8352 measured reflections

 $R_{\rm int} = 0.091$

2776 independent reflections

1804 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Acetyl-1-(3-methylphenyl)-5-phenyl-1H-pyrazole-4-carbonitrile

Hatem A. Abdel-Aziz,^a Abdul-Rahman M. Al-Obaid,^a Hazem A. Ghabbour,^a Madhukar Hemamalini^b and Hoong-Kun Fun^b*‡

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 13 January 2012; accepted 15 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.059; wR factor = 0.227; data-to-parameter ratio = 13.3.

In the title compound, $C_{19}H_{15}N_3O$, the central pyrazole ring makes dihedral angles of 35.52 (12) and 62.21 (11) $^{\circ}$ with the attached phenyl and methyl-substituted phenyl rings, respectively. The corresponding angle between the phenyl and methyl-substituted phenyl rings is 62.90 (11)°. In the crystal, molecules are connected by weak $C-H \cdots O$ hydrogen bonds, forming supramolecular chains propagating along the *a*-axis direction.

Related literature

For details and applications of pyrazole compounds, see: Kovbasyuk et al. (2004); Sachse et al. (2008); De Geest et al. (2007); Roy et al. (2008). For related structures, see: Fun et al. (2011a,b,c). For further synthetic details, see: Nassar et al. (2011).

[‡] Visiting Professor, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

N

h

C ₁₉ H ₁₅ N ₃ O	V = 1573.9 (2) Å ³
$M_r = 301.34$	Z = 4
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation
a = 11.8544 (8) Å	$\mu = 0.65 \text{ mm}^{-1}$
b = 7.6731 (6) Å	T = 296 K
c = 17.4048 (15) Å	$0.55 \times 0.21 \times 0.16 \text{ mm}$
$\beta = 96.202 \ (6)^{\circ}$	

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.717, \ T_{\max} = 0.902$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	209 parameters
$wR(F^2) = 0.227$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
2776 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $C3-H3A\cdotsO1^{i}$ 0.93 2.56 3.444 (3) 160

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HAA, AMA and HAG thank Universiti Sains Malaysia and King Saud University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6607).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

De Geest, D. J., Noble, A., Moubaraki, B., Murray, K. S., Larsen, D. S. & Brooker, S. (2007). Dalton Trans. pp. 467-475.

Fun, H.-K., Asik, S. I. J., Razak, I. A., Shetty, S. & Kalluraya, B. (2011b). Acta Cryst. E67, 0928.

- Fun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011a). Acta Cryst. E67, o2822-o2823.
- Fun, H.-K., Hemamalini, M., Malladi, S., Poojari, P. & Isloor, A. M. (2011c). Acta Cryst. E67, 01745-01746.
- Kovbasyuk, L., Pritzkow, H., Kracmer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.
- Nassar, E., Abdel-Aziz, H. A., Ibrahim, H. S. & Mansour, A. M. (2011). Sci. Pharm. 79, 507-524.

Roy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., El Fallah, M. S., Tercero, J. & Kar, S. K. (2008). *Polyhedron*, **27**, 105–112.

- Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Acta Cryst. (2012). E68, o485-o486 [doi:10.1107/S160053681200181X]

3-Acetyl-1-(3-methylphenyl)-5-phenyl-1*H*-pyrazole-4-carbonitrile

H. A. Abdel-Aziz, A.-R. M. Al-Obaid, H. A. Ghabbour, M. Hemamalini and H.-K. Fun

Comment

Pyrazole-based ligands have attracted considerable attention due to their bridging nature and possibility for easy functionalization with various additional donor groups (Kovbasyuk *et al.*, 2004; Sachse *et al.*, 2008). In particular, azomethine-functionalized pyrazoles have been used extensively as ligands in the field of coordination chemistry and catalysis (De Geest *et al.*, 2007; Roy *et al.*, 2008). The crystal structures of 4-(1,3-Diphenyl-4,5-dihydro-1*H*-pyrazol-5-yl)-1,3-diphenyl- 1*H*-pyrazole, 3-Methyl-5-oxo-4-(2-phenylhydrazinylidene)-4,5- dihydro-1*H*-pyrazole-1-carbothioamide and (2*E*)-3-(1,3- Diphenyl-1*H*pyrazol-4-yl)-1-phenylprop-2-en-1-one (Fun *et al.*, 2011*a*,*b*,*c*) have been reported from our laboratory. In continuation of our studies of pyrazole compounds, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound is shown in Fig. 1. The central pyrazole (N1,N2/C9-C11) ring makes dihedral angles of 35.52 (12) and 62.21 (11)° with the attached phenyl (C12-C17) and methyl substituted pheny (C1-C6) rings. The corresponding angle between the phenyl (C12-C17) and methyl substituted (C1-C6) phenyl rings is 62.90 (11)°.

In the crystal structure (Fig. 2), molecules are connected by weak intermolecular C—H…O (Table 1) hydrogen bonds, forming supramolecular chains propagating along the *a*-axis direction.

Experimental

The title compound was prepared according to the reported method (Nassar *et al.*, 2011). Colourless blocks were obtained by slowly evaporating from ethanol at room temperature.

Refinement

All hydrogen atoms were positioned geometrically [C-H = 0.93 or 0.96 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5 U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2. The crystal packing of title compound (I).

3-Acetyl-1-(3-methylphenyl)-5-phenyl-1*H*-pyrazole-4-carbonitrile

Crystal data

C ₁₉ H ₁₅ N ₃ O	F(000) = 632
$M_r = 301.34$	$D_{\rm x} = 1.272 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 1651 reflections
a = 11.8544 (8) Å	$\theta = 6.3 - 66.5^{\circ}$
b = 7.6731 (6) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 17.4048 (15) Å	T = 296 K
$\beta = 96.202 \ (6)^{\circ}$	Block, colourless
$V = 1573.9 (2) \text{ Å}^3$	$0.55 \times 0.21 \times 0.16 \text{ mm}$
Z = 4	

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier ma
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.227$	$w = 1/[\sigma^2(F_0^2) + (0.1264P)^2 + 0.0573P]$

map

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
2776 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0042 (13)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	Uiso*/Ueq
C1	0.18649 (19)	-0.0026 (3)	0.85181 (12)	0.0503 (7)
H1A	0.2331	-0.0955	0.8688	0.060*
C2	0.0758 (2)	0.0011 (3)	0.86879 (13)	0.0550 (7)
C3	0.0088 (2)	0.1432 (3)	0.84253 (14)	0.0586 (7)
H3A	-0.0662	0.1492	0.8534	0.070*
C4	0.0527 (2)	0.2746 (3)	0.80077 (14)	0.0590 (7)
H4A	0.0064	0.3677	0.7837	0.071*
C5	0.1629 (2)	0.2711 (3)	0.78384 (13)	0.0538 (6)
H5A	0.1924	0.3604	0.7559	0.065*
C6	0.22883 (19)	0.1295 (3)	0.80997 (12)	0.0461 (6)
N1	0.34545 (16)	0.1197 (2)	0.79402 (11)	0.0489 (6)
N2	0.42757 (17)	0.1217 (2)	0.85538 (11)	0.0523 (6)
C9	0.5249 (2)	0.1171 (3)	0.82443 (14)	0.0482 (6)
C10	0.5062 (2)	0.1118 (3)	0.74350 (13)	0.0496 (7)
C11	0.38934 (19)	0.1128 (2)	0.72492 (13)	0.0458 (6)
C12	0.32137 (19)	0.1023 (3)	0.64932 (13)	0.0480 (6)
C13	0.2211 (2)	0.0089 (3)	0.63772 (13)	0.0521 (6)
H13A	0.1937	-0.0474	0.6792	0.062*
C14	0.1610 (2)	-0.0016 (3)	0.56516 (14)	0.0615 (7)
H14A	0.0931	-0.0634	0.5583	0.074*
C15	0.2016 (2)	0.0791 (4)	0.50341 (16)	0.0684 (8)
H15A	0.1609	0.0724	0.4547	0.082*
C16	0.3012 (2)	0.1689 (3)	0.51313 (15)	0.0687 (8)
H16A	0.3289	0.2213	0.4708	0.082*

C17	0.3613 (2)	0.1829 (3)	0.58552 (13)	0.0588 (7)
H17A	0.4286	0.2462	0.5918	0.071*
C18	0.5895 (2)	0.1047 (3)	0.69062 (17)	0.0593 (7)
N4	0.6559 (2)	0.1033 (3)	0.64697 (16)	0.0835 (8)
C20	0.6343 (2)	0.1168 (3)	0.87444 (16)	0.0569 (7)
01	0.72089 (16)	0.0876 (3)	0.84499 (12)	0.0754 (6)
C23	0.0279 (3)	-0.1453 (4)	0.91259 (19)	0.0857 (10)
H23A	0.0861	-0.2303	0.9263	0.129*
H23D	-0.0337	-0.1989	0.8808	0.129*
H23B	0.0008	-0.1002	0.9587	0.129*
C21	0.6332 (2)	0.1535 (4)	0.95825 (15)	0.0720 (8)
H21A	0.7093	0.1493	0.9834	0.108*
H21B	0.5877	0.0677	0.9806	0.108*
H21C	0.6018	0.2672	0.9648	0.108*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0445 (16)	0.0626 (13)	0.0437 (14)	0.0026 (10)	0.0046 (11)	0.0018 (9)
C2	0.0493 (16)	0.0690 (14)	0.0472 (13)	-0.0093 (11)	0.0078 (11)	-0.0001 (10)
C3	0.0421 (15)	0.0816 (16)	0.0528 (15)	0.0036 (11)	0.0086 (12)	-0.0018 (11)
C4	0.0484 (16)	0.0692 (14)	0.0592 (16)	0.0083 (12)	0.0045 (12)	0.0040 (11)
C5	0.0506 (15)	0.0614 (13)	0.0499 (14)	0.0022 (11)	0.0078 (11)	0.0052 (10)
C6	0.0397 (15)	0.0631 (12)	0.0358 (13)	0.0000 (9)	0.0048 (10)	-0.0027 (9)
N1	0.0401 (12)	0.0642 (11)	0.0426 (12)	0.0001 (8)	0.0054 (9)	-0.0009 (8)
N2	0.0423 (13)	0.0694 (12)	0.0443 (12)	-0.0013 (9)	0.0009 (10)	-0.0006 (8)
С9	0.0412 (15)	0.0551 (12)	0.0491 (15)	-0.0021 (9)	0.0083 (11)	-0.0004 (9)
C10	0.0449 (15)	0.0538 (12)	0.0515 (15)	0.0006 (9)	0.0112 (11)	-0.0009 (9)
C11	0.0479 (16)	0.0495 (11)	0.0413 (14)	-0.0013 (9)	0.0105 (11)	0.0015 (8)
C12	0.0470 (15)	0.0528 (12)	0.0452 (14)	0.0058 (9)	0.0100 (11)	-0.0015 (8)
C13	0.0524 (15)	0.0598 (13)	0.0446 (13)	0.0006 (11)	0.0080 (11)	-0.0033 (9)
C14	0.0573 (17)	0.0707 (15)	0.0553 (15)	0.0001 (12)	0.0007 (13)	-0.0077 (12)
C15	0.074 (2)	0.0811 (17)	0.0479 (16)	0.0099 (14)	-0.0039 (14)	-0.0015 (12)
C16	0.083 (2)	0.0761 (16)	0.0487 (16)	0.0035 (14)	0.0133 (14)	0.0132 (12)
C17	0.0654 (17)	0.0610 (14)	0.0510 (15)	-0.0043 (11)	0.0112 (12)	0.0052 (10)
C18	0.0510 (18)	0.0670 (15)	0.0610 (18)	-0.0022 (11)	0.0110 (14)	-0.0011 (11)
N4	0.0713 (18)	0.1056 (18)	0.0788 (19)	0.0031 (13)	0.0314 (15)	0.0018 (13)
C20	0.0425 (16)	0.0623 (14)	0.0655 (17)	-0.0066 (11)	0.0044 (13)	0.0035 (11)
01	0.0429 (13)	0.0973 (14)	0.0857 (15)	-0.0028 (9)	0.0053 (11)	-0.0070 (10)
C23	0.077 (2)	0.096 (2)	0.088 (2)	-0.0160 (16)	0.0272 (18)	0.0198 (16)
C21	0.0598 (17)	0.0930 (19)	0.0603 (17)	-0.0084 (14)	-0.0071 (14)	-0.0044 (14)

Geometric parameters (Å, °)

C1—C6	1.375 (3)	C12—C13	1.384 (3)
C1—C2	1.376 (3)	C12—C17	1.398 (3)
C1—H1A	0.9300	C13—C14	1.384 (3)
C2—C3	1.396 (3)	C13—H13A	0.9300
C2—C23	1.503 (4)	C14—C15	1.372 (4)

C3—C4	1.377 (3)	C14—H14A	0.9300
С3—НЗА	0.9300	C15—C16	1.362 (4)
C4—C5	1.370 (3)	C15—H15A	0.9300
C4—H4A	0.9300	C16—C17	1.383 (4)
C5—C6	1.386 (3)	C16—H16A	0.9300
С5—Н5А	0.9300	C17—H17A	0.9300
C6—N1	1.441 (3)	C18—N4	1.151 (3)
N1—C11	1.362 (3)	C20—O1	1.217 (3)
N1—N2	1.365 (3)	C20—C21	1.487 (4)
N2—C9	1.325 (3)	С23—Н23А	0.9600
C9—C10	1.403 (3)	C23—H23D	0.9600
C9—C20	1.482 (3)	C23—H23B	0.9600
C10—C11	1 388 (3)	C21—H21A	0.9600
C10—C18	1 422 (4)	C21—H21B	0.9600
C_{11} $-C_{12}$	1 469 (3)	C21—H21C	0.9600
C6 C1 C2	120.6 (2)		110.2(2)
$C_{0} = C_{1} = C_{2}$	120.0 (2)	$C_{1/2} = C_{12} = C_{11}$	119.2(2) 120.8(2)
C_{2} C_{1} H_{1}	119.7	$C_{14} = C_{13} = C_{12}$	120.8 (2)
$C_2 = C_1 = MIA$	117.0 (2)	C12 C12 U12A	119.0
$C_1 = C_2 = C_3$	117.9(2)	C12-C13-HISA	119.0
$C_1 = C_2 = C_{23}$	121.0(2)	C15 - C14 - C13	120.0 (2)
$C_{3} = C_{2} = C_{23}$	121.2(2)	C13 - C14 - H14A	120.0
C4 = C3 = C2	120.7 (2)	C13 - C14 - H14A	120.0
C4 - C3 - H3A	119.6	C16 - C15 - C14	120.3 (2)
C2—C3—H3A	119.6	CI6-CI5-HISA	119.9
C5-C4-C3	121.5 (2)	CI4—CI5—HI5A	119.9
C5—C4—H4A	119.3	C15-C16-C17	120.5 (2)
C3—C4—H4A	119.3	С15—С16—Н16А	119.8
C4—C5—C6	117.5 (2)	C17—C16—H16A	119.8
С4—С5—Н5А	121.3	C16—C17—C12	120.2 (2)
С6—С5—Н5А	121.3	С16—С17—Н17А	119.9
C1—C6—C5	121.8 (2)	С12—С17—Н17А	119.9
C1—C6—N1	118.43 (19)	N4—C18—C10	178.1 (3)
C5—C6—N1	119.8 (2)	O1—C20—C9	118.5 (2)
C11—N1—N2	112.52 (19)	O1—C20—C21	123.0 (2)
C11—N1—C6	129.64 (18)	C9—C20—C21	118.4 (3)
N2—N1—C6	117.81 (19)	C2—C23—H23A	109.5
C9—N2—N1	105.08 (19)	C2—C23—H23D	109.5
N2—C9—C10	111.1 (2)	H23A—C23—H23D	109.5
N2—C9—C20	120.4 (2)	С2—С23—Н23В	109.5
C10—C9—C20	128.5 (3)	H23A—C23—H23B	109.5
C11—C10—C9	106.2 (2)	H23D—C23—H23B	109.5
C11—C10—C18	126.5 (2)	C20—C21—H21A	109.5
C9—C10—C18	127.3 (2)	C20—C21—H21B	109.5
N1-C11-C10	105.15 (19)	H21A—C21—H21B	109.5
N1-C11-C12	124.6 (2)	C20—C21—H21C	109.5
C10-C11-C12	130.2 (2)	H21A—C21—H21C	109.5
C13—C12—C17	118.2 (2)	H21B—C21—H21C	109.5
C13—C12—C11	122.6 (2)		

C6—C1—C2—C3	-0.3 (3)	C6-N1-C11-C10	177.65 (19)
C6—C1—C2—C23	178.3 (2)	N2—N1—C11—C12	177.50 (17)
C1—C2—C3—C4	0.2 (3)	C6—N1—C11—C12	-4.4 (3)
C23—C2—C3—C4	-178.4 (3)	C9-C10-C11-N1	0.4 (2)
C2—C3—C4—C5	-0.3 (4)	C18—C10—C11—N1	179.7 (2)
C3—C4—C5—C6	0.4 (4)	C9-C10-C11-C12	-177.45 (19)
C2—C1—C6—C5	0.4 (3)	C18-C10-C11-C12	1.9 (3)
C2-C1-C6-N1	179.76 (18)	N1-C11-C12-C13	-36.0 (3)
C4—C5—C6—C1	-0.5 (3)	C10-C11-C12-C13	141.5 (2)
C4—C5—C6—N1	-179.78 (19)	N1-C11-C12-C17	146.9 (2)
C1—C6—N1—C11	119.3 (2)	C10-C11-C12-C17	-35.6 (3)
C5—C6—N1—C11	-61.3 (3)	C17—C12—C13—C14	-1.1 (3)
C1—C6—N1—N2	-62.6 (2)	C11-C12-C13-C14	-178.3 (2)
C5—C6—N1—N2	116.7 (2)	C12-C13-C14-C15	0.9 (4)
C11—N1—N2—C9	0.4 (2)	C13-C14-C15-C16	0.3 (4)
C6—N1—N2—C9	-177.99 (17)	C14-C15-C16-C17	-1.3 (4)
N1—N2—C9—C10	-0.1 (2)	C15-C16-C17-C12	1.1 (4)
N1—N2—C9—C20	-179.71 (19)	C13—C12—C17—C16	0.2 (3)
N2-C9-C10-C11	-0.2 (2)	C11—C12—C17—C16	177.4 (2)
C20-C9-C10-C11	179.4 (2)	N2-C9-C20-O1	169.6 (2)
N2-C9-C10-C18	-179.5 (2)	C10—C9—C20—O1	-9.9 (3)
C20-C9-C10-C18	0.0 (4)	N2-C9-C20-C21	-10.8 (3)
N2-N1-C11-C10	-0.5 (2)	C10—C9—C20—C21	169.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3A····O1 ⁱ	0.93	2.56	3.444 (3)	160
Symmetry codes: (i) $x-1$, y , z .				

Fig. 2

