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Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors
(ICIs) and adoptive cell therapies have received clinical approval for use in cer-
tain types of cancer. However, monotherapy with epi-drugs or ICIs has shown
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limited efficacy in most cancer patients. Epigenetic agents have been shown to
regulate the crosstalk between the tumor and host immunity to alleviate immune
evasion, suggesting that epi-drugs can potentially synergize with immunother-
apy. In this review, we discuss recent insights into the rationales of incorporating
epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus
on an update of current clinical trials in both hematological and solid malignan-
cies. Furthermore, we outline the future challenges and strategies in the field of
cancer epi-immunotherapy.

KEYWORDS
chimeric antigen receptor T cell, clinical trial, DNA methylation, Epi-drug, Epi-
immunotherapy, histone acetylation, immune checkpoint. tumor microenvironment,
vaccine

1 BACKGROUND

Immunotherapy, the science of enhancing the immune
system to combat cancer, has taken center stage in cancer
therapeutics thanks to recent clinical successes in treat-
ing various tumors with immune checkpoint inhibitors
(ICIs) and adoptive cell therapy [1, 2]. However, it is only
effective in a few hematological malignancies and solid
cancers, whilemany patients fail to achieve sustained com-
plete response (CR) and suffer from disease relapse or
experience immune-related adverse events (AEs), high-
lighting the needs for novel treatment strategies [3, 4].
Epigenetics refers to heritable alteration in gene expression
without direct changes ormutations in the DNA sequence.
Aberrant epigenetic mechanisms imposed by DNAmethy-
lation, histone modifications, chromosome remodeling
and non-coding RNA play a crucial role in driving can-
cer initiation and progression [5]. Epigenetic drugs (epi-
drugs), such as DNA methyltransferase inhibitors (DMN-
Tis) and histone deacetylase inhibitors (HDACis), have
been proven to be effective in many different types of
cancer [6]. There has been growing interest in epigenetic
regulation of cancer immunity [7] because epigenetic dys-
regulations not only are restricted to cancer cells, including
cancer stem cells (CSCs) but also contribute to the dys-
function of immune cells in the tumor microenvironment
(TME).

Recently, emerging strategies to enhance the anticancer
potency of immunotherapies have been pursued. One
of these involves incorporating epigenetic therapy into
immunotherapy, called epi-immunotherapy [8]. Accumu-
lating preclinical studies have shown that epigenetic mod-
ulation can sensitize tumors to ICIs or cell therapy, and
various epi-immunotherapies for the patients with differ-
ent tumor types are currently being evaluated in numerous
clinical trials (Figure 1). In light of recent advances in
the field of cancer epigenetics and immunology, we pro-
vide an updated, clinically oriented review of the evolving
landscape of the combination of epigenetic modifiers with
immunotherapy in both hematological cancers (Table 1)
and solid tumors (Table 2). Although most results are
reported from phase I and phase II clinical trials, unless
otherwise specified, we primarily focus on the therapeutic
efficacy of this strategy while omitting the toxicity or AEs
because most epi-immunotherapies did not present new
safety concerns in these trials.

2 THE RATIONALES OF EPI-DRUGS IN
COMBINATIONWITH
IMMUNOTHERAPY FOR CANCERS

The cancer genome is featured by global DNA hypomethy-
lation, which results in the silence of certain tumor
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F IGURE 1 A timeline of clinical development in epi-immunotherapy highlights key milestones and selected clinical trials for
hematological and solid cancers. The US FDA approved the first-generation epi-drugs, i.e., DMNT inhibitor azacytidine in 2004 and HDAC
inhibitor vorinostat in 2006. Immunotherapy has gained momentum after the US FDA approval of multiple first-in-class checkpoint
inhibitors, including ipilimumab and nivolumab in the early 2010s, and the approval of Kymriah, the first CAR-T product, in 2017. In 2011, a
group from Johns Hopkins University first reported durable clinical responses to immune checkpoint therapy in advanced NSCLC patients
who received prior epi-drug therapy [168]. In 2014, Fan et al. [213] demonstrated that low-dose decitabine in combination with CIK cell
infusion led to improved survival in patients with advanced solid tumors. These findings sparked significant research interests in the potential
of epi-immunotherapy. The clinical trials in solid cancer were first proposed for the treatment of melanoma and CRC in 2014, when similar
trials were designed for hematological cancers such as MDS and DLBCL. Since then, a variety of trials were conducted across different cancer
types, and in 2020, Fan et al. first initiated a trial of CAR-T therapy combined with epi-drugs for refractory and relapsed B cell lymphoma. The
ongoing trials will pave the way for a promising future in epi-immunotherapy. Abbreviations: FDA, Food and Drug Administration; DMNT,
DNA methyltransferase; HDAC, histone deacetylase; CAR-T, chimeric antigen receptor T cell; NSCLC, non-small cell lung cancer; CIK,
cytokine-induced killer; CRC, colorectal cancer; MDS, myelodysplasia syndrome; DLBCL, diffuse large B cell lymphoma; PMBCL, primary
mediastinal large B-cell lymphoma; ENKTCL, extranodal natural killer/T cell lymphoma; PTCL, peripheral T-cell lymphoma; HNSCC, head
and neck squamous cell cancer; PADC, pancreatic ductal adenocarcinoma

suppressor genes as well as endogenous retroviral ele-
ments. The nucleosome is formed through the wrapping
of genomic DNA around histone octamers connected with
linker histones and is further packed into high-order
chromatin that resides within the nucleus. Chromatin
remodeling complexes regulate the chromatin configura-
tion in an ATP-dependent manner to activate or repress
gene transcription. Multiple histone residues are subjected
to covalent modifications, through which the accessibil-
ity of DNA to transcription factors is modulated. The
non-coding RNAs (ncRNAs) represent another layer of
complexity of epigenetic regulation. Short ncRNAs of <30
nucleotides in length, including microRNAs (miRNAs)
and small interfering RNA (siRNAs), can bind to the 3’
untranslated region and degrade target mRNA or interfere
with its translation. Long ncRNAs have a wide variety of
gene regulation at multiple levels, including nucleosome
positioning and chromosome looping. It has been clear

that ncRNAs also function in immune regulation, which
has been recently reviewed elsewhere [9, 10].
The epigenetic marks on DNA or histones, such as

methylation, acetylation, phosphorylation and ubiquiti-
nation, are central nodes among a variety of epigenetic
modifiers. Thesemodifiers are commonly classified as epi-
genetic writers, readers and erasers, which function to
add, recognize, and remove specific chromatin modifica-
tions, respectively. Targeting the epigenetic modifiers with
enzymatic activities was initially explored, leading to the
development of first-generation epi-drugs, i.e., DNMT or
HDAC inhibitors [6]. Chromatin remodelers and ncRNAs
do not directlymodify DNAor histone, and their therapeu-
tic implications for cancer are under active investigation.
A number of excellent reviews have provided details on
epigenetic modifiers and their regulatory roles in cancer
or immunity [11–14], and we refer to these for more in-
depth information on individual epigenetic mechanisms.
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TABLE 1 Clinical trials of epi-immunotherapy for hematological malignancies

Condition Epi-immmunotherapy NCT Identifier Phase Status
AML Aza + Pembro NCT02845297 II Active, not recruiting

Aza + Pembro NCT03769532 II Recruiting
Aza + Nivo NCT03825367 I/II Recruiting
Aza + Nivo ± Ipili NCT02397720 II Recruiting
Aza + Nivo NCT04128020 I Withdrawn
Aza + Nivo + Relatli NCT04913922 II Recruiting
Aza + Nivo NCT03092674 II/III Active, not recruiting
Aza + Ave NCT02953561 I/II Terminated
Aza + Ave NCT03390296 I/II Active, not recruiting
Aza + Liri NCT02399917 II Terminated
Aza + Lenalidomide NCT04490707 III Recruiting
Dec + Pembro NCT02996474 I/II Completed
Dec + Nivo NCT03358719 I Completed
Dec + Cam NCT04353479 II Not recruiting
Guadec + Atezo NCT02892318 I Completed

MDS Aza+ Pembro NCT03094637 II Active, not recruiting
Aza+ Atezo NCT02508870 I Completed
Aza + Liri NCT02599649 I/II Terminated,
Aza + Durva + Treme NCT02117219 I Completed
Aza + Ipili NCT02530463 II Recruiting
Aza + Dec +MBG453 NCT04878432 II Recruiting
Aza +MBG453 NCT04266301 III Active, not recruiting
Dec + Sparta NCT05201066 I Not yet recruiting
Ent + Pembro NCT02936752 Ib Active,not recruiting

AML, MDS Aza+ Durva NCT02775903 II Active, not recruiting
Aza + NKR-2 NCT03612739 I Withdrawn
Dec + Pembro NCT03969446 I Recruiting
Dec + Sparta ±MBG453 NCT03066648 Ib Active, not recruiting
Dec + Ave NCT03395873 I Terminated
Dec + Ipili NCT02890329 I Recruiting
Guadec + Atezo NCT02935361 I/II Active, not recruiting

PTCL/CTCL Aza+ Durva NCT03161223 I Recruiting
Romi + Pembro NCT03278782 II Recruiting
Romi + Durva ± Aza NCT03161223 I Recruiting
Chida+ Sintili NCT04512534 II Recruiting
Chida + Sintili + Aza NCT04052659 II Not, yet recruiting
Dec+ Pembro + Pralatrexate NCT03240211 Ib Not recruiting
Chida+ Sintili NCT04296786 II Recruiting

NKTCL Chida+ Sintili NCT03820596 I/II Recruiting
DLBCL Aza+ Ave + utomilumab NCT02951156 Ib/III Terminated

CXD101 + Pembro NCT03873025 I/II Withdrawn
Tazemetostat + Atezolizumab NCT02220842 Ib Completed

PMBCL Dec + Cam + chemo NCT03346642 I/II Unknown
(Continues)
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TABLE 1 (Continued)

Condition Epi-immmunotherapy NCT Identifier Phase Status
HL Dec+ Cam NCT03250962 II Recruiting

Dec + Cam NCT04510610 II/III Recruiting
Dec + Chida + Cam NCT04233294 I/II Recruiting
Dec + Chida + Cam NCT04514081 II Recruiting
Ent + Pembro NCT03179930 II Recruiting

DLBCL, HL Vor + Pembro NCT03150329 I Recruiting
B-cell lymphoma Dec-primed Tandem 19/20 CAR-T NCT04697940 I/II Recruiting

Dec-primed Tandem 19/20 CAR-T +
Dec and/or Chida

NCT04553393 I/II Recruiting

Dec + PD-1/CD28 CD19 CAR-T NCT04850560 I/II Recruiting
Post-CAR-T
relapsed
lymphoma

Chida + Cam NCT04337606 I/II Recruiting

Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplasia syndrome; CMML, chronic myelomonocytic leukemia; DLBCL, diffuse large B cell lym-
phoma; PTCL, peripheral T cell lymphoma; CTCL, cutaneous T cell lymphoma; NKTCL, NK/T cell lymphoma; HL, Hodgkin lymophoma; PMBCL, primary
mediastinal B cell lymphoma; DMNTi: Aza, Azacytizine; Dec, Decitabine; Guadec, Guadecitabine; HDACi: Vor, Vorinostat; Ent, Entinostat; Chida, Chidamide;
Romi, Romidepsin; CXD101; anti-PD-1: Pembro, Pembrolizumab; Nivo, Nivoluzumab; Cam, Camrelizumab;Sintili, Sintilimab; Sparta, Spartalizumab; anti-PD-
L1: Durva, Durvalumab; Atezo, Atezolizumab; Ave, Avelumab; anti-CTLA4: Ipili, Ipilimumab;Treme, Tremelimumab (anti-CTLA4); CAR-T, chimeric antigen
receptor T cell; others: Liri, Lirilumab (anti-KIR); MBG453 (anti-TIM3), Relatli, Relatlimab (anti-LAG3); utomilumab (anti-4-1BB), NKR-2 (CAR-T), chemo,
chemotherapy.

As discussed below, a brief illustration of the rationales for
epi-immunotherapy is shown in Figure 2.

2.1 Direct antitumor effects of epi-drugs

Epi-drugs are chemical agents that alter DNA and chro-
matin structure and promote the disruption of transcrip-
tional and post-transcriptional modifications [6]. To date,
several epi-drugs, including DNMTis and HDACis, have
received the US Food and Drug Administration (FDA)
approval for a few cancers; for example, azacitidine (AZA)
and decitabine (DAC) are the most common DNMTis,
also known as hypomethylating agents (HMAs) [13, 15].
More recently, Tazemetostat, an H3K27 methyltransferase
enhancer of zeste 2 (EZH2) inhibitor, has been indi-
cated as front-line therapy for epithelioid sarcoma in
the US [16]. Nevertheless, clinical response to epi-drugs
has been mostly confined to hematological malignancies
[17]. DNMTi and HDACi can induce cell cycle arrest,
senescence and apoptosis in tumor cells through the re-
expression of certain tumor suppressor genes silenced
by DNA methylation and histone deacetylation [18–24].
On the other hand, the epigenetic alterations promote
CSC self-renewal, proliferation and metastasis and con-
fer treatment resistance [25–28]. Many preclinical studies
have shown that DMNTis can inhibit the expression
of stemness genes and upregulate differentiation-related
genes, thereby significantly reducing the self-renewal and
tumorigenesis of CSCs [29–33]. Similarly, HDACis are also

capable of controlling the CSC population [34]. Several
essential genes involved in the CSC maintenance, such as
β-catenin, Stat3 andNotch1, are targeted byHDACi, which
alone or in combination can eradicate CSCs to suppress
tumor growth [35–39].
However, the best clinical responses to the combined

treatment with DNMTi plus programmed cell death
protein-1 (PD-1) blockade were found in those patients
who received low-doseDNMTi regimens inwhich the drug
dose would not result in cytotoxicity [7]. For example, in a
patient tumor-derived xenograftmodel of colorectal cancer
(CRC), low-dose DAC can re-modulate the TME to sensi-
tize the PD-1 blockade [40]. Moreover, Chiappinelli et al.
[41] demonstrated that DNMTi stimulated immune signal-
ing through the viral defense mechanisms, and low-dose
AZA directly enhanced the anti-cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) efficacy in a melanoma
model. These striking synergistic effects for cancer inter-
vention can be extended to chimeric antigen receptor T
(CAR-T) cell therapy [42, 43]. More importantly, in an
open-label phase II study, relapsed or refractory (R/R)
classic Hodgkin lymphoma (cHL) patients without pre-
vious anti-PD-1 exposure were included, and the CR rate
was significantly higher in the patients treated with low-
dose DAC plus PD-1 inhibitor camrelizumab than those
treated with camrelizumab alone [44]. On the other hand,
the efficacy of HDACis alone in clinical trials has been
largely restricted to hematological malignancies, and the
clinical outcomes in a variety of solid tumors are still disap-
pointing [24, 45]. Collectively, these findings support that
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TABLE 2 Clinical trials of epi-immunotherapy for solid cancers

Condition Epi-immunotherapy NCT Identifier Phase Status
NSCLC Aza+ Pembro NCT02546986 II Active, not recruiting

Aza + Ent + Nivo NCT01928576 II Recruiting
Aza + Durva NCT02250326 II Active, not recruiting
Dec + Pembro NCT03233724 I/II Recruiting
Dec + Nivo NCT02664181 II Active, not recruiting
Guadec +Moc + Pembro NCT03220477 I Active, not recruiting
Ent + Pembro NCT02437136 Ib/II Unknown
Vor + Pembro NCT02638090 II Recruiting
ACY241 + Nivo NCT02635061 Ib Active, not recruiting
Chida + Pembro NCT05141357 II Recruiting
Moc + Nivo NCT02954991 II Active, not recruiting
Moc+ Durva NCT02805660 I/II Terminated

CRC Aza+ Pembro NCT02260440 II Completed
Aza +Romi + Pembro NCT02512172 I Active, not recruiting
Guadec + Nivo NCT03576963 I/II Withdrawn
Chida + Sintili NCT04724239 II Not recruiting

Melanoma Aza + Pembro NCT02816021 II Recruiting
Guadec + Ipili NCT02608437 Ib Unknown
Ent + Pembro NCT03765229 II Recruiting
Ent + Pembro NCT02437136 Ib/II Unknown
Ent + Pembro NCT02697630 II Active, not recruiting
Pano + Ipili NCT02032810 I Active, not recruiting
Moc + Nivo + Ipili NCT03565406 Ib Terminated
Tino + Nivo NCT03903458 Ib Recruiting

NSCLC, CRC Aza + Pembro+ Epa NCT02959437 I/II Terminated
NSCLC, melanoma Guadec + Nivo + Ipili NCT04250246 II Not recruiting

Pano + Sparta NCT03982134 I Withdrawn
NSCLC, RC, melanoma, Chida + Nivo NCT02718066 I/II Active, not recruiting
NSCLC, CRC,
melanoma, HNSCC

Aza + NCB059872 + Pembro + Epa NCT02959437 I/II Terminated

HNSCC Dec + Durva NCT03019003 I/II Recruiting
Moc + Durva NCT02993991 I Withdrawn

HNSCC, SGC Vor + Pembro NCT02538510 II Active, not recruiting
PDAC Aza + Pembro NCT03264404 II Recruiting
PDAC, CGC Ent+ Nivo NCT03250273 II Active, not recruiting
PDAC, CGC, liver
cancer

Guadec + Durva NCT03257761 I Recruiting

Breast cancer Dec + Pembro NCT02957968 II Recruiting
Ent + Atezo NCT03280563 I/II Recruiting
Vor+ Pembro NCT02395627 II Terminated
Vor + Pembro NCT04190056 II Recruiting
Romi + Nivo + Cisplatin NCT02393794 I/II Suspended
Ent + Atezo NCT02708680 II Unknown

Ovarian cancer Ent + Ave NCT02915523 Ib/II Unknown
Guadec + Pembro NCT02901899 II Active, not recruiting
Aza + Pembro NCT02900560 II Completed

(Continues)
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TABLE 2 (Continued)

Condition Epi-immunotherapy NCT Identifier Phase Status
Breast, ovarian cancers Aza + Durva NCT02811497 II Completed

RO6870810 + Atezo NCT03292172 Ib Terminated
Cervical cancer Chida + Tori NCT04651127 I/II Recruiting

VA + Ave NCT03357757 II Recruiting
RC Guadec + Durva NCT03308396 Ib/II Active, not recruiting

Ent + Nivo + Ipili NCT03552380 II Active, not recruiting
Ent + Atezo + Beva NCT03024437 I Active, not recruiting

UC Guadec + Atezo NCT03179943 II Active, not recruiting
Taze + Pembro NCT03854474 I/II Recruiting
Ent + Pembro NCT03978624 II Recruiting
Chida + Tisle NCT04562311 I Recruiting
Aza + Pembro + Epa + INCB059872 NCT02959437 I/II Terminated

RC, UC Vor + Pembro NCT02619253 Ib Active, not recruiting
Glioblastoma Vor+ Pembro NCT03426891 I Active, not recruiting
Osteosarcoma Aza + Nivo NCT03628209 I Recruiting
Virus-associated cancers VA + Ave NCT03357757 II Recruiting
Solid tumors,
lymphoma

Dec + Pembro + radiation NCT03445858 I Recruiting

Advanced solid cancers Epa+ Pembro NCT02909452 I Completed
Ent + Nivo+ Ipili NCT02453620 I Active, not recruiting
Guadec + Pembro NCT02998567 I Active, not recruiting
Lira + Ipili NCT03525795 I Completed
Ent + Pembro NCT02909452 I Unknown
Ent + Nivo + Ipili NCT02453620 I Active, not recruiting
Taze + Durva NCT04705818 I Recruiting

Abbreviations: NSCLC, non-small cell lung cancer; CRC, colorectal cancer; PADC, pancreatic ductal adenocarcinoma; CGC, cholangiocarcinoma; HNSCC,
head and neck squamous cell carcer; SGC, salivary gland cancer; RC, renal cancer; UC, urothelial carcinoma; DMNTi: Aza, Azacytizine; Dec, Decitabine;
Guadec,Guadecitabine;HDACi: Vor, Vorinostat; Ent, Entinostat; Chida, Chidamide; Romi, Romidepsin; Pano,Panobinostat;Moc,Mocetinostat; Tino, Tinostamus-
tine,; VA, Valproic acid; ACY241; EZHi: Lira,Lirametostat; Taze, Tazemetostat; LSD1i: NCB059872; BETi: RO6870810; anti-PD-1: Pembro, Pembrolizumab; Nivo,
Nivoluzumab; Cam, Camrelizumab; Sintili, Sintilimab; Sparta, Spartalizumab; Tisle, Tislelizumab; Tori,Toripalimab; anti-PD-L1: Durva, Durvalumab; Atezo,
Atezolizumab; Ave, Avelumab; anti-CTLA4: Ipili, Ipilimumab;Treme, Tremelimumab; others: Liri, Lirilumab (anti-KIR), Epa, Epacadostat (anti-IDO1); Beva,
Bevacizumab (anti-VEGF).

modulation of antitumor immune responses, rather than
direct antitumor activity of epi-drugs, provide rationales
for epi-immunotherapy.

2.2 Enhanced immunogenicity of
cancer cells by epi-drugs

The absence of tumor antigens and defects in the antigen-
presenting machinery, which result in the lack of recog-
nition by T cells, greatly contribute to primary and
adaptive resistance to immunotherapy [46]. Epi-drugs are
known to elicit viral mimicry to activate the interferon
(IFN) pathway, thereby augmenting immune responses
[47]. Accounting for 5%-10% of genomic DNA sequences,
human endogenous retroviruses (ERVs) are remnants
of germline integrations of exogenous infectious retro-

viruses during evolution [48, 49]. The cancer-testis anti-
gens (CTAs) are not expressed in healthy tissues other
than germ cells but are often abnormally expressed in
tumors [50]. ERVs and CTAs, initially suppressed by
cytosine methylation in cancer cells, are closely asso-
ciated with antitumor cytotoxic immune response [51].
Both ERVs and CTAs are reactivated through demethyla-
tion following exposure to DMNTi, leading to a state of
viral mimicry, through which the neoantigen expression
increases immunogenicity and triggers an innate immune
response against tumor [41, 52]. During viral mimicry
response, double-strand RNA is produced and activates
immunogenic pattern recognition receptors, type I and III
IFNs are secreted, thus further enhancing antigen pro-
cessing and presentation through transporter 1 (TAP1) and
human leukocyte antigen (HLA)-class I, respectively [48,
51]. DMNTis can upregulate immunogenic CTAs such as
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F IGURE 2 Representative rationales of epi-immunotherapy.
Epi-drugs including HMA (red), HDACi (brown), BETi (green) and
EZH2i (blue) have been used in clinical trials for cancer
epi-immunotherapy. Downward black arrows indicate inhibition or
reduction, while upward black arrows indicate upregulation or
increase. Details are given in the text. Abbreviations: HMA,
hypomethylating agent; HDACi, histone deacetylase inhibitor;
BETi, bromodomain inhibitor; EZHi, EZH2 inhibitor; ERV,
endogenous retrovirus; CTA, cancer-testis antigen; Treg, regulatory
T cell; MDSC, Myeloid-derived suppressor cell; TIL,
tumor-infiltrating lymphocyte.

New York esophageal squamous cell carcinoma 1 (NY-
ESO-1) and melanoma-associated antigen (MAGE) family
member A1 (MAGE-A1) [53, 54]. Defect in antigen presen-
tationmachinery also contributes to the reduced immuno-
genicity. Major histocompatibility complex (MHC) class I
genes are often silenced due to promotorDNAmethylation
in cancer, and DMNTi reverses MHC-I gene methylation
and increases MHC-I expression in response to IFN [55].
Likewise, β2-microglobulin and TAP1 are also increased
when DNA methylation is inhibited, which is responsi-
ble for increased antigen processing and presentation [55].
DNMTi can reactivate nucleotide oligomerization domain-
like receptor subfamily C5 (NLRC5), an IFN-inducible
gene, to increase MHC-I gene expression [56]. HDACi also
increases antigen presentation and restores HLA class-I
expression in solid tumors [57]. Recently, Truong et al. [58]
demonstrated that entinostat (ENT), a selective HDAC1/3
inhibitor, enhanced immunogenicity through neoantigen
editing and induced robust specific antitumor response,
which was mediated by increased effector T cell infil-

tration in TME. Inhibition of the histone demethylase
lysine-specific demethylase 1 (LSD1) also induces a viral
mimicry response following ERVs activation [59]. Addi-
tionally, ERV-independent activation is seen in several
IFN-responsive genes, such as CXC-chemokine ligand 9
(CXCL9) and CXCL10, which are directly regulated by
DNA methylation and histone modifications [60, 61].
The tumor PD-L1 expression appears to associate with

the efficacy of PD-1 blockade [62–64]. There is increas-
ing evidence that epi-drugs lead to PD-L1 upregulation
in preclinical cancer models [65–67]. This modulation is
largely dependent on the reactivation of ERVs and the IFN
pathway [68].

2.3 The effects of epi-drugs on T cells

It is well known that epigenetic changes can alter the
function and differentiation of T cells [7]. CD4+ T helper
(Th) cells predominantly secrete cytokines to stimulate cel-
lular immunity against tumor cells [69]. Low-dose ENT,
a class I HDACi, decreases Foxp3 expression in regula-
tory T cells (Tregs), leading to tumor suppression [70].
CG-745, another HDACi, can also inhibit Treg prolifer-
ation and modulate the TME that potentiates anti-PD-1
activity against tumors [71]. Importantly, the combination
of HDACis and anti-CTLA4 further improves CD4+ T-
cell infiltration and effector functions [72]. In addition,
inhibition of EZH2 enhances the pro-inflammatory func-
tions of tumor-infiltrating Tregs and rewires the TMEwith
increased effector T cells [73]. Another study found that
CPI-1205, a small-moleculeEZH2 inhibitor, can alter Tregs’
phenotype and functions to augment anticancer responses
induced by CTLA4 blockade [74]. The bromodomain and
extraterminal domain (BET) bromodomain inhibitor JQ1
could synergize with PD-1 inhibitor to promote a robust
anticancer response in lung cancer, which was associ-
ated with reduced tumor-infiltrating Tregs but increased
T-helper type 1 (Th1) cells [75, 76].
It has been established that both intrinsic and extrinsic

mechanisms, i.e., terminal differentiation, exhaustion
and activation-induced cell death, contribute to T cell
dysfunction, which can be rescued by epigenetic repro-
gramming therapy [76]. T cell exhaustion is dependent on
DMNT3a-mediated de novo DNA methylation, block of
which by DAC can enhance T cell rejuvenation and sensi-
tize anti-PD-1 therapy in cancer [77]. Recently, we showed
that low-dose DAC significantly improves CAR-T cell phe-
notype and function, which is characterized by increased
non-exhausted T cells and naive, early memory T cell dif-
ferentiation [42, 43]. Loo Yau et al. [78] also demonstrated
that low-dose DAC increases CD8+ T cell infiltration
and their antitumor activities. Mechanistically, DAC can
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selectively increase both the number and abundance of a
granzyme Bhigh, perforinhigh effector subpopulation. JQ1
had been shown to prevent the transition to effector mem-
ory T cells and enhance antitumor response in murine
models of CAR-T therapy [79]. The effects of HDACi on
T cells are complex and paradoxical, varying by isoform-
selective HDAC inhibition. Laino et al. [80] found that
low-dose pan-HDACis, but not selective HDACis, impair
T cell viability. In patients who received HDAC6-selective
inhibitors ACY-1215 and ACY-241, peripheral blood T cells
showed increased Th2 transcription factor GATA-binding
protein 3 (GATA3) and decreased Th1 transcription factor
T-box protein in T cells (T-BET), shifting from exhaustion
to central memory phenotype, and enhanced cytotoxicity.
HDAC8, often overexpressed in cancers, suppresses the
production of T cell-trafficking chemokines; downregula-
tion of HDAC8 promotes global and enhancer acetylation
of H3K27 to reactivate chemokine gene transcriptions
[81]. In a liver cancer model, selective HDAC8 inhibition
synergizes with anti-PD-L1 to eradicate cancer through
increased CD8+ T cell infiltration in the TME [81].

2.4 Targeting the TME

In addition to cancer cells, the TME consists of extracel-
lular matrix, vasculature, and stromal cells surrounding
the tumor, as well as cytokines, chemokines, and exo-
somes. These components form a complicated immuno-
suppressive microenvironment [82, 83]. The epigenetic
dysregulation is pivotal in the generation and main-
tenance of an immunosuppressive TME, resulting in
immune evasion of cancer [84, 85]. As mentioned above,
epi-drugs can promote maturation of functional Tregs,
converting an immunosuppressive TME to an immuno-
competent TME. Moreover, epigenetic changes by histone
modifications also affect the differentiation and activa-
tion of the myeloid cells [86]. Myeloid-derived suppressor
cells (MDSCs) include polymorphonuclear MDSCs (PMN-
MDSCs) andmonocyticMDSCs (M-MDSCs) [87]. Valproic
acid, a commonHDACi, when combined with an anti-PD-
L1 antibody, induces polarization of precursor cells toward
M-MDSCs in the bone marrow through transcriptional
activation of the interferon regulatory factor (IRF)1/IRF8
pathway [88]. The class I/IV HDACi mocetinostat had
been demonstrated to inhibit intratumoral Treg andMDSC
populations and increase intra-tumoral CD8+ popula-
tions [89]. ENT impairs the immunosuppressive activity
only in PMN-MDSCs but not M-MDSCs or macrophages;
ricolinostat, an HDAC6 inhibitor, suppresses M-MDSC
activity other than PMN-MDSC activity [90]. Interestingly,
combined treatment abrogates the activities of MDSC
populations and markedly inhibits tumor growth [90].

Macrophages have become promising immune effec-
tors for cancer treatment [91]. The HDAC6 inhibitor,
nexturastat A, reduces pro-tumorigenic M2 macrophages
[92, 93], while class IIa HDACi improves phagocytic and
immunostimulatory functions in macrophages, steering
them toward an antitumor phenotype with enhanced
capacity to activate cytotoxic T lymphocytes (CTLs) [94,
95]. Some HDACis can suppress M2 macrophage polariza-
tion and decrease MDSCs [71]. Although few studies have
investigated the effect of HMA on the TME, recent data
show that guadecitabine can down-regulate inhibitory
accessory cells in the TME and reduce the leukemia-
mediated expansion of MDSCs [96]. In a pancreatic ductal
adenocarcinoma model, DAC treatment led to increased
tumor infiltrating lymphocytes (TILs) and Chi3I3 (Ym1)
upregulation, indicating an increase of M2 macrophages
in the TME [97].
Epigenetic therapies also play an essential role in mod-

ulating natural killer (NK) cell and dendritic cell func-
tions and, therefore, augment antitumor immunity [98,
99]. For example, EZH2 inhibitors can upregulate natu-
ral killer cell receptor protein 2D (NKG2D) ligands on
cancer cells to enhance NK antitumor responses and
induce CXCL10 re-expression, which is necessary and suf-
ficient for NK cell migration [100–102]. Low-dose AZA
significantly increases the expression of multiple killer
cell immunoglobulin-like receptors in NK cells, thereby
boosting NK cell-mediated recognition of leukemia cells
[103].

3 ADVANCES IN CLINICAL TRIALS OF
EPI-IMMUNOTHERAPY FOR SOLID AND
HEMATOLOGICAL CANCERS

3.1 Hematological malignancies

3.1.1 Hodgkin’s lymphoma

Currently, there are various FDA-approved ICIs, including
antibodies against PD-1 (pembrolizumab and nivolumab),
PD-L1 (atezolizumab), and CTLA4 (ipilimumab). In
cHL, nivolumab or pembrolizumab alone elicits overall
response rates (ORR) of 70%-85% [104–106]. However, the
CR rate was only 25%-30%, suggesting that a great pro-
portion of cHLs remain resistant to anti-PD-1 treatment
[107, 108]. Nie et al. [44] performed a proof-of-concept
study to investigate whether DAC could improve the effi-
cacy of camrelizumab, a PD-1 antibody approved in China,
in patients with R/R cHL. In this prospective, open-
label, phase II trial (NCT02961101), among anti-PD-1-naïve
patients, camrelizumab alone was compared with low-
dose DAC (10 mg/day, days 1 to 5) plus camrelizumab. At
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a median follow-up of 14.9 months, CR rates were 32%
and 71% in camrelizumab alone and DAC-camrelizumab
combination groups, respectively [44]. When the median
follow-up extended to 34.5 months, a greater improve-
ment in CR rate was achieved in patients receiving DAC
plus camrelizumab (79% vs. 32%). Progression-free survival
(PFS) was longer for those receiving DAC plus camre-
lizumab compared with camrelizumab alone (35.0 vs. 15.5
months). The benefit of adding DAC to camrelizumab
was observed especially in patients who had relatively
high tumor burdens or received ≥3 prior lines of thera-
pies. Interestingly, the increase in circulating peripheral
central memory T cells was associated with improved clin-
ical response and PFS, suggesting a potential biomarker
for epi-immunotherapy in cHL [109]. Lately, Wang et al.
[110] updated the clinical results of DAC combined with
camrelizumab in cHL patients receiving prior anti-PD-
1 (NCT02961101 and NCT03250962). Of 50 patients with
progressed or relapsed cHL after anti-PD-1 treatment, the
combined treatment resulted in an objective response rate
of 52%, CR rate of 36% and longer PFS compared with prior
anti-PD-1 monotherapy. The response appears durable
once CR is achieved at 24 months. The exploratory stud-
ies showed that, when the tumor progresses, the ratio of
peripheral CCR7+CD45RA– central memory T cells (Tcm)
over total CD8+ or CD4+ cells decrease from the baseline
level; after treatment with DAC plus camrelizumab, the
Tcm ratio increases and persists in patients who obtained
partial response (PR) or better, but not in those with stable
disease (SD) or progressive disease (PD) [110].
In preclinical studies using various tumor models, ICIs

also had been demonstrated to have synergistic effects
when combined with HDACis [111, 112]. In a phase II trial
(NCT03179930), R/R cHL patients were given ENT, an oral
class I-specific HDACi, plus pembrolizumab [113]. Of 13
evaluable patients, ORRwas 92%, including 3 patients who
progressed on prior anti-PD-1 therapy, suggesting that the
combination of ICI and HDACi have promising clinical
activity. The study also showed a reasonable safety profile.
Chidamide, a novel, orally active benzamide class of selec-
tive inhibitors against HDAC 1, 2, 3 and 10, was evaluated
in a clinical study in cHL patients who were resistant to or
relapsed after DAC plus camrelizumab treatment [114]. Of
14 evaluable patients, 13 (93%) achieved objective response,
including 6 CRs. The toxicities were acceptable without
any immune-related AEs. Collectively, compared with ICI
alone, the combination of DMNTi or HDACi with ICI
resulted in higher CR rate in anti-PD-1-naïve patients with
R/R cHL. Epigenetic agents appear to partially reverse the
resistance to ICIs since a proportion of patients with prior
anti-PD-1 exposure still respond well when an epi-drug is
added to anti-PD-1.

3.1.2 B-cell lymphoma

Unlike cHL, diffuse large B-cell lymphoma (DLBCL) and
follicular lymphoma (FL) generally do not respond well to
PD-1 blocker, although EBV-positive status associates with
reasonable efficacy of pembrolizumab [115, 116]. Primary
mediastinal large B-cell lymphoma (PMBCL), a DLBCL
subtype, is characterized by chromosome 9p24 aberra-
tions and upregulated PD-L1 [117]. A phase Ib and phase
II trials (KEYNOTE-013/KEYNOTE-170) have shown that
pembrolizumab produced durable responses and accept-
able toxicity in R/R PMBCL [118]. To improve the anti-
lymphoma activity, several ongoing clinical studies are
assessing the combination of PD-1 blockade with DAC
or vorinostat in DLBCL, FL and HL (NCT03346642 and
NCT03150329). A high frequency of somatic mutations in
epigenetic modifier genes, including CREBBP and EZH2,
are identified in B cell lymphoma [115]. The mutant EZH2
reprograms germinal center B cells to alter their interac-
tions with follicular Th cells and follicular dendritic cells,
promoting B cell transformation in FL [119, 120]. CREBBP
mutant-associated program can be reversed by HDAC3
inhibitor, which induces transcription of BCL6 targets to
restore immune surveillance [121]. HDAC3 inhibitor can
also enable TILs to eradicate DLBCL cells in an MHC-
dependent manner and has synergistic effects with PD-L1
antibody in vivo [121].
Recently, multiple new epi-drugs are being evaluated

for cytotoxicity against B-cell lymphoma and their mecha-
nisms of action in preclinical and clinical studies. Tazeme-
tostat, an oral first-in-class EZH2 inhibitor, has single-
agent activity against DLBCL and FL [122–124]. Interest-
ingly, a phase Ib study (NCT02220842) was performed to
assess the efficacy of tazemetostat in combinationwith ate-
zolizumab on R/RDLBCL [125]. A total of 43 patients were
enrolled. However, at the data cut-off, 19 (44%) had dis-
continued study treatment because of death (n = 17) and
withdrawal (n = 2). Best ORR was 16%, including 2 (5%)
CRs and 5 (12%) PRs. Among the 5 patients with EZH2
mutations, 3 achieved a response.

3.1.3 T-cell lymphoma

PD-1 is considered a potential therapeutic target of T-cell
lymphoma (TCL) because PD-1 is frequently overexpressed
in angioimmunoblastic T-cell lymphoma (AITL), nat-
ural killer-/T-cell lymphoma (NKTCL), and peripheral
T-cell lymphoma (PTCL) [126]. It has been shown that
nivolumab results in anORR of 40% in R/R TCL, and pem-
brolizumab leads to an ORR of 100% in EBV-associated
NK cell lymphoma and TCL [127, 128]. Additionally,
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several HDACis, including belinostat, romidepsin and chi-
damide, have been indicated for certain TCL subtypes, but
the efficacy of single agents rarely exceeded 30% [129].
It was also well known that azacitidine is effective in
follicular Th cell-derived PTCL by targeting recurrent ten-
eleven translocation 2 (TET2), DNA methyltransferase 3A
(DNMT3A) and isocitrate dehydrogenase 2 (IDH2) muta-
tions [130]. Thus, the incorporation of epi-drugs into PD-1
checkpoint inhibition is worth further clinical assessment
in TCL.
Recently, a phase I/II trial of pembrolizumab combined

with romidepsin and pralatrexate for R/R AITL and PTCL
with follicular Th cells was conducted (NCT03278782)
[131]. Among 14 patients who received pembrolizumab in
combination with romidepsin, the ORR was 50%, includ-
ing 5 CRs and 2 PRs, which was durable with 18-month
follow-up and with acceptable safety. High level of PD-L1
is predictive of good response [131]. Pembrolizumab is also
being tested along with DAC and pralatrexate in a phase I
clinical trial (NCT03240211) [132]. In this study, 13 patients
with R/R PTCL and cutaneous T-cell lymphoma (CTCL)
were enrolled, and the patients who received triplet combi-
nation treatment achieved objective responseswith a dura-
tion of response (DOR) of 18 months. The preliminary data
from another phase I/IIa trial (NCT03161223) showed that
the epi-immunotherapy was tolerable in PTCL patients,
and 3/5 evaluable patients achieved CR when treated with
durvalumab, oral azacitidine, and romidepsin [132].
Extranodal NK/T cell lymphoma (ENKTL) is an aggres-

sive Epstein-Barr virus-related lymphomawith a high inci-
dence in Asia [115]. Abnormal PD-1/PD-L1 expression was
demonstrated in both neoplastic and immune cells in the
TME, which offers opportunities for applying ICIs in this
lymphoma subtype [115, 133]. On the other hand, the tumor
suppressor epigenetic regulators, lysine methyltransferase
2D (KMT2D) and BCL6 corepressor (BCOR), were fre-
quently mutated in ENKTL [134]. Kwong et al. [135] first
demonstrated the effectiveness of pembrolizumab in a
small series of patients with R/R ENKTL. In a phase II
ORIENT-4 study, sintilimab, another anti-PD-1 antibody,
also showed efficacy, and ORR and disease control rate
(DCR) were 67.9% (19/28) and 85.7% (24/28), respectively
[136]. Recently, a single-arm, open-label, multicenter clini-
cal trial (NCT03820596)was designed to evaluate the safety
and efficacy of sintilimab combined with chidamide for
R/R ENKTL, showing an impressive response in 36 evalu-
able patients [137]. In this study, the combination therapy
yielded an ORR of 58.3% with CR in 16 (44.4%) patients.
Notably, tumor PD-L1 expression could predict clinical
response [137]. Furthermore, a single-arm phase II trial is
conducted to test the combination of sintilimab, chidamide
and azacitidine in patientswithR/RPTCLs, and the results
are pending [138].

3.1.4 Acute myeloid leukemia and
myelodysplastic syndrome

Acute myeloid leukemia (AML) and myelodysplastic syn-
drome (MDS) are highly heterogenous myeloid malig-
nancies with complex molecular genetic abnormalities,
and the prognosis remains poor for elderly or refractory
patients. Yang et al. [139] first reported that PD-1, PD-
L1/L2 and CTLA4 are overexpressed in 8%-34% of bone
marrow CD34+ cells from patients with MDS and AML.
Currently, there is great clinical interest in immunother-
apies for AML, with over 30 clinical studies evaluating
ICIs for AML and MDS, which included PD-1, CTLA4,
and T cell immunoglobulin mucin-3 (TIM3) blockade
[140–142]. However, ICIs, especially anti-PD-1 antibodies,
have limited activity in these diseases [143, 144]. Given
their potential for induction of checkpoint molecules,
HMAs have been combined with PD-1/PD-L1 inhibitors
in several studies. In an open-label, phase II study, 70
patients with R/R AML were treated with nivolumab and
AZA [145]. The ORR was 33%, including 15 (22%) CR or
CR with insufficient recovery of counts (CRi), 1 PR, and
7 hematological improvement (HI). Importantly, the ORR
of 58% in HMA-naive R/R AML patients compared favor-
ably with the historical controls treated with AZA alone
[145]. Combinations of HMAswith another anti-PD-1 anti-
body, pembrolizumab, produced similar benefits to those
observed with AZA and nivolumab in R/R AML patients
[146]. Pembrolizumab-AZA combination therapy also had
been investigated in a clinical trial for newly diagnosed
AML (NCT02845297), in which 22 unfit, elderly patients
were enrolled [147]. Seventeen patients were evaluable
with CR/Cri 47% (8/17) and PR 12% (2/17). This front-
line treatment resulted in a median OS of 13.1 months
[147]. For high-risk MDS (HR-MDS), a phase II trial
(NCT03094637) evaluated AZA plus pembrolizumab in
patients with HR-MDS after failure of HMA therapy. The
combination treatment of pembrolizumab and AZA was
well tolerated in 17 therapy-naive patients and showed an
ORR of 80%, including 3 CR, 7 marrow CRs and 1 HI
[148]. This clinical study showed that the combination
therapy might have anticancer activity in certain HMA-
failure patients, but no significant improvement in OS was
demonstrated. Interestingly, a recent study of triple combi-
nation showed encouraging CR/CRi and OS [149]. In this
study, 31 R/R AML patients were given nivolumab, AZA
and ipilimumab, and the ORR was 60%, including 9 (36%)
CR/CRi, 2 (8%) HI lasting over 6 months, and 4 (16%) SD.
The efficacy of PD-1 or PD-L1 blockade appears to vary

between AML and MDS [150]. In a single-arm phase I
study, avelumab in combination with DAC was evaluated
in newly-diagnosed AML patients ineligible for intensive
therapy [151]. Only 1 of 5 patient (20%) achieved CR, 3
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had SD, and 1 experienced PD. In the first large random-
ized trial (NCT02845297), 129 AML patients of 65 years
or older were randomized to receive AZA plus durval-
umab or AZA alone [152]. No significant difference was
found in the ORR (31.3% vs. 35.4%) or CR rate (17.2% vs.
21.5%) between 2 arms, and the median OS was 13.0 and
14.4 months, respectively. Similar results were reported
in the patients with HR-MDS [152]. In a phase Ib study,
the efficacy of atezolizumab, with or without AZA, was
evaluated in HMA-failure and HMA-naive MDS patients
(NCT02508870) [153]. Despite little effects in HMA-failure
MDS patients, atezolizumab, with or without AZA, indeed
produces an ORR of 62% (CR, 14%; mCR, 19%; mCR + HI,
10%; HI, 19%) in HMA-naïve patients with median OS not
reached.
However, clinical studies in AML and MDS have raised

safety concerns about epi-immunotherapy. For example,
in HMA-naïve patients receiving AZA and atezolizumab,
frequent febrile neutropenia (29%) accounted for 3-month
mortality of 29%, which caused early termination of the
study (NCT02508870) [146]. In addition, SWOG 1612, a ran-
domized phase III trial in AML andHR-MDS, also showed
excessive early deaths in the AZA/nivolumab arm com-
pared with the control arm [154]. Based on our previous
studies in cHL [44, 109, 110], we suggest that low-dose
HMA should be tested in combination with PD-1 or PD-L1
inhibitors in AML and MDS patients.
Lirilumab is a fully-humanized IgG4 monoclonal

antibody that is designed to block the killer cell
immunoglobulin-like receptor (KIR)/HLA-C interac-
tion, thereby enhancing NK cell-mediated cytotoxicity
against AML in KIR-mismatched haploidentical stem cell
transplantation (SCT) [155, 156]. Previously, lirilumab in
combination with AZA was evaluated in relapsed AML
in a phase Ib/II study (NCT02399917) [157]. Twenty-five
patients were included and achieved an ORR of 20%,
including a CR/CRi of 8% (2/25) and HI 12% (3/25). The
median DOR and overall OS were 2.0 months and 4.0
months, respectively. In another pilot trial (NCT02599649),
8 HR-MDS patients received a median of 4 cycles of treat-
ment with AZA plus lirilumab [158]. Overall, 2 patients
achieved CR, 4 had marrow CR, and 2 had SD.
Despite significant advances, epi-immunotherapy has

shown variable efficacies. Many patients do not experi-
ence a CR, and some are non-responders, highlighting
the need to improve our understanding of the clinical
features and molecular events associated with response.
In AML and HR-MDS, a good response is associated
with HMA-naïve status, low leukemia burden, ASXL1
mutation, and high number of pre-treatment CD3+ and
CD8+ cells evaluated by mass cytometry (CyTOF) and
immunohistochemistry (IHC) [145]. Herbrich et al. [159]
analyzed the baseline immune landscape using single-cell

CyTOF profiling of serial samples collected fromR/RAML
patients receiving AZA and avelumab (NCT02953561).
The CD4/CD8 ratio and residual T cell profiles were
found to predict the response following HMA/PD-L1 inhi-
bition. Importantly, immune landscape studies revealed
that AML cells also express other immune checkpoints,
in particular, PD-L2, TNF receptor superfamily mem-
ber 4 (TNFRSF4) and TIM3 could be potential targets
for novel epi-immunotherapy [159]. In a recent phase
II trial (NCT03066648), sabatolimab (MBG453), an anti-
TIM3 antibody, plusDACorAZA led to anORRof 58%-70%
for HR-MDS, 27%-41% for newly-diagnosed AML, and
24% for R/R AML [160, 161]. The study also showed that
combiningHMAswith TIM3 inhibitionwas safewith a rel-
atively durable response inMDS andAML [160, 161]. Based
on these data, the STIMULUS MDS-US trial will further
assess the feasibility and clinical efficacy of sabatolimab in
combination with an oral HMA in patients with advanced
MDS [162].

3.2 Solid tumors

3.2.1 Breast cancer

A phase II clinical trial was designed to combine CC-486,
an oral HMA, and durvalumab to treat selected immuno-
logically cold tumors, including breast cancer (BC), result-
ing in marginal clinical response [163]. When combined
with anti-PD-1, anti-CTLA4, or both, ENT can significantly
prolong tumor-free survival in a HER2/neu transgenic BC
model [164]. In ENCORE 602 trial (NCT02708680) [165],
81 patients with refractory triple-negative breast cancer
(TNBC) were randomized to receive atezolizumab plus
ENT or atezolizumab alone. Unfortunately, no significant
differences in ORR, PFS and median OS were observed
between the two arms, while more AEs were seen in
the combination arm. Similarly, Terranova-Barberio et al.
[166] presented the data from a randomized phase II
trial (NCT02395627) using triple combination of vorinostat,
pembrolizumab, and tamoxifen. In 34 heavily pretreated
patients with estrogen receptor (ER)-positive BC, this
combination treatment showed limited efficacy. How-
ever, comprehensive correlative analysis revealed that
an exhausted CD8+ T-cell (PD-1+/CTLA4+) immune
signature and an HDACi-dependent decrease in Tregs
(CD4+ Foxp3+/CTLA4+) might predict response to epi-
immunotherapy. Recently, another HDACi, romidepsin,
was combined with cisplatin and nivolumab in a phase
I/II study (NCT02393794) [167], in which 51 patients with
metastatic TNBC were enrolled. Among 34 evaluable
patients, the ORR was 44%, median PFS was 4.4 months,
and 1-year PFS rate was 23%; the median OS was 10.3
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months, and 1-year OS rate was 43%. The triple combina-
tion had safe profiles and impressive efficacy in refractory
metastatic TNBC, including PD-L1-negative diseases and
those with liver metastasis [167].

3.2.2 Non-small cell lung cancer

Juergens et al. [168] from Johns Hopkins University first
reported durable clinical responses to immune check-
point therapy in advanced NSCLC patients who received
prior epi-drug therapy, and later they suggested that AZA-
inducedPD-L1 upregulationmay account for the beneficial
effect observed in the combination of epi-drugs and anti-
PD-1 [169]. Recently, a Bayesian network meta-analysis
revealed that PD-1/PD-L1 inhibitors were more effica-
cious than control treatment in patients with solid tumors,
including non-small cell lung cancer (NSCLC) [170]. How-
ever, it is unclear whether the combined use of PD-1/PD-L1
inhibitor and HMA would benefit NSCLC patients [171].
In a phase II trial (NCT02546986), 100 patients with a
previous line of platinum-based therapy were assigned to
receive pembrolizumab combined with either oral AZA
or placebo, and PFS was not improved (median, 2.9 and
4.0 months) [172]. We recently reported an unexpectedly
good outcome for 3 advanced NSCLC patients carrying
unfavorable ICI biomarkers, such as low tumor mutation
load, low microsatellite instability and HLA loss of het-
erozygosity [173]. Surprisingly, all 3 patients responded
well to low-dose DAC in combination with camrelizumab,
with mild AEs, suggesting that low-dose DAC sensitized
PD-1/PD-L1 inhibitors in NSCLC. High expression of the
enzyme cytidine deaminase (CDA) that catabolizes DAC
within minutes was reported in NSCLC [174]. The com-
bination of HMA with tetrahydrouridine (THU), a CDA
inhibitor, was found to cause > 2-fold DNMT1 depletion
and > 5-fold increase in TILs, as well as destruction of
NSCLC in vivo. Based on these data, the PRECISE trial
(NCT02664181) has been conducted to compare the effi-
cacy of nivolumab alone or in combination with THU and
DAC in patients with R/R NSCLC [175]. To investigate the
effect of guadecitabine, a second-generation DNA methy-
lation inhibitor, on solid cancers, a phase II dose-escalation
trial (NCT02998567)was initiated [176]. Overall, 34 patients
were enrolled, of whom 10 of 15 patients with NSCLC (13
patients were resistant/refractory to PD-1/PD-L1 targeting
agents) were evaluable, with a DCR of 80% and 5 patients
having DCR > 6 months.
Recent clinical trials suggest that the combination of

anti-PD-1/PD-L1 and HDACi is a promising option for
treating NSCLC patients. A phase Ib study (NCT02635061)
assessed the clinical efficacy of ACY-241, a selective
HDAC6 inhibitor, plus nivolumab on metastatic NSCLC

[177]. Eighteen patients received the treatment. Eight of
13 evaluable patients showed clinical benefit, including 1
CR, 4 PRs and 3 SDs. Immune cell profiling revealed a
trend of increased infiltrating cytotoxic T and NK cells
following the combined treatment [177]. Two clinical tri-
als (NCT01928576 and NCT02437136) are evaluating the
combination of pembrolizumab with HDACis such as
vorinostat and ENT on anti-PD-1/PD-L1-naïve or refrac-
tory NSCLCs [178]. In a phase I/Ib trial, 33 patients were
given pembrolizumab plus vorinostat [179]. Among 30
evaluable patients, 20 had SD or PR. In the subsequent
open-label, phase II randomized trial (NCT02638090),
patients with metastatic NSCLC were randomized to
receive pembrolizumab alone (arm A) or pembrolizumab
plus vorinostat (arm B) [180]. Among 47 of 49 patients
evaluable for response, the ORR of patients with low pre-
treatment TIL count (score = 1) in arm B (66.7%) was
obviously higher than that in arm A (33.3%), suggesting
that the combination strategy may favor NSCLC patients
with a low-TIL count.

3.2.3 Metastatic melanoma

ICIs, including nivolumab, pembrolizumab and ipili-
mumab, have significantly improved the clinical outcomes
of metastatic melanoma and are now in routine use
[181–183]. However, more than half of patients experience
either primary or acquired resistance [184]. To date, some
preclinical studies have shown the therapeutic value of
CTLA4 inhibitor combined with HMA [185]. In a phase
Ib NIBIT-M4 study (NCT02608437), guadecitabine com-
binedwith ipilimumab resulted in immune-relatedDCRof
42% and ORR of 26% [186]. The interim results of a phase
II study (NCT02816021) reported that, in anti-PD-1-naive
patients with metastatic melanoma, oral AZA plus pem-
brolizumab led to a PR 55%, while the anti-PD-1 pretreated
patients did not show any response [187].
Epi-immunotherapies using HDACi also have been

investigated in metastatic melanoma patients. The
ENCORE-601 (NCT02437136), an open-label study,
enrolled melanoma patients in which 70% had prior
pembrolizumab treatment [188, 189]. With ENT plus
pembrolizumab, 10 of 53 patients achieved CR or PR
(ORR = 19%). Efficacy results in patients receiving prior
PD-1 therapy were consistent with the overall population.
Preliminary biomarker analysis suggests that the addition
of ENT restores inflammation in the TME necessary for
successful re-treatment with anti-PD-1/PD-L1 [188, 189].
An early clinical study (NCT02032810) determined the
safety and efficacy of panobinostat, a pan inhibitor of
class I, II, and IV HDAC, combined with ipilimumab in
advanced melanoma [190]. However, the results with this
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combination treatment were disappointing. Mocetinostat,
an investigational class I and IV HDACi, has demon-
strated anticancer activity in patients with hematological
malignancies and solid tumor [191]. Preclinical studies
showed that mocetinostat promotes the accumulation
of central memory CD8 and CD4 T cells and inhibits
Treg cell and MDSC functions [192]. In the phase Ib trial
(NCT03565406), the efficacy of mocetinostat in combina-
tion with ipilimumab was evaluated in 10 patients with
unresectable melanoma [193]. At a median follow-up of 16
months, the ORR was 70%, including 2 CRs and 5 PRs; 7
patients developed grade 3-4 immune-related AEs.

3.2.4 Renal and bladder carcinoma

Preclinical and clinical studies have provided a rationale
for PD-1, PD-L1 or CTLA4 blockade for the treatment of
renal cell carcinoma [194]. Recently, several studies had
evaluated the safety and efficacy of epi-immunotherapies
using HMA, HDACi, and EZH2 inhibitors. In a phase Ib/II
study (NCT03308396), 42 patients with advanced renal
cancer were treated with durvalumab and guadecitabine
[195]. At amedian follow-up of 20.1months, 66%of patients
achieved clinical benefit defined as either PR of SD that
lasted ≥6 months. Mechanistically, decreased Tregs and
MDSCs might be associated with favorable outcomes, and
increased Th17 subpopulations of T cells were associated
with immune-related AEs [195]. The results from another
phase Ib study showed that vorinostat and pembrolizumab
combination was tolerable and active in a subset of ICI-
resistant urothelial and renal carcinoma patients [196]. A
phase I/II study with pembrolizumab in combination with
tazemetostat is ongoing (NCT03854474).

3.2.5 Epithelial ovarian cancer and cervical
cancer

To date, most ICI-containing clinical trials for advanced
recurrent ovarian cancer (OC) have focused on anti-PD-
1/PD-L1 therapy, but the results were disappointing [197].
The combination of ICI with HMA is being explored. In
a phase II trial (NCT02901899), guadecitabine plus pem-
brolizumab brought clinical benefit in 27% of patients
with R/R OC. Epic arrays were used to measure global
tumor methylation, and showed 0.05% CpG sites being
differentially methylated after the treatment [198]. The
combination of oral AZA and durvalumab produced a
median PFS of 1.9 months and a median OS of 5 months in
28 anti-PD-1-naive patients with platinum-resistant OC in
the open-label, phase II multicohort study (NCT02811497)
[163]. The biomarker studies did not detect any signifi-

cant tumor DNAhypomethylation. A phase II randomized
study (NCT02915523) recruited 126 advanced OC patients
who received avelumab plus either ENT or placebo but
found no significant difference in ORR (6% vs. 5%) or
OS (NE vs. 11.3 months) [199]. Toripalimab, a humanized
PD-1 antibody, in combination with chidamide is being
explored in a phase Ib/II, single-arm, multi-center study
(NCT04651127), in patients with R/R metastatic cervical
cancer.

3.2.6 Colorectal cancer

A recent real-world analysis showed that the earlier use
of ICIs resulted in better tumor response in a subset of
CRC patients [200]. Since either DMNTi or HDACi com-
bined with ICIs markedly improved treatment outcomes
in CRC-bearing mice and DAC-based TME reprogram-
ming could enhance the effect of the PD-1 blockade
on CRC with microsatellite stability (MSS) [40], epi-
immunotherapies also have been evaluated in a few
clinical settings for CRC. Unfortunately, PD-1 blockade
(pembrolizumab) combined with AZA appears to have
modest activity against metastatic CRC with MSS [201].

3.2.7 Head and neck squamous cell
carcinoma

In a phase II trial (NCT02538510), the combination of
pembrolizumab and vorinostat was evaluated for recur-
rent ormetastatic head and neck squamous cell carcinoma
(HNSCC) and salivary gland cancer (SGC) [202]. Among
25 patients with HNSCC, 8 (32%) achieved PR, and 5 (20%)
had SD; the median OS was 12.6 months, and the median
PFS was 4.5 months. Four (16%) of 25 patients with SGC
had PR and 14 (56%) had SD; themedianOSwas 14months
andmedian PFSwas 6.9months [202]. In addition, a phase
Ib study (NCT03019003) is investigating the safety and
efficacy of oral DAC (ASTX727) combined with durval-
umab in recurrent ormetastaticHNSCCpatientswhowere
resistant to ICI monotherapy.

4 ADVANCES OF EPI-CELL THERAPY
FOR SOLID ANDHEMATOLOGICAL
CANCERS

It has become clear that epigenetic modulation can
enhance CAR-T cell persistence and function as well as
trafficking within an immunosuppressive TME [203, 204].
In an attempt to decipher the mechanisms underlying
a delayed exceptional response to CD19 CAR-T therapy,
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Fraietta et al. [205] suggested that TET2-disrupted CAR-
T cells can acquire a central memory phenotype through
altered T cell differentiation as a result of epigenetic mod-
ulation. Recently, Weber et al. [206] demonstrated that
transient inhibition of CAR signaling, but not immune
checkpoint blockade, can restore the functionality of
exhausted human CAR-T cells and argued against the
concept of the “epigenetically fixed state” in CAR-T cell
exhaustion. Collectively, these studies highlight epigenetic
reprogramming as a potential strategy to improve CAR-T
efficacy.
Although clinical trials of CAR-T therapies target-

ing CD33, CD123, NKG2D, C-type lectin-like molecule-1
(CLL1), CD70 and fms-like tyrosine kinase 3 (FLT3) for
AML are growing, the data on myeloid malignancies
remain very limited [143, 150, 207]. We demonstrated that
antitumor functions of CD123-specific CAR-T cells are sig-
nificantly enhanced by low-dose DAC [42]. NKR-2 are
CAR-T cells targeting NKG2D ligands [208]. In a phase
I clinical trial (NCT02203825), the safety and feasibil-
ity of NKR2 in patients with AML, MDS, and multiple
myeloma were evaluated [208]. Moreover, EPITHINK, an
open-label phase I study (NCT03612739), was designed to
investigate the combination therapy of NKR2 and AZA for
newly-diagnosed AML/MDS patients ineligible for inten-
sive chemotherapy or transplantation. However, this study
was withdrawn by the investigator.
Zebley et al. [209] performedDNAmethylation profiling

using serial clinical samples from patients with acute lym-
phoblastic leukemia (ALL) and found that post-infusion
CD8 and CD19 CAR-T cells undergo DNA methylation
reprogramming that drives cell differentiation toward
exhaustion. It was also demonstrated that low-dose DAC-
treated CD19 CAR-T cells have stronger anti-lymphoma,
proliferation and cytokine-releasing capacities, which is
associated with less exhaustion and maintenance of mem-
ory phenotype and effector function [43]. Consistent with
this result, Li et al. [210] suggested that DAC-primed CD19
CAR-T cells are able to kill more lymphoma cells, andDAC
followed by CAR-T cell infusion led to CR in 2 patients
with refractory lymphoma. Despite high response rates in
R/RB-ALLpatients, CD19CAR-T cells showed limited effi-
cacy inR/RALLpatientswith p53-mutation/deletion [211].
Interestingly, Qu et al. [212] reported that ALL patients
with p53 alternations achieved and maintained CR after
treatment with CAR-T cells and DAC, indicating that
DAC application may improve the outcome of CAR-T
cell-treated patients.
In addition to CAR-T therapy, the efficacy of DAC com-

bined with other cell therapies also has been evaluated.
The studies in patients with solid tumors showed that low-
dose DAC combined with cytokine-induced killer (CIK)
cells achieved significant clinical benefits [213, 214]. Some

clinical studies suggested that AZA and donor lympho-
cyte infusions (DLIs) can induce remission in post-SCT
relapsed myeloid cancers [215, 216]. Sommer et al. [217]
investigated DAC in combination with DLIs in 26 patients
with relapsed AML, MDS, or MPN after allogeneic SCT.
Eighteen patients receivedDAC-primedDLIs,while 8were
on DAC only. The rates of acute and chronic graft ver-
sus host disease were 17% and 6%, respectively. CR/CRi
was observed in 15%, PR in 4%, and SD in 58% of patients.
Median OS was 4.7 months. PD-L1 expression appears
irrelevant to the response, implying that the efficacy of
DAC plus DIL does not restrict to patients with low
leukemic burden [217]. Qian et al. [218] reported that 2
patients with relapsed AML post allogeneic SCT achieved
durable CRs after combined treatment with anti-PD-1,
AZA and low-dose DLI, and no severe immune-related
AEs or graft versus host disease (GVHD) developed. The
anti-PD-1/HMA/DLI combination possibly enhances the
graft-vs-leukemia effect of the host’s and infused donor’s
lymphocytes [218]. By serial analysis of samples following
transgenic T-cell receptor (TCR) T cell infusion, Now-
icki et al. [219] suggested that rapid loss of surface TCR
expression is caused by epigenetic silencing through DNA
methylation. Thus, whether HMAs could potentiate the
efficacy of TCR-T therapy warrants further study.

5 ADVANCES OF EPI-VACCINES FOR
SOLID ANDHEMATOLOGICAL CANCERS

Unlike vaccines against infectious diseases, therapeutic
cancer vaccines have not shown significant responses
and clinical benefits in patients, and currently only 2 US
FDA-approved vaccines withmodest efficacy are indicated
for prostate or bladder cancer [220]. Despite feasibility
and tolerability, the combination of ICIs with vaccines
has not yet been translated into survival improvement in
early-phase clinical trials [221, 222]. NY-ESO-1 is a vaccine
target for multiple cancers, but its limited expression is a
barrier to cancer vaccine efficacy, although it is expressed
at higher levels on cancer cells than on normal cells
[223]. Preclinical studies demonstrated that DAC could
enhance both NY-ESO-1 expression in cancer cells and
NY-ESO-1-specific CTL-mediated responses in vitro [224].
The subsequent phase I trial (NCT00887796) showed
increased NY-ESO-1 antibodies and T-cell responses,
which contribute to disease stabilization or clinical PR in
6 of 10 evaluable patients with relapsed OC [224]. In a ran-
domized phase I/IIb trial (NCT03206047), AEs and best
dose of atezolizumab (anti-PD-L1) when given together
with guadecitabine and CDX-1401 vaccine (a dendritic cell
vaccine against NY-ESO-1) were investigated. A phase I
study of guadecitabine in combination with a colon cancer
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vaccine (GVAX) failed to show any significant immuno-
logic responses in 18 patients with advanced CRC [225].
In a phase I trial enrolling 9 patients with MDS, an

HLA-independentNY-ESO-1 vaccine (CDX-1401 plus poly-
ICLC adjuvant), when administered in combination with
standard decitabine schedules, can induce an NY-ESO-
1-specific adaptive immune responses, supporting epige-
netic stimulation of vaccine response in myeloid cancers
[226]. On the basis of these findings, they are now initiat-
ing a second phase I study combining NY-ESO-1 vaccine
or DAC with nivolumab for MDS patients (NCT03358719).
However, another phase I trial was performed to evaluate
the combination of AZA and a multi-peptide therapeu-
tic vaccine targeting NY-ESO-1, MAGE-A3, preferentially
expressed antigen in melanoma (PRAME), and Wilms
tumor 1 (WT-1). Unfortunately, the trial was terminated
due to the lack of clinical benefit despite modest immune
response observed in 5MDS patients [227]. Taken together,
epigenetic interventions could theoretically improve ther-
apeutic vaccines, but there is still a long way to achieve
clinically meaningful responses [228].

6 PERSPECTIVES AND CHALLENGES

Better understanding the epigenetic determinants of
immune responsewould revealmore potential therapeutic
targets. Recently, Griffin et al. [229] found that suppres-
sion of SET domain bifurcated 1 (SETDB1), a H3K9 lysine
methyltransferase, can enhance antitumor cytotoxic T-cell
responses through activation of immunostimulatory genes
and presentation of MHC-I peptides as neoantigens, pro-
viding a novel epigenetic strategy to improve ICIs’ efficacy.
The advent of immunotherapy has significantly revolu-
tionized cancer treatment. Despite encouraging clinical
activity in multiple cancer types, especially hematological
malignancies, expanding the indications of immunother-
apy and overcoming treatment resistance are the major
challenges. It is well known that combining epigenetic and
immune therapy can overcome tumor resistance and has
shown effectiveness in several cancer types. Nowadays,
growing clinical trials are currently testing combinations
of epi-drugs with immunotherapy, cell therapy, and cancer
vaccine, most commonly DNMTi and HDACi. However,
several new epi-drugs and immune therapy, such as anti-
CTLA4 antibodies, are now being evaluated in the field
of epi-immunotherapy. Moreover, novel triplet regimens
of synergistic combinations of immunotherapy with epi-
drugs are also being investigated in a variety of cancers. In
addition, recent preclinical and clinical data have demon-
strated that the combination of low-dose DAC or HDACi
with ICIs produced compelling antitumor activity in
patients with cHL and solid tumors. Based on these excit-

ing findings and because of the complexity of interplay
between cancer epigenetics and cancer immunology, the
dose, schedule, and combination of epi-immunotherapy
should be optimized in the future clinical trials. In addi-
tion, the assessment of new regimens in preclinical models
may enable rational, hypothesis-driven identification of
mechanism-based epi-immunotherapies for clinical test-
ing. Finally, relevant biomarker analysis may shed light on
understanding multiple genetic and molecular factors in
a longitudinal manner, thereby providing comprehensive
and dynamic information regarding response to treatment,
and help identify best candidates for epi-immunotherapy.

7 CONCLUSIONS

It is now clear that epigenetic processes play a signifi-
cant role in regulating immune response against cancer.
Numerous preclinical studies have shown that different
classes of epi-drugs are able to increase tumor immuno-
genicity, enhance immune cell functions and modulate
immunosuppressive TME, providing strong rationales for
cancer epi-immunotherapy. The combination of epi-drugs
with ICIs or cell therapy has led to improved efficacies in
several clinical trials, especially for hematological malig-
nancies. However, this field still faces many challenges,
such as poor response seen in solid cancer, treatment
resistance and limited use of vaccine or cell therapy.
We anticipate that the development of next-generation
epi-drugs, incorporation of appropriate biomarker and
optimized treatment strategy will provide further insight
and opportunities for epi-immunotherapy.
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