrane protein; T

cell; T helper type 1; T helper type 2.

Introduction

The IFITM family

The family of interferon-inducible transmembrane (Ifitm/

Fragilis) genes encode small homologous proteins local-

ized in the plasma and endolysosomal membranes, which

can confer cellular resistance to many viruses in both

mice and humans.1–3 The IFITM family were first discov-

ered as interferon-induced genes in human neuroblas-

toma cells and their promoters contain one or more

interferon-stimulated response elements, making them

responsive to type I and type II interferons.4–7 However,

IFITM expression can be regulated independently of

interferon signalling.7,8 Ifitm genes are targets of tran-

scriptional repression by Bcl6, and have been shown to be

targets of Wnt/b-catenin and Hedgehog (Hh) signal

transduction9–12; and in murine T cells IFITM2 and

IFITM3 expression is regulated by T-cell receptor (TCR)

signal transduction.7,9,13

In humans, five IFITM genes have been identified,

which are located on chromosome 11, whereas in mice

there are seven Ifitm genes, six of which are located on

chromosome 7, and one on chromosome 16 (illustrated

in Fig. 1a).6,14–18 Homologous IFITM family genes are

present in many other species, including marsupials,

birds, fish and reptiles, suggesting important conserved

roles for IFITM proteins.19

The topology of the IFITM proteins in the membrane

is not certain, several different topologies have been

described, which are illustrated in Fig. 1(b).20–22 All

IFITM proteins have two transmembrane or intramem-

brane regions spanning the membrane bi-layer sand-

wiched between three external regions. The connecting

region is highly conserved and is always intracellular, but

the N-terminus and C-terminus have been described to

be either intracellular or extracellular (Fig. 1c).

Biological functions of the IFITM proteins

Several distinct functions have been associated with dif-

ferent IFITM family members, including germ cell specifi-

cation (IFITM1–IFITM3),14–16,23,24 osteoblast function

and bone mineralization (IFITM5),25–29 and immune

functions (IFITM1–3, IFITM6),7,8,13,30–38 in addition to

their roles as virus-restriction factors (IFITM1–3, murine

IFITM6). The IFITM proteins have also been described to

play a role in cell cycle control and apoptosis and their

dysregulated expression, over-expression or mutation can

be associated with colon cancers and metabolic dysregula-

tion.39–43 IFITM10 is highly conserved between species

with at least 85% amino acid identity between birds,

Abbreviations: Hh, Hedgehog; IFITM, interferon-inducible transmembrane protein; IFN, interferon; IL, interleukin; LAMP1,
lysosomal-associated membrane protein; TCR, T-cell receptor; Th, T helper; WT, wild-type
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reptiles and mammals, but its functions have not yet been

defined.19

IFITM proteins are virus-restriction factors

In tissue-culture experiments, IFITM proteins have been

shown to enable cells to resist infection by both envel-

oped and non-enveloped viruses, including many viruses

that affect human health, such as dengue virus, hepatitis

C virus, influenza A virus, West Nile virus, human

immunodeficiency virus type 1, vesicular stomatitis virus,

severe acute respiratory syndrome-related coronavirus,

Marburg virus, Ebola virus and Zika virus.1–3,44–48 Differ-

ent IFITM proteins specialize in targeting different

viruses.3,20,46 In vivo studies have confirmed the impor-

tance of IFITM proteins in resistance to viruses. In mice,

constitutive deletion of the five-gene cluster of Ifitm genes

on chromosome 7 (Ifitm1–3, -5 and -6) or of Ifitm3 alone

(Ifitm3�/�) rendered animals highly sensitive to influenza

infection, and in humans genome-wide association studies

and sequencing studies have shown that IFITM3 restricts

influenza in vivo.8,38,49–55

Distinct mechanisms have been proposed to explain the

ability of different IFITM family members to restrict dif-

ferent classes of viruses, including inhibition of viral entry

and also entry-independent effects, such as suppression of

viral protein synthesis or viral replication.3,21,44–48,56,57

Differences in the cellular localizations of the IFITM pro-

teins may explain their different activities in the inhibi-

tion of entry of diverse viruses at their specific sites of

fusion. However, determination of the precise subcellular

localization of the different IFITM proteins remains elu-

sive, and their localization within the cell may be depen-

dent on cell type. IFITM1 has been found at the cell

surface and also co-localizes with early endolysosomal

markers.30–33,58–60 IFITM2 and IFITM3 also co-localize

with endosomal markers, but are found in membranes of

different endosomal and lysosomal compartments com-

pared with IFITM1, and co-localize with Rab7, CD63,

lysosomal-associated membrane protein3,47,59,61 (Fig. 1c).

The way in which IFITM proteins prevent viral entry at

different sites is also unclear, and different experimental

systems have provided evidence for many mechanisms,

such as by changing membrane fluidity or physical prop-

erties of cell membranes, or by changing properties of the

cytoplasm or lumina.22,62–64

The IFITM proteins in adaptive immunity

IFITM expression in murine T cells

Gene and protein expression studies have demonstrated

that IFITM1–3 are expressed in murine CD4+ and CD8+

T cells.7,11,13,37 Expression of Ifitm2 and Ifitm3 are regu-

lated by TCR signalling.13 In naive CD4+ T cells, RNA

sequencing showed that expression of Ifitm3 was rapidly

down-regulated during the first 24 hr after activation by

anti-CD3/CD28 ligation in T helper type 0 (Th0), Th1

and Th2 culture conditions, whereas Ifitm2 was up-regu-

lated and its expression continued to rise for the first

3 days after activation and levels of Ifitm1 were low and

were not changed by TCR signalling.13

In contrast, expression analysis of IFITM3 protein by

Western blotting on naive CD8+ and CD4+ T cells follow-

ing anti-CD3/CD28 activation demonstrated that IFITM3

protein is up-regulated by day 3 following T-cell activa-

tion.7 This up-regulation was independent of interferon

signalling, as naive T cells purified from mice which consti-

tutively lack interferon-c (IFN-c), the IFN-a receptor, or

the transcription factors IIrf3 and Irf7, which drive inter-

feron-induced up-regulation of Ifitm3, all showed increased

expression of IFITM3 protein 2 days after TCR ligation.7

The difference in expression patterns of the Ifitm3 gene

and the IFITM3 protein on activation of naive CD4 T

cells may reflect differences in the strength of the activa-

tion signal given in the two experimental systems, or be

due to changes in the rate of turnover and ubiquitination

of the IFITM3 protein on TCR activation,65–67 so that

although Ifitm3 gene expression initially decreases,

IFITM3 protein levels rise.

Figure 1. Chromosomal position of interferon-inducible transmembrane (IFITM) genes, IFITM topology and cellular localization. (a) The car-

toon illustrates the location and organization of IFITM gene clusters in mouse and human. Introns are represented by a horizontal brown rectan-

gle. Exons are represented by vertical coloured rectangles, arrows below indicate the direction of transcription.4,18 (b) The cartoon illustrates the

proposed models of IFITM protein topology. First model suggests a conserved intracellular loop (CIL) between two transmembrane domains

(TM) with extracellular C’ and N’ terminal domains. Second model shows a CIL between two intramembrane domains (IM) with intracellular C’

and N’ terminal domains. The third model proposes a CIL between IM and a TM with an intracellular N’ and an extracellular C’ terminal

domain. These three topology models are predominant but alternative models have been proposed for specific IFITM protein topology depending

on their function.1 (c) The cartoon illustrates the cellular localization of IFITM1–3 proteins. IFITM proteins have been shown to span several cel-

lular membranes. IFITM1 is found in different intracellular compartments from IFITM2 and IFITM3 with little overlap.47,59 IFITM1–3 can all be

found on the plasma membrane, but IFITM1 has been shown to be the predominant IFITM associated with the plasma membrane and is also

found in early endosomes.35,60 IFITM2 and IFITM3 are predominately located intracellularly in late endosomes and lysosomes and co-localize

with Rab7, CD63 and lysosomal-associated membrane protein (LAMP1).21 The illustrations in this figure are cartoons that are not drawn to

scale.
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Ifitm3 is also regulated by Hh-mediated transcription

in murine CD4+ T cells.11

IFITM expression in human T cells

The IFITM1–3 genes are expressed in human lympho-

cytes, and IFITM1 is expressed at their cell surface, where

it has been shown to associate with receptor signalling

complexes.12,31–33

The IFITM family in T-cell differentiation and
function

IFITM3 and influenza infection

In mice, IFITM3 protects against influenza, and Ifitm3�/�

mice die when infected with doses of influenza virus that

would not be lethal in wild-type (WT) mice.49,50 In addi-

tion to its protective role in other cell types, such as res-

piratory epithelial cells and the heart,49,68 IFITM3

protects cells of the immune system from viral infection,

thereby enabling them to mount an effective immune

response.7,8,38 During influenza infection, IFITM3 is up-

regulated in dendritic cells in the lung by type I IFN,

allowing them to survive and migrate to the draining

lymph node in order to present viral antigens.38 IFITM3

is then rapidly up-regulated on T cells on their activation

in the draining lymph nodes, and high IFITM3 expression

is maintained because they migrate to sites of viral infec-

tion, providing a survival advantage that enables them to

carry out their effector functions.7,8 Interestingly, IFITM3

is also constitutively expressed in tissue-resident T cells in

lung and airways, and also spleen, skin and brain, sug-

gesting that it promotes their survival at these sites of

potential viral infection.8,12,13,37,53,69 Hence, several in vivo

and in vitro studies have demonstrated the importance of

IFITM3 in immunity to viral infection, by enhancing sur-

vival and viral resistance of immune effector populations,

but these studies did not demonstrate an additional direct

function of the IFITM proteins in the immune function

of T cells or dendritic cells.

The IFITM family in mouse CD4+ T-cell differentia-
tion

We investigated the role of IFITM proteins in peripheral

CD4+ T-cell function in mice deficient in the five Ifitm

genes clustered on chromosome 7. These mice are defi-

cient in Ifitm1–3, -5 and -6 and are referred to as

IfitmDel�/�.17 Whole-genome transcriptome analysis of

resting CD4+ T cells from spleens of IfitmDel�/� mice

showed that these cells had a Th1-like transcriptional sig-

nature compared with their WT counterparts.13 To inves-

tigate if this difference was the result of changes in the

immune environment of the cells, or the result of a CD4+

T-cell-intrinsic influence on T helper differentiation, we

purified naive (CD62L+ CD44� CD25�) CD4+ T cells

from IfitmDel�/� and WT littermates and carried out

in vitro differentiation experiments in which we activated

cells in Th-skewing conditions. These in vitro experiments

showed a clear bias in differentiation towards Th1.13 After

3 days in culture, a greater proportion of the IfitmDel�/�

CD4+ T cells cultured in Th0 and Th1 conditions

expressed Tbet than WT, whereas in Th2 conditions the

proportion of Gata3+ cells was reduced. Expression of the

Th1-associated molecules Cxcr3 and CD54 and expression

of Tbx21 and Il27ra were also increased in the IfitmDel�/�

cells cultured in Th1-skewing conditions compared with

their WT counterparts. Bias towards Th1 differentiation

was also demonstrated by cytokine production: IfitmDel�/

� cells produced less interleukin-4 (IL-4) and IL-13 than

WT when cultured in Th2-skewing conditions, but more

IFN-c when cultured in Th1-skewing conditions. Hence,

the absence of the IFITM family of proteins led to an

overall bias towards Th1 differentiation and a reduction

in Th2 differentiation when purified naive CD4+ T cells

were activated, suggesting that one or all of the IFITM

proteins inhibit Th1 differentiation but promote Th2 dif-

ferentiation in a T-cell-intrinsic manner13 (illustrated in

Fig. 2a). As Ifitm2 expression rapidly increased on activa-

tion, IFITM2 might be the most likely candidate family

member for this function.

In support of this, bias towards Th1 differentiation was

not observed when purified naive Ifitm3�/� CD4+ T cells

were activated in Th-skewing conditions in vitro,13 indi-

cating that IFITM3 was not the sole family member

responsible for promotion of Th2 differentiation,

although a synergistic or additive effect between the

IFITM proteins was not excluded.

The IFITM family in allergic and inflammatory disease

The IfitmDel�/� mice also showed reduced Th2 responses

and Th2 immunopathology in vivo.13 On induction of

allergic airways disease they had less severe disease and a

weaker Th2 response, with lower Il4 expression, cellular

infiltration and mucous production in the lung than their

WT littermates. In addition to a reduction in eosinophils,

myeloid dendritic cells and mast cells, T cells were

reduced in the bronchoalveolar lavage and IL-27 secretion

was increased but IL-13 production decreased, and the

CD4+ population in the mediastinal lymph nodes had a

more Th1-like phenotype, with higher cell surface expres-

sion of CD27, but lower expression of the Th2-marker

T1ST2. Consistent with the in vitro cytokine data, lungs

from the allergic airways disease-induced IfitmDel�/�

mice had higher expression of Ifng, suggesting that

although interferon-inducible, the IFITM family provide

negative feedback on IFN-c signalling to dampen Th1

immunity in the lung.
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On induction of allergic airways disease in Ifitm3�/�

mice, however, there were no significant changes in eosi-

nophil, mast cell or T-cell infiltration in lung or bron-

choalveolar lavage or in T1ST2 expression on T cells

compared with WT, although macrophage and neutrophil

infiltration was reduced.13 Therefore, as with the in vitro

data, deletion of Ifitm3 alone did not appear to affect the

in vivo CD4+ Th2 response in lung; although, additive or

synergistic effects between IFITM family members were

not excluded.

The role of IFITM proteins in human allergic asthma

has to our knowledge not been investigated, but genome-

wide association studies have linked IFITM2 and/or

IFITM3 variants to potentially relevant traits, such as the

proportion or count of basophils and eosinophils in

blood, and lung function.70,71 Given the link between
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Figure 2. Interferon-inducible transmembrane (IFITM) proteins are involved in T helper type 1 (Th1) and Th2 differentiation. Cartoons show a

not-to-scale graphical representation of the role of IFITM proteins in the regulation of Th1/Th2 differentiation.13 (a) In normal conditions, dif-

ferential expression of IFITM proteins maintains the normal balance between Th1 and Th2 differentiation on activation of naive CD4+ T cells.

(b) Upper panel: In the absence of IFITM proteins, the balance of the Th1/Th2 differentiation is altered on activation of naive CD4+ T cells. Dif-

ferentiation of Th1 cells is promoted with higher expression of key Th1 regulators, while Th2 differentiation is suppressed. Lower panel: IFITM

deficiency decreases allergic airway inflammation, with lower cellular infiltration, mucous secretion, and Th2 response in a mouse model of aller-

gic airway disease (asthma).
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IFITM and Hh signalling and the fact that Hh signalling

has also been shown to promote Th2 differentiation and

exacerbate allergic asthma, it will be important to investi-

gate the interactions between IFITM proteins and the Hh

pathway in allergic asthma.11,72–77

The IFITM proteins are associated with other atopic

and inflammatory diseases. In atopic dermatitis patients,

IFITM1–3 are up-regulated in lesional skin compared

with non-lesional skin from the same individuals,

although the functional consequences of their increased

expression have not been investigated.78 Likewise, their

expression is up-regulated in inflamed mucosa of ulcera-

tive colitis and Crohn’s disease patients,43,79 and poly-

morphisms in IFITM1 and IFITM3 are associated with

increased susceptibility to ulcerative colitis.80,81 In mice,

the IFITM family protect against colitis.82 IFITM3 defi-

ciency led to exacerbation of chemical-induced colitis,

with increased infiltration of macrophages and effector T

cells to the colon lamina propria, and biased CD4+ Th

differentiation to Th17.82 That this exacerbated colitis was

attributable to cells of the haematopoietic system was

confirmed in bone marrow transplantation experiments.

Interestingly, IfitmDel�/� mice developed spontaneous

chronic colitis, indicating that other IFITM proteins are

also protective against colitis, and both Ifitm3�/� and

IfitmDel�/� showed changes in the faecal microbiota.82

Mechanisms of action of IFITM proteins in immune cells

Several studies have shown that IFITM proteins enhance

immunity to viral disease by inhibiting viral infection of

immune effector cells, thereby enhancing their survival

and ability to mount an effective immune response,7,8,12,38

but the way in which IFITM proteins prevent viral infec-

tion is unclear and seems dependent on the cell type and

the particular IFITM family member and virus interac-

tion, with experimental evidence supporting many possi-

ble mechanisms, including inhibition of viral entry,

fusion, transcription and translation.3 Our recent study

highlighted a virus-independent T-cell-intrinsic function

for IFITM proteins in Th differentiation13 and although

the mechanism for their T-cell-intrinsic influence on Th

differentiation is also unknown and requires investigation,

several possibilities arise by extrapolation from the virus-

restriction studies and from their cellular localization and

expression patterns.

First, it is possible that IFITM proteins influence Th

differentiation by influencing the molecular order of

membranes and membrane fluidity.62 In human T cells,

high membrane order is associated with Th2 differentia-

tion and IL-4 production, and intermediate membrane

order is associated with Th1 cells and IFN-c production.83

Hence, IFITM deficiency could bias differentiation

towards Th1 by reducing membrane order, although how

membrane order influences Th differentiation also

remains unknown.

Second, it is possible that the IFITM proteins are

involved in the regulation of cytokine signalling, and pro-

mote IL-4 signal transduction over Th1-cytokine sig-

nalling to polarize differentiation. Given their presence in

endolysosomal intracellular vesicles, this theory suggests

that IFITM proteins are involved in internalization, traf-

ficking or degradation of some cytokine receptors or sig-

nalling pathway components, but not others. In support

of this, IFN receptor signalling involves internalization by

clathrin-dependent endocytosis,84 so the presence of

IFITM2 and IFITM3 in the membrane of late endosomes

may modulate IFN signalling.

A third possibility is that the IFITM proteins are

involved in enhancing or regulating the transduction of

other signalling pathways that regulate Th differentiation.

In support of this, they are transcriptional targets of Wnt

and Hh signalling,10,11 and both these pathways promote

Th2 differentiation.72,74,85,86

Finally, it is possible that the IFITM proteins have

unknown direct consequences for Th differentiation

through an influence on transcription or translation (as

has been described for some viral genes).

Conclusions

Recent studies have identified new roles for the IFITM

family in Th differentiation and atopic and inflammatory

disease, which are independent of their functions in cellu-

lar resistance to viral infection.13,36,80–82 Mouse studies

showed that while IFITM deficiency was protective

against induction of Th2 immune pathology and

asthma,13 it exacerbated Th17-driven inflammation in

colitis,82 highlighting the context dependency of their

impact on inflammation. Clearly, further studies will be

required to investigate the contribution of the different

family members to the immune response and inflamma-

tion, and the cellular and molecular mechanisms that

underlie their functions. It will be important to assess the

impact of the IFITM family on the adaptive immune

response to infectious disease and cancer.
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