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We demonstrate the ability of statistical data assimilation (SDA) to identify the mea-
surements required for accurate state and parameter estimation in an epidemiological
model for the novel coronavirus disease COVID-19. Our context is an effort to inform policy
regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are
taken to be: the time-varying transmission rate, the fraction of exposed cases that require
hospitalization, and the time-varying detection probabilities of new asymptomatic and
symptomatic cases. In simulations, we obtain estimates of undetected (that is, unmea-
sured) infectious populations, by measuring the detected cases together with the recov-
ered and dead - and without assumed knowledge of the detection rates. Given a noiseless
measurement of the recovered population, excellent estimates of all quantities are ob-
tained using a temporal baseline of 101 days, with the exception of the time-varying
transmission rate at times prior to the implementation of social distancing. With low
noise added to the recovered population, accurate state estimates require a lengthening of
the temporal baseline of measurements. Estimates of all parameters are sensitive to the
contamination, highlighting the need for accurate and uniform methods of reporting. The
aim of this paper is to exemplify the power of SDA to determine what properties of
measurements will yield estimates of unknown parameters to a desired precision, in a
model with the complexity required to capture important features of the COVID-19
pandemic.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The coronavirus disease 2019 (COVID-19) is burdening health care systems worldwide, threatening physical and psy-
chological health, and devastating the global economy. Individual countries and states are tasked with balancing population-
level mitigation measures with maintaining economic activity. Mathematical modeling has been used to aid policymakers’
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plans for hospital capacity needs, and to understand the minimum criteria for effective contact tracing (Murray et al. 2020).
Both state-level decision-making and accurate modeling benefit from quality surveillance data. Insufficient testing capacity,
however, especially at the beginning of the epidemic in the United States, and other data reporting issues have meant that
surveillance data on COVID-19 is biased and incomplete (Heggeness, 2020; Li et al., 2020a; Weinberger et al., 2020). Models
intended to guide intervention policy must be able to handle imperfect data.

Within this context, we seek a means to quantify what data must be recorded in order to estimate specific unknown
quantities in an epidemiological model of COVID-19 transmission. These unknown quantities are: i) the transmission rate, ii)
the fraction of the exposed population that acquires symptoms sufficiently severe to require hospitalization, and iii) time-
varying detection probabilities of asymptomatic and symptomatic cases. In this paper, we demonstrate the ability of sta-
tistical data assimilation (SDA) to quantify the accuracy to which these parameters can be estimated, given certain properties
of the data including noise level.

SDA is an inverse formulation (Tarantola, 2005): a machine learning approach designed to optimally combine a model
with data. Invented for numerical weather prediction (An et al. 2017; Betts, 2010; Evensen, 2009; Kalnay, 2003; Kimura, 2002;
Whartenby et al., 2013), and more recently applied to biological neuron models (Armstrong, 2020; Meliza et al., 2014;
Hamilton et al., 2013; Kostuk et al., 2012; Nogaret et al., 2016; Schiff, 2009; Toth et al., 2011), SDA offers a systematic means to
identify the measurements required to estimate unknown model parameters to a desired precision.

Data assimilation has been presented as a means for general epidemiological forecasting (Bettencourt, Ribeiro, Chowell,
Lant, & Castillo-Chavez, 2007), and one work has examined variational data assimilation specifically - the method we
employ in this paper - for estimating parameters in epidemiological models (Rhodes & Hollingsworth, 2009). Related
Bayesian frameworks for estimating unknown properties of epidemiological models have also been explored (Bettencourt &
Ribeiro, 2008; Cobb et al., 2014). To date, there have been two employments of SDA for COVID-19 specifically. Ref (Sesterhenn,
2020) used a simple SIR (susceptible/infected/recovered) model, and Ref (Nadler et al., 2020) expanded the SIR model to
include a compartment of patients in treatment. Another study has used a Bayesian inference framework to examine a fully
stochastic epidemiological model, with relevance to COVID-19 (Li et al., 2020b).

Two features of our work distinguish this paper as novel. First, we expand the model in terms of the number of com-
partments. The aim here is to capture key epidemiological and public health intervention features of COVID-19 such that the
model structure is relevant for questions from policymakers on containing the pandemic. These features are: i) asymptomatic,
presymptomatic, and symptomatic populations, ii) undetected and detected cases, and iii) two hospitalized populations:
those who do and do not require critical care. For our motivations for these choices, seeModel. Second, we employ SDA for the
specific purpose of examining the sensitivity of estimates of time-varying parameters to various properties of the mea-
surements, including the degree of noise (or error) added. Moreover, we aim to demonstrate the power and versatility of the
SDA technique to explore what is required of measurements to complete a model with a dimension sufficiently high to
capture the policy-relevant complexities of COVID-19 transmission and containment - an examination that has not previously
been done.

To this end, we sought to estimate the parameters noted above, using simulated data representing a metropolitan-area
population loosely based on New York City. We examined the sensitivity of estimations to: i) the subpopulations that
were sampled, ii) the temporal baseline of sampling, and iii) uncertainty in the sampling.

Results using simulated data are threefold. First, reasonable estimations of time-varying detection probabilities require the
reporting of new detected cases (asymptomatic and symptomatic), dead, and recovered. Second, given noiseless measure-
ments, a temporal baseline of 101 days is sufficient for the SDA procedure to capture the general trends in the evolution of the
model populations, the detection probabilities, and the time-varying transmission rate following the implementation of
social distancing. Importantly, the information contained in themeasured detected populations propagates successfully to the
estimation of the numbers of severe undetected cases. Third, the state evolution - and importantly the populations requiring
inpatient care - tolerates low (~ five percent) noise, given a doubling of the temporal baseline of measurements; the
parameter estimates do not tolerate this contamination.

Finally, we discuss necessary modifications prior to testing with real data, including lowering the sensitivity of parameter
estimates to noise in data.
2. Model

The model is written in 22 state variables, each representing a subpopulation of people; the total population is conserved.
Fig. 1 shows a schematic of the model structure. Each member of a Population S that becomes Exposed (E) ultimately reaches
either the Recovered (R) or Dead (D) state. Absent additive noise, the model is deterministic. Five variables correspond to
measured quantities in the inference experiments.

As noted, themodel is writtenwith the aim to inform policy on social behavior and contact tracing so as to avoid exceeding
hospital capacity. To this end, the model resolves asymptomatic-versus-symptomatic cases, undetected-versus-detected
cases, and the two tiers of hospital needs: the general (inpatient, non-intensive care unit (ICU)) H versus the critical care
134



Fig. 1. Schematic of the model. Each rectangle represents a population. Note the distinction of asymptomatic cases, undetected cases, and the two tiers of
hospitalized care: H and C. The aim of including this degree of resolution is to inform policy on social behavior so as to minimize strain on hospital capacity. The
red ovals indicate the variables that correspond to measured quantities in the inference experiments.
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(ICU) C populations. The resolution of asymptomatic versus symptomatic cases was motivated by an interest in what in-
terventions are necessary to control the epidemic. For example, is it sufficient to focus only on symptomatic individuals, or
must we also target and address asymptomatic individuals who may not even realize they are infected?

The detected and undetected populations exist for two reasons. First, we seek to account for underreporting of cases and
deaths. Second, we desire a model structure that can simulate the impact of increasing detection rates on disease trans-
mission, including the impact of contact tracing. Thus themodel was structured from the beginning so that wemight examine
the effects of interventions that were imposed later on. The ultimate aim here is to inform policy on the requirements for
containing the epidemic.

We included both H and C populations because hospital inpatient and ICU bed capacities are the key health systemmetrics
that we aim to avoid straining. Any policy that we consider must include predictions on inpatient and ICU bed needs. Pre-
paring for those needs is a key response if or when the epidemic grows uncontrolled.

For details of the model, including the differential equations describing the mass action between susceptible and infec-
tious individuals and the disease progression through different sub-populations, see Appendix A.
3. Method

3.1. General inference formulation

SDA is an inference procedure, or a type of machine learning, in which a model dynamical system is assumed to underlie
any measured quantities. This model F can be written as a set of D ordinary differential equations that evolve in some
parameterization t as:

dxaðtÞ
dt

¼ FaðxðtÞ;pðtÞÞ; a ¼ 1;2;…;D;

where the components xa of the vector x are the model state variables, and unknown parameters to be estimated are
contained in p(t). A subset L of the D state variables is associated with measured quantities. One seeks to estimate the p
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unknown parameters and the evolution of all state variables that is consistent with the L measurements. A prerequisite for
estimation using real data is the design of simulated experiments, wherein the true values of parameters are known. In
addition to providing a consistency check, simulated experiments offer the opportunity to ascertain which and how few
experimental measurements, in principle, are necessary and sufficient to complete a model.

3.2. Optimization framework

SDA can be formulated as an optimization, wherein a cost function is extremized.We take this approach, andwrite the cost
function in two terms: 1) one term representing the difference between state estimate and measurement (measurement
error), and 2) a term representing model error. It will be shown below in this Section that treating the model error as finite
offers a means to identify whether a solution has been found within a particular region of parameter space. This is a non-
trivial problem, as any nonlinear model will render the cost function non-convex. We search the surface of the cost func-
tion via the variational method, and we employ a method of annealing to identify a lowest minimum - a procedure that has
been referred to loosely in the literature as variational annealing (VA).

The cost function A0 used in this paper is written as:

A0ðxðnÞ;pÞ ¼ PJ
j¼1

PL
l¼1

Rlm
2
ðylðnÞ � xlðnÞÞ2 þ

XN�1

n¼1

XD

a¼1

Raf
2
ðxaðnþ 1Þ � faðxðnÞ;pðnÞÞÞ2: (1)
One seeks the path X0 ¼ x (0), …, x(N), p (0), …p(N) in state space on which A0 attains a minimum value1. Note that
Equation (1) is shorthand; for the full form, see Appendix A of Ref (Armstrong, 2020). For a derivation - beginning with the
physical Action of a particle in state space - see Ref (Abarbanel, 2013).

The first squared term of Equation (1) governs the transfer of information from measurements yl to model states xl. The
summation on j runs over all discretized timepoints J at which measurements are made, which may be a subset of all in-
tegrated model timepoints. The summation on l is taken over all L measured quantities.

The second squared term of Equation (1) incorporates the model evolution of all D state variables xa. The term fa (x(n)) is
defined, for discretization, as: 1

2 ½FaðxðnÞÞ þ Faðxðn þ 1ÞÞ�. The outer sum on n is taken over all discretized timepoints of the
model equations of motion. The sum on a is taken over all D state variables.

Rm and Rf are inverse covariance matrices for the measurement and model errors, respectively. We take each matrix to be
diagonal and treat them as relative weighting terms, whose utility will be described below in this Section.

The procedure searches a (D (Nþ 1)þ p (Nþ 1))-dimensional state space, where D is the number of state variables,N is the
number of discretized steps, and p is the number of unknown parameters. To perform simulated experiments, the equations
of motion are integrated forward to yield simulated data, and the VA procedure is challenged to infer the parameters and the
evolution of all state variables - measured and unmeasured - that generated the simulated data.

This specific formulation has been testedwith chaotic models (Abarbanel et al., 2011; Rey et al., 2014; Ye et al., 2014, 2015),
and used to estimate parameters in models of biological neurons (Armstrong, 2020; Meliza et al., 2014; Kadakia et al., 2016;
Kostuk et al., 2012; Toth et al., 2011; Wang, Breen, Abraham, Abarbanel, & Cauwenberghs, 2016), as well as astrophysical
scenarios (Armstrong et al. 2017).

3.3. Annealing to identify a solution on a non-convex cost function surface

Our model is nonlinear, and thus the cost function surface is non-convex. For this reason, we iterate - or anneal - in terms
of the ratio of model and measurement error, with the aim to gradually freeze out a lowest minimum. This procedure was
introduced in Ref (Ye et al., 2015), and has since been used in combinationwith variational optimization on nonlinear models
in Refs (An et al. 2017; Armstrong, 2020; Armstrong et al. 2017; Kadakia et al., 2016) above. The annealing works as follows.

We first define the coefficient of measurement error Rm to be 1.0, and write the coefficient of model error Rf as: Rf ¼
Rf ;0ab, where Rf,0 is a small number near zero, a is a small number greater than 1.0, and b is initialized at zero. Parameter b is
our annealing parameter. For the case in which b ¼ 0, relatively free from model constraints the cost function surface is
smooth and there exists one minimum of the variational problem that is consistent with the measurements. We obtain an
estimate of that minimum. Then we increase the weight of the model term slightly, via an integer increment in b, and
recalculate the cost.We do this recursively, toward the deterministic limit of Rf[ Rm. The aim is to remain sufficiently near to
the lowestminimum to not become trapped in a local minimum as the surface becomes resolved.Wewill show in Results that
a plot of the cost as a function of b reveals whether a solution has been found that is consistent with both measurements and
model.
1 It may interest the reader that one can derive this cost function by considering the classical physical Action on a path in a state space, where the path of
lowest Action corresponds to the correct solution (Abarbanel, 2013)
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4. The experiments

4.1. Simulated experiments

We based our simulated locality loosely on New York City, with a population of 9 million. For simplicity, we assume a
closed population. Simulations ran from an initial time t0 of four days prior to 2020 March 1, the date of the first reported
COVID-19 case in New York City (New York Times, 2020). At time t0, there existed one detected symptomatic case within
the population of 9 million. In addition to that one initial detected case, we took as our initial conditions on the pop-
ulations to be: 50 undetected asymptomatics, 10 undetected mild symptomatics, and one undetected severe
symptomatic.2

We chose five quantities as unknown parameters to be estimated (Table 1): 1) the time-varying transmission rate Ki(t); 2)
the detection probability of mild symptomatic cases dSym(t), 3) the detection probability of severe symptomatic cases dSys(t),
4) the fraction of cases that become symptomatic fsympt, and 5) the fraction of symptomatic cases that become severe
enough to require hospitalization fsevere. Here we summarize the key features that we sought to capture in modeling these
parameters; for their mathematical formulations, see Appendix B.

The transmission rate Ki (often referred to as the effective contact rate) in a given population for a given infectious disease
is measured in effective contacts per unit time. This may be expressed as the total contact rate multiplied by the risk of
infection, given contact between an infectious and a susceptible individual. The contact rate, in turn, can be impacted by
amendments to social behavior3.

As a first step in applying SDA to a high-dimensional epidemiological model, we chose to condense the significance of Ki
into a relatively simple mathematical form. We assumed that Ki was constant prior to the implementation of a social-
distancing mandate, which then effected a rapid transition of Ki to a lower constant value. Specifically, we modeled Ki as a
smooth approximation to a Heaviside function that begins its decline on March 22, the date that the stay-at-home order took
effect in New York City (NYGovernor’s Office, 2020): 25 days after time t0. For further simplicity, we took Ki to reflect a single
implementation of a social distancing protocol, and adherence to that protocol throughout the remaining temporal baseline
of estimation.

Detection rates impact the sizes of the subpopulations entering hospitals, and their values are highly uncertain (Li et al.,
2020a; Weinberger et al., 2020). Thus we took these quantities to be unknown, and - as detection methods will evolve - time-
varying. We also optimistically assumed that the methods will improve, and thus we described them as increasing functions
of time. We used smoothly-varying forms, the first linear and the second quadratic, to preclude symmetries in the model
equations. Meanwhile, we took the detection probability for asymptomatic cases (dAs) to be known and zero, a reasonable
reflection of the state of testing in that population during our study period.

Finally, we assigned as unknowns the fraction of cases that become symptomatic (fsympt) and fraction of symptomatic
cases that become sufficiently severe to require hospitalization (fsevere), as these fractions possess high uncertainties (Refs
(Oran and Topol, 2020) and (Salje et al., 2020), respectively). As they reflect an intrinsic property of the disease, we took
them to be constants. All other model parameters were taken to be known and constant (Appendix A); however, the
values of many other model parameters also possess significant uncertainties given the reported data, including, for
example, the fraction of those hospitalized that require ICU care. Future VA experiments can treat these quantities as
unknowns as well.
Table 1
Unknown parameters to be estimated. Ki, dSym, and dSys are taken to be time-varying. Parameters fsympt and fsevere are
constant numbers, as they are assumed to reflect an intrinsic property of the disease. The detection probability of
asymptomatic cases is taken to be known and zero.

Parameter Description

Ki(t) Time-varying transmission rate
dSym(t) Time-varying detection probability of mild symptomatics
dSys(t) Time-varying detection probability of symptomatics requiring hospitalization
fsympt Fraction of positive cases that produce symptoms
fsevere Fraction of symptomatics that are severe

2 Our choices for these numbers were difficult to make, given the scant data and poor understanding of the evolutionary history of the disease that
existed at the time that this study was conducted. Ultimately, we chose numbers that represent neither lower nor upper limits, but rather plausible
scenarios. The general temporal evolution of the model sub-populations was not sensitive to changes in these numbers of several tens of percentage points,
but it will be important in future work to conduct a more detailed study on model sensitivity to initial conditions.

3 The reproduction number R0, in the simplest SIR form, can be written as the effective contact rate divided by the recovery rate. In practice, R0 is a
challenge to infer (Bettencourt and Ribeiro, 2008; Thompson et al., 2019; Cori et al., 2013; Wallinga and Teunis, 2004).
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Fig. 2. Schematic of the four simulated experiments.
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The simulated experiments are summarized in the schematic of Fig. 2. They were designed to probe the effects upon
estimations of three considerations: a) the number of measured subpopulations, b) the temporal baseline of measurements,
and c) contamination of measurements by noise. To this end, we designed a “base” experiment sufficient to yield an excellent
solution, and then four variations on this experiment.

The base experiment (denoted "i" in Fig. 2) possesses the following features: a) five measured populations: detected
asymptomatic Asdet, detected mild symptomatic Symdet, detected severe symptomatic Sysdet, Recovered R, and Dead D; b) a
temporal baseline of 101 days, beginning on 2020 February 26; c) no noise in measurements.

The three variations on this basic experiment (denoted "ii" through "iv" in Fig. 2), incorporate the following independent
changes. In Experiment ii, the R population is not measured - an example designed to reflect the current situation in some
localities (e.g. Refs (Li et al., 2020a; Weinberger et al., 2020)).

Experiment iii includes a ~ five percent noise level (for the form of additive noise, see Appendix C) in the simulated R data,
and Experiment iv includes that noise level in addition to a doubled temporal baseline.

For each experiment, twenty independent calculations were initiated in parallel searches, each with a randomly-
generated set of initial conditions on state variable and parameter values. For technical details of all experimental designs
and implementation, see Appendix C.
5. Result

5.1. General findings

The salient results for the simulated experiments i through iv are as follows:
� (base experiment): Excellent estimate of all - measured and unmeasured - state variables, and all parameters except for

Ki(t) at times prior to the onset of social distancing;
� (absent a measurement of Population R): Poor estimate of all quantities;
� (~ 5% additive noise in R): Poor estimates of all quantities;
� (~ 5% additive noise in R, with a doubled baseline of 201 days): Estimates of state evolution are robust to noise, while

parameter estimates are sensitive to noise.
Figures of the estimated time evolution of state variables and time-varying parameters are shown in their respective

subsections, and the estimates of the static parameters are listed in Table 2.
Table 2
Estimates of static parameters fsympt and fsevere over all simulated experiments. The established values are taken from Refs (Oran and Topol, 2020) and (Salje
et al., 2020). For Experiments i and iv, the reported numbers are taken from the annealing iteration with a value of parameter b of 32 and 40, respectively:
once the deterministic limit has been reached (see text). For Experiment ii, an attempt was made to retrieve parameter estimates at b¼ 2; that is: before the
solution grows unstable exponentially (see Fig. 5). See specific subsections for details of each experiment.

Experiment fsympt (established: 0.6) fsevere (established: 0.07)

Mean Variance Mean Variance
i 0.59 2 � 10�4 0.07 4 � 10�6

ii e

iii e

iv 0.39 0.8 0.19 0.2
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Fig. 3. Cost function plotted at each annealing step b for the base experiment i, for twenty paths in state space, where b scales the rigidity of the imposed model
constraint. At low b the procedure endeavours to fit the measured variables to the simulated measurements. As b increases, the cost increases until it approaches
a plateau (around b ¼ 30), indicating that a solution has been found that is consistent with both measurements and model.

E. Armstrong, M. Runge and J. Gerardin Infectious Disease Modelling 6 (2021) 133e147
5.2. Base experiment i

The base experiment that employed five noiseless measured populations over 101 days yielded an excellent solution in
terms of model evolution and parameter estimates. Prior to examining the solution, we shall first show the cost function
versus the annealing parameter b, as this distribution can serve as a tool for assessing the significance of a solution.

Fig. 3 shows the evolution of the cost throughout annealing, for the ten distinct independent paths that were initiated; the
x-axis shows the value of Annealing Parameter b, or: the increasing rigidity of the model constraint. At the start of iterations,
the cost function is mainly fitting the measurements to data, and its value begins to climb as the model penalty is gradually
imposed. If the procedure finds a solution that is consistent not only with the measurements, but also with the model, then
the cost will plateau. In Fig. 4, we see this happen, around b ¼ 30, with some scatter across paths. The reported estimates in
this Subsection are taken at a value of b of 32: on the plateau. The significance of this plateau will become clearer upon
examining the contrasting case of Experiment ii.

We now examine the state and parameter estimates for the base experiment i. For all experiments, each solution shown is
representative of the solution for all twenty paths. Fig. 4 shows an excellent estimate of all state variables during the temporal
window in which the measured variables were sampled. For consistency in illustrating the time evolution of all state vari-
ables, we use the state estimates for the Recovered (R) and Dead (D) populations, which are cumulative, rather than follow
standard epidemiological practice of showing incident R or D. The time-varying parameters are also estimated well, excepting
Ki(t) at times prior to its steep decline. We noted no improvement in this estimate for Ki(t), following a tenfold increase in the
temporal resolution of measurements (not shown). The procedure does appear to recognize that a fast transition in the value
of Ki occurred at early times, and that valuewas previously higher. It will be important to investigate the reason for this failure
in the estimation of Ki at early times, to rule out numerical issues involved with the quickly-changing derivative4.
5.3. Experiment ii: no measurement of R

Fig. 5 shows the cost as a function of annealing for the case with no measurement of Recovered Population R. Without
examining the estimates, we know from the Cost(b) plot that no solution has been found that is consistent with both
measurements and model: no plateau is reached. Rather, as the model constraint strengthens, the cost increases
exponentially.

Indeed, Fig. 6 shows the estimation, taken at b ¼ 2, prior to the runaway behavior. Note the excellent fit to the measured
states and simultaneous poor fit to the unmeasured states. As no stable solution is found at high b, we conclude that there
exists insufficient information in Asdet, Symdet, Sysdet, and D alone to corral the procedure into a region of state-and-
parameter space in which a model solution is possible. We repeated this experiment with a doubled baseline of 201 days,
and noted no improvement (not shown).
4 As noted in Experiments, we chose Ki to reflect a rapid adherence to social distancing at Day 25 following time t0, which then remained in place through
to Day 101. For the form of Ki, see Appendix B.)
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Fig. 4. Estimates of the state - measured and unmeasured - variables, and the time-varying parameters Ki, dSym, and dSys, for the base experiment i. Excellent
estimates are obtained of all states and parameters, except early values of Ki prior to the implementation of social distancing; see text. The dotted blue lines are
the simulated data. Solid red, black, and green lines are SDA estimates of measured variables, unmeasured variables, and parameters, respectively. These con-
ventions also hold for Fig. 6 and 7. Results are taken at a value for annealing parameter b of 32.

Fig. 5. Cost versus b for Experiment ii: R is not measured. As b increases, the cost increases indefinitely, indicating that no solution has been found that is
consistent with both measurements and model dynamics.
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5.4. Experiments iii and iv: low noise added

In Experiment ii, the low noise added to R yielded a poor state and parameter estimate (not shown). With a doubled
temporal baseline of measurements (Experiment iv), however, the state estimate became robust to the contamination. Fig. 7
shows this estimate. While the ~ five percent noise added to Population R propagates to the unmeasured States S, E, and P, the
general state evolution is still captured well. Importantly, the populations entering the hospital are well estimated. Note that
140



Fig. 6. Estimates for Experiment ii: without a measurement of Population R. This result is taken at b¼ 2, prior to the exponential runaway in the cost. Estimates of
unmeasured states and time-varying parameters are poor.

Fig. 7. Estimates for Experiment iv: low noise added to Population R and with a doubled temporal baseline of 201 days. The noise added to R propagates to some
unmeasured States (S, E, As, and Asdet), but the overall evolution is captured well. The noise precludes an estimate of the time-varying parameters (not shown).
Results are reported using a value for b of 40.
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some low state estimates (e.g. As) are not perfectly offset by high estimates (e.g. Sym). The addition of noise in these numbers
- by definition - breaks the conservation of the population. Finally, the parameter estimates for Experiment iv do not survive
the added contamination (not shown).
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6. Conclusion

We have endeavoured to illustrate the potential of SDA to systematically identify the specific measurements, temporal
baseline of measurements, and degree of measurement accuracy, required to estimate unknownmodel parameters in a high-
dimensional model designed to examine the complex problems that COVID-19 presents to hospitals. In light of our assumed
knowledge of somemodel parameters, we restrict our conclusions to general comments.We emphasize that estimation of the
full model state requires measurements of the detected cases but not the undetected, provided that the recovered and dead
are also measured. The state evolution is tolerant to low noise in these measurements, while the parameter estimates are not.

The ultimate aim of SDA is to test the validity of model estimation using real data, via prediction. In advance of that step,
we are performing a detailed study of the model’s sensitivity to contamination in the measurable populations Asdet, Symdet,
Sysdet, R, and D. Concurrently we are examining means to render the parameter estimation less sensitive to noise, via various
additional equality constraints in the cost function, and loosening the assumption of Gaussian-distributed noise. In particular,
we shall require that the time-varying parameters be smoothly-varying. It will be important to examine the stability of the
SDA procedure over a range of choices for parameter values and initial numbers for the infected populations.

This procedure can be expanded in many directions. Currently we are working to divide the model subpopulations by age,
and to include age-specific parameters such as susceptibility and the likelihood of requiring hospitalization and intensive
care. Specifically, SDA might inform the question of whether the contact matrices among age groups are non-stationary - a
question of high interest for predicting age-dependent susceptibility during a second wave (ABC News, 2020) of the virus.

Other avenues for expansion are as follows: 1) define additional model parameters as unknowns to be estimated,
including the fraction of patients hospitalized, the fraction who enter critical care, and the various timescales governing the
reaction equations; 2) impose various constraints regarding the unknown time-varying quantities, particularly transmission
rate Ki(t), and identifying which forms permit a solution consistent with measurements; 3) examine model sensitivity to the
initial numbers within each population; 4) examine model sensitivity to the temporal frequency of data sampling. Moreover,
it is our hope that the procedure described in this paper can guide the application of SDA to a host of complicated questions
surrounding COVID-19.

Acknowledgements

Thank you to Patrick Clay from the University of Michigan for discussions on inferring exposure rates given social
distancing protocols.

Appendix A. Details of the model

Table 3
State variables of the COVID-19 transmission model. The “detected” qualifier signifies that the population has been tested and is positive for COVID-19.
Variable
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Description
S
 Susceptible

E
 Exposed

Asdet
 Asymptomatic, detected

As
 Asymptomatic, undetected

Symdet
 Symptomatic mild, detected

Sym
 Symptomatic mild, undetected

Sysdet
 Symptomatic severe, detected

Sys
 Symptomatic severe, undetected

H1,det
 Hospitalized and will recover, detected

H2,det
 Hospitalized and will go to critical care and recover, detected

H3,det
 Hospitalized and will go to critical care and die, detected

H1
 Hospitalized and will recover, undetected

H2
 Hospitalized and will go to critical care and recover, undetected

H3
 Hospitalized and will go to critical care and die, undetected

C2,det
 In critical care and will recover, detected

C3,det
 In critical care and will die, detected

C2
 In critical care and will recover, undetected

C3
 In critical care and will die, undetected

R
 Recovered

D
 Dead
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Model equations of motion

The blue notation specified by overbrackets denotes the correspondence of specific terms to the reactions between the
populations depicted in Fig. 1.
dS
dt

¼ �Ki,S,½infectiousþ ðinfectiousdet � reducedÞ�
N

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/E

�infectious ¼ Asþ P þ Symþ Sysþ H1 þ H2 þ H3 þ C2 þ C3
�infectiousdet ¼ Asdet þ Symdet þ Sysdet

dE
dt

¼ Ki,S,½infectiousþ ðinfectiousdet � reducedÞ�=N
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{S/

�1� fsympt

tinfection
,E,dAs

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{/Asdet

�1� fsympt

tinfection
,E,ð1:0� dAsÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/As

� fsympt

tinfection
,E

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{/P

dAsdet
dt

¼ 1� fsympt

tinfection
,E,dAs

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{E/

� 1
tR;a

,Asdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{/R

dAs
dt

¼ 1� fsympt

tinfection
,E,ð1:0� dAsÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{E/

� 1
tR;a

,As

zfflfflffl}|fflfflffl{/R
dP
dt

¼ fsympt

tinfection
,E

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{E/

�1� fsevere
tsympt

,P,dSym

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/Symdet

�1� fsevere
tsympt

,P,ð1:0� dSymÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/Sym

� fsevere
tsympt

,P,dSys

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{/Sysdet

� fsevere
tsympt

,P,ð1:0� dSysÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/Sys

dSymdet
dt

¼ 1� fsevere
tsympt

,P,dSym

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{P/

� 1
tR;m

,Symdet

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{/R

dSym
dt

¼ 1� fsevere
tsympt

,P,ð1:0� dSymÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{P/

� 1
tR;m

,Sym

zfflfflfflfflfflffl}|fflfflfflfflfflffl{/R

dSysdet
dt

¼ fsevere
tsympt

,P,dSys

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{P/

� fH
tH
,Sysdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
/H1;det

� fC
tH
,Sysdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
/H2;det

� fD
tH
,Sysdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
/H3;det

dSys
dt

¼ fsevere
tsympt

,P,ð1:0� dSysÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{P/

� fH
tH
,Sys

zfflfflffl}|fflfflffl{/H1

� fC
tH
,Sys

zfflfflffl}|fflfflffl{/H2

� fD
tH
,Sys

zfflfflffl}|fflfflffl{/H3

dH1;det

dt
¼ fH

tH
,Sysdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{Sysdet/

� 1
tR;h

,H1;det

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{/R

dH2;det

dt
¼ fC

tH
,Sysdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{Sysdet/

� 1
tC
,H2;det

zfflfflfflfflffl}|fflfflfflfflffl{
/C2;det

dH3;det

dt
¼ fD

tH
,Sysdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{Sysdet/

� 1
tC
,H3;det

zfflfflfflfflffl}|fflfflfflfflffl{
/C3;det
143
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dH1

dt
¼ fH

tH
,Sys

zfflfflffl}|fflfflffl{Sys/

� 1
tR;h

,H1

zfflfflfflffl}|fflfflfflffl{/R

dH2

dt
¼ fC

tH
,Sys

zfflfflffl}|fflfflffl{Sys/

� 1
tC
,H2

zfflffl}|fflffl{/C2

dH3

dt
¼ fD

tH
,Sys

zfflfflffl}|fflfflffl{Sys/

� 1
tC
,H3

zfflffl}|fflffl{/C3

dC2;det
dt

¼ 1
tC
,H2;det

zfflfflfflfflffl}|fflfflfflfflffl{
H2;det/

� 1
tR;c

,C2det

zfflfflfflfflfflffl}|fflfflfflfflfflffl{/R

dC3;det
dt

¼ 1
tC
,H3;det

zfflfflfflfflffl}|fflfflfflfflffl{
H3;det/

� 1
tD
,C3;det

zfflfflfflfflffl}|fflfflfflfflffl{/D

dC2
dt

¼ 1
tC
,H2

zfflffl}|fflffl{H2/

� 1
tR;c

,C2

zfflfflffl}|fflfflffl{/R

dC3
dt

¼ 1
tC
,H3

zfflffl}|fflffl{H3/

� 1
tD
,C3

zfflffl}|fflffl{/D
dR
dt

¼ 1
tR;a

,Asdet

zfflfflfflfflfflffl}|fflfflfflfflfflffl{Asdet/

þ 1
tR;a

,As

zfflfflffl}|fflfflffl{As/

þ 1
tR;m

,Symdet

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Symdet/

þ 1
tR;m

,Sym

zfflfflfflfflfflffl}|fflfflfflfflfflffl{Sym/

þ 1
tR;h

,H1;det

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
H1;det/

þ 1
tR;h

,H1

zfflfflfflffl}|fflfflfflffl{H1/

þ 1
tR;c

,C2;det

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
C2;det/

þ 1
tR;c

,C2

zfflfflffl}|fflfflffl{C2/

dD
dt

¼ 1
tD
,C3;det

zfflfflfflfflffl}|fflfflfflfflffl{
C3;det/

þ 1
tD
,C3

zfflffl}|fflffl{C3/
Table 4
The model parameters, with the unknown parameters to be estimated denoted in boldface. The unknown parameters Ki, Sym, and dSys are taken to be time-
varying. The unknown parameters fsympt and fsevere are taken to be intrinsic properties of the disease and therefore constant numbers. The detection
probability of asymptomatic cases is taken to be known and zero. Units of time are days.
Parameter D
escription
144
Value
N T
otal population
 9,000,000

Reduced T
he property that a detected case is likely to transmit less, via successful quarantine)
 0.2

Ki(t) T
ransmission rate
 See Appendix B

dAs(t) D
etection probability of asymptomatic cases
 0.0

fsympt F
raction of positive cases that produce symptoms
 0.6 (Oran and Topol, 2020)

tinfection T
ime from exposure to infection
 4.0 (Li et al., 2020c)

tR,a T
ime to recovery for asymptomatics
 8.0 Assumed to be same as tR,m

dSym(t) D
etection probability of mild symptomatics
 See Appendix B

dSys(t) D
etection probability of severe symptomatics
 See Appendix B

fsevere F
raction of symptomatics that are severe
 0.07 (Salje et al., 2020)

tsympt T
ime to symptoms, for symptomatics
 4.0 (Roman et al., 2020; Jing et al., 2020)

tR,m T
ime from symptoms to recovery, for mild symptomatics
 8.0 (Roman et al., 2020)a

fH F
raction of severe cases that are hospitalized and then recover: fH ¼ 1.0 � fC � fD
 0.66

fC F
raction of severe cases that require critical care and then recover
 0.3 (Lewnard et al., 2020)

fD F
raction of severe cases that die
 0.04 (Wang et al., 2019)

tH T
ime from symptoms to hospital, for severe symptomatics
 5.0 (Huang et al., 2020)

tR,h T
ime from entering hospital to recovery, for severe symptomatics that do not require critical

care

10.0 (Lewnard et al., 2020; Wang et al.,
2019)
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Table 4 (continued )
Parameter D
escription
145
Value
tC T
ime from entering hospital to critical care, for severe symptomatics
 5.0 (Huang et al., 2020)

tR,c T
ime from entering critical care to recovery for severe symptomatics
 10.0 (Bi et al., 2020)

tD T
ime from entering critical care to death, for severe symptomatics
 5.0 (Yang et al., 2020)
aAs described in (Roman et al., 2020), viral load can be high and detectable for up to 20 days. We choose a shorter duration of infectiousness to capture the
time during which transmissibility is highest.

Appendix B. Unknown time-varying parameters to be estimated

The unknown parameters assumed to be time-varying are the transmission rate Ki, and the detection probabilities dSym
and dSys for mild and severe symptomatic cases, respectively.

The transmission rate in a given population for a given infectious disease is measured in effective contacts per unit time.
This may be expressed as the total contact rate (the total number of contacts, effective or not, per unit time), multiplied by the
risk of infection, given contact between an infectious and a susceptible individual. The total contact rate can be impacted by
social behavior.

In this first employment of SDA upon a pandemic model of such high dimensionality, we chose to represent Ki as a
relatively constant value that undergoes one rapid transition corresponding to a single social distancing mandate. As noted in
Experiments, social distancing rules were imposed in New York City roughly 25 days following the first reported case. We
thus chose Ki to transition between two relatively constant levels, roughly 25 days following time t0. Specifically, we wrote
Ki(t) (Tang et al., 2020) as:

KiðtÞ ¼ �f ,
1

eðT�tÞ=s þ 1
þ x:

The parameter T was set to 25, beginning four days prior to the first report of a detection in NYC (NY Times, 2020) to the

imposition of a stay-home order in NYC on March 22 (NY Governor’s Office, 2020). The parameter s governs the steepness of
the transformation, and was set to 10. Parameters f and xwere then adjusted to 1.2 and 1.5, to achieve a transition from about
1.4 to 0.3. For detection probabilities dSym and dSys, a linear and quadratic form, respectively, were chosen to preclude
symmetries, and both were optimistically taken to increase with time:

dSymðtÞ ¼ 0:2,t
dSysðtÞ ¼ 0:1,t2
Finally, each time series was normalized to the range: [0:1], via division by their respective maximum values.

Appendix C. Technical details of the inference experiments

The simulated data were generated by integrating the reaction equations (Appendix A) via a fourth-order adaptive Runge-
Kutta method encoded in the Python package odeINT. A step size of one (day) was used to record the output. Except for the
one instance noted in Results regarding Experiment i, we did not examine the sensitivity of estimations to the temporal
sparsity of measurements. The initial conditions on the populations were: S0 ¼ N � 1 (where N is the total population),
As0 ¼ 1, and zero for all others.

For the noise experiments, the noise added to the simulated Symdet, Sysdet, and R data were generated by Python’s
numpy. random.normal package, which defines a normal distribution of noise. For the “low-noise” experiments, we set the
standard deviation to be the respective mean of each distribution, divided by 100. For the experiments using higher noise, we
multiplied that original level by a factor of ten. For each noisy data set, the absolute value of the minimumwas then added to
each data point, so that the population did not drop below zero

The optimization was performed via the open-source Interior-point Optimizer (Ipopt) (W€achter, 2009). Ipopt uses a
Simpson’s rule method of finite differences to discretize the state space, a Newton’s method to search, and a barriermethod to
impose user-defined bounds that are placed upon the searches. We note that Ipopt’s search algorithm treats state variables as
independent quantities, which is not the case for a model involving a closed population. This feature did not affect the results
of this paper. Those interested in expanding the use of this tool, however, might keep in mind this feature. One might negate
undesired effects by, for example, imposing equality constraints into the cost function that enforce the conservation of N.

Within the annealing procedure described inMethods, the parameter awas set to 2.0, and b ran from 0 to 38 in increments
of 1. The inverse covariance matrix for measurement error (Rm) was set to 1.0, and the initial value of the inverse covariance
matrix for model error (Rf, 0) was set to 10�7.

For each of the four simulated experiments, twenty paths were searched, beginning at randomly-generated initial con-
ditions for parameters and state variables. All simulations were run on a 720-core, 1440-GB, 64-bit CPU cluster.
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