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THEBIGGERPICTURE Traditional intensity-basedmeasurementsof fluorescentmicroscopydata limit itspo-
tential to reveal new information about its sample. Here, we present an image analysis pipeline called TDAEx-
plore, which is based on topological data analysis and machine learning classification. In addition to being
highly accurate in assigning images to their correct group, TDAExplore quantifies howmuch images resemble
the training data and identifies which parts are different, an improvement over othermachine learningmodels
that do not permit insight into how classification tasks were made. The next steps for TDAExplore will be to
expand its capabilities into three-dimensional, multivariate, and time series datasets. This work represents
progress into a future where machine learning identifies and describes nuanced image features in ways that
allow researchers to answer important biological questions and generate new hypotheses for future studies.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Recent advances in machine learning have greatly enhanced automatic methods to extract information from
fluorescence microscopy data. However, current machine-learning-based models can require hundreds to
thousandsof images to train, and themost readily accessiblemodels classify imageswithout describingwhich
parts of an image contributed to classification. Here,we introduce TDAExplore, amachine learning image anal-
ysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after
training with only 20–30 high-resolution images and performs robustly on images from multiple subjects and
microscopymodes. Using only images andwhole-image labels for training, TDAExplore provides quantitative,
spatial information, characterizing which image regions contribute to classification. Computational require-
ments to train TDAExploremodels aremodest and a standard PC can perform trainingwithminimal user input.
TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging
data in a wide variety of applications.
INTRODUCTION

Microscopy images contain an incredible amount of complex

information. The development of machine learning has sub-
This is an open access article under the CC BY-N
stantially accelerated the ability to identify and extract

relevant features,1 as well as to classify images into groups.2,3

These methods, such as convolutional neural networks

(CNNs), perform extraordinarily well in segmentation and
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classification.4,5 However, identifying how machine learning

pipelines interpret training data to determine which features to

extract is challenging.

Here, we present a new set of features for image analysis

based on two topological data analysis (TDA) methods: persis-

tent homology6 and persistence landscapes.7 TDA is a mathe-

matical method that uses algebraic topology to quantify the

shape of data8 and has been used for other machine-learning-

based methods.9–11 We then exhibit an image analysis pipeline,

TDAExplore, that uses these features for image classification

and image segmentation. The segmentation model is "weakly

supervised" and learns to identify regions whose shape features

most strongly characterize each class of image using only image

labels. Usingmultiple datasets, we demonstrate that thismethod

achieves high per image classification accuracies with minimal

training, is robust to hyperparameter changes, and requires

only modest computational resources. Subsequently, we show

that this approach can recognize a wide variety of subcellular

structures and extract biologically meaningful data.

Related work
Image analysis pipelines typically proceed either by first extract-

ing pre-defined descriptors from an image’s raw pixel values or

by learning features using training data. The TDA image features

we introduce are in the former category.Whilemany different de-

scriptors have been defined in the past, including those that cap-

ture some topological information,1,11,12 they do not use persis-

tent homology. Our features are based on persistent local

homology, which may be used to learn stratified structures,13,14

such as the intersections of actin filaments and for supervised

image segmentation.15

Image segmentation models produce pixel masks for images

that split images into regions with similar behavior. Models

where the training data consist of images paired with "ground

truth" masks have been successful for many applications,

including medical image segmentation.16 These approaches as-

sume that the ground truth is known by experts, however, who

must draw training masks by hand. Weakly supervised segmen-

tation models instead use training data where images and labels

are provided, but not masks. CNN-based models exist but

require substantial datasets to train or fine-tune.17

Many machine learning approaches using both pre-defined18–

20 and supervised2,21 features have been previously proposed

and implemented for analysis of microscopy images. Largely

speaking, these methods focus on whole-image classification

or supervised segmentation. A major application, for instance,

is to train a supervised model to segment pixels containing cells

from the background of an image. Our method uses a weakly su-

pervised approach to explore microscopy image datasets where

ground truth segmentations are not already known and therefore

cannot be specified by experts.

Here, we consider several microscopy image datasets depict-

ing the actin cytoskeletonwhere we desire subcellular level infor-

mation aboutmorphology changes. Our previous publications22–

25 detail numerous ways to extract information from microscopy

images of the actin cytoskeleton using fluorescence intensity

values of localized actin probes. These include measuring

whole-cell or local fluorescence intensity, performing line scan

analysis, and combining intensity-based thresholding with
2 Patterns 2, 100367, November 12, 2021
morphology filters to segment and quantify specific types of

actin structures. All these methods require one to choose a

particular actin structure for analysis, and thus introduce a po-

tential source of bias. For example, one might decide that an

actin perturbation most strongly affects the lamellipodia and

focus efforts there based on previous work rather than on objec-

tive criteria. In addition, traditional analysis methods based on

fluorescence intensity cannot quantify spatial properties of actin

ultrastructure. Intensity values capture actin levels in particular

locations, but do not differentiate between regions with similar

actin content organized into distinct geometries.

RESULTS AND DISCUSSION

Topological feature extraction from fluorescence
microscopy data
To extract topological information, images were first masked by

automatic intensity thresholding to reduce pixel values outside of

the cell to zero. Images were then divided into uniform radius

patches (Figure 1Ai). A subset of high-intensity pixels was

selected per patch together with evenly spaced points along

the boundary (Figure 1Aii). Neighboring points were progres-

sively connected if they were within an increasing distance of

each other (Figure 1Aiii–vi). The resulting sequence of simplicial

complexes was then used to generate a persistence landscape

(Figure 1Aviii, B), which encodes sets of birth-death pairs (Fig-

ure 1Avii) generated from the appearance and disappearance

of specific homology features,7 including connected compo-

nents and their holes (Figure 1Aiii–vi).

To interpret the intrinsic characteristics of the resulting high

dimensional vectors (Figure 1B), t-distributed stochastic

neighbor embedding (t-SNE)26 was used to reduce image sum-

maries to a single score. The scoreswere subsequently scaled to

range from �1 to 1 and a color gradient was mapped to the

values. These values were then mapped to the pixels of the cor-

responding uniform radius patch so that the result can be visual-

ized on the input image as a mask (Figure 1C). These masks

show that this method extracts physiologically relevant features

of the cytoskeleton by demarcating the large actin superstruc-

ture known as the lamellipodia from the cell interior (Figure 1C).

Image classification based on topological features
We then constructed an image classification pipeline to test the

discriminatory power of our TDA descriptors. We restricted our-

selves to linear support vector regression (SVR) classifiers,

rather than more sophisticated methods such as deep neural

networks, to try and make it clear that our results depended

mainly on our TDA descriptors and not on the machine learning

method. The datasets we used are summarized in Table S1.

Each dataset contained images in two manually assigned clas-

ses. We used these classes as ground truth for training and

testing the SVR classifiers. For all datasets, two-class patch

classification models were trained using persistence landscapes

generated from image patches as input.

In general, SVR classifiers define a hyperplane that optimizes

the separation between training data with different ground truth

class labels27 and assign a score to each patch and persistence

landscape. Once trained, a classifier predicts patches with score

<0 as one class, while those with score >0 are in the other. This
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Figure 1. Persistent homology-based image analysis pipeline to extract topological features
(A) Computation of a persistence landscape from a selected image patch. (i) Representative image patch of 75 pixel radius. (ii) Points are sampled from the spatial

coordinates of fluorescence signals. (iii–vi) Sequence of simplicial complexes generated by connecting neighboring points within a distance that increases from

(iii) to (vi). (iv) Four cycles that represent persistent homology classes in degree one are colored. (v) The pink cycle has been filled in. (vi) All cycles have been filled

in. (vii) Persistence diagram plotting the birth radius and death radius of each of the persistent homology classes in degree one. Colored points correspond to the

colored cycles in (iv). (vii) Persistence landscape gives a vector encoding of the persistent homology.

(B) Persistence landscapes generated from each selected patch in the input image. Three representative patches and their landscapes are shown.

(C) Histogram of t-SNE scores generated from persistence landscapes. Colorized pixels representing t-SNE scores overlaid on the original image as a mask.
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prediction may differ from the ground truth class. Since our SVR

classifiers were trained using patches, we also used them to

define classifiers for whole images. To predict a class for an

image, the scores for the image’s patches were averaged, and

a class was assigned corresponding to whether the average

score was <0 or >0.

We used 5-fold cross-validation to assess classifier perfor-

mance (Figure S1). The images in a dataset were separated

into five approximately equal data groupings or ‘‘folds’’ with

training and testing at an 80/20 ratio (Figures S1A–S1C). The

number of correctly identified images out of the total number

was visualized as a confusion matrix (Figure S1D). To assess

performance for the entire pipeline, we performed 5-fold cross-

validation 50 times for each dataset and recorded both testing

accuracy and other common performance metrics (Tables

S2–S5).

Two main hyperparameters were chosen to run the pipeline:

the radius in pixels of the subsampled patches and the number

of patches sampled per image. A uniform selection of pixel

radius 75 was made for all datasets based on biological consid-

erations, namely the size in pixels of relevant subcellular struc-

tures. The number of patches sampled per image was chosen

so that the total number of pixels in all patches was twice the

number of pixels in the image.

Using TDAExplore to detect cellular features
This combination of TDA and machine learning (TDAExplore)

was then used to detect changes to the architecture of the

actin cytoskeleton after induction of both genetic and chemical

perturbations to major actin assembly factors (Table S2). We

found TDAExplore was able to robustly identify which cells

were challenged with perturbations to the actin cytoskeleton

(Figures 2 and S2). This included using a small-molecule inhib-

itor (CK-666) against the actin nucleator Arp2/3 (Figure 2A),

CRISPR-Cas9 knockout of the gene for the actin monomer

binding protein profilin 1 (PFN1 KO) (Figure 2B), shRNA knock-

down of the actin filament severing protein cofilin 1 (cofilin KD)

(Figures S2A and S2D) and the monomer binding protein

thymosin b-4 (Tb4 KD) (Figures S2B and S2E), and mislocaliza-

tion-based inhibition of the Mena/VASP actin polymerases

(Figures S2C and S2F).
Figure 2. TDAExplore analysis of the actin cytoskeleton

(A) Performance evaluation for classification of cells treated with the Arp2/3 inhibit

respectively. From left to right, distribution of patch features, topological score p

scores are generated through five separate rounds of testing; rounds are design

(B) Performance evaluation for classification of control and PFN1 KO cells, n = 41 a

score per cell, and confusion matrix displaying classification summaries. Topolo

designated by color.

(C) Distribution of patch values after treatment with CK-689 and CK-666, where

patch values > 0 and colored blue. White represents intermediate values. Below a

689- and CK-666-treated cells.

(D) Average topological score based on distance from the leading edge to the cell c

regions from the leading edge to center are shown above for comparison.

(E) Distribution of patch values for control and PFN1 KO cells where control patch

0 and colored blue. White represents intermediate values. Below are computed fe

KO cells.

(F) Average topological score based on distance from the leading edge to the cell c

regions from the leading edge to center are shown above for comparison. Box an

25th (bottom edge of box), and 10th (bottom whisker) percentiles and the media

permutation test using the mean score. Scale bar represents 10 mm.
The 100% image accuracy for thePFN1KOdataset (Figure 2B)

is likely indicative of both the strong effects of the perturbation

and its penetrance since the perturbation involved complete

disruption of the gene. Likewise, the relatively weaker training

performance of the Tb4 and cofilin 1 knockdown datasets

(84% and 91%, respectively) (Figures S2A and S2B) or the

Mena/VASP mislocalization data (81%, Figure S2C) could

potentially be explained by the cell-to-cell variability of shRNA

knockdown or the degree of expression of the FP4-mito DNA

construct. Perturbation strength may also play a role since the

CK-666 drug treatment, which was expected to have 100%

penetrance, did not achieve 100% accuracy (Figure 2A).

We conducted several tests to validate TDAExplore’s robust-

ness. To ensure that TDAExplore was not overfitting input data

by detecting non-relevant features, we trained an SVR classifier

by randomly assigning half the control KO images from our

PFN1 KO dataset to a group (group 1) and half to another (group

2). The resulting patch scores were indistinguishable between

groups (Figure S3A), indicating that TDAExplore could not detect

differences within the same experimental group. Since our data-

sets contained insufficient images to perform hyperparameter

tuning, we instead recorded TDAExplore’s performance with

various hyperparameter choices and observed only modest per-

formance differences for most of our datasets (Figures S3B and

S3C). One advantage of TDAExplore is its high performance using

small datasets (on average 60 images per set), made feasible by

assessment at the patch level. The possibility that changes to da-

taset size could alter image accuracy was tested by reducing

high-performing datasets by half. When the number of images

was reduced from68 to 34, 100%accuracy for the PFN1KOclas-

sifier wasmaintained (Figure S3D). Because all actin cytoskeleton

perturbation datasets were generated from the same cell line, the

control conditions for our PFN1 KO, cofilin KD, Tb4 KD, and CK-

666 datasets should have indistinguishable features. When con-

trols from all experiments were assigned scores by an SVR clas-

sifier trained on the PFN1KO dataset, their patch scores were not

statistically different from each other (Figure S3E). This revealed

that bona fide changes to actin architecture are required to

make distinctions between datasets and that TDAExplore’s

trained classifiers were robust enough to accurately classify con-

trol cell datasets that were imagedmonths apart from each other.
or CK-666 or its inactive control CK-689. N = 25 and 32 for CK-689 and CK-666,

er cell, and confusion matrix displaying classification summaries. Topological

ated by color.

nd 27, respectively. From left to right, distribution of patch features, topological

gical scores are generated through five separate rounds of testing; rounds are

CK-689 patches are values <0 and colored red, while CK-666 is classified as

re computed feature masks of patch values for representative images from CK-

enter. Transparent bands depict 95%confidence intervals. Representative cell

es are values <0 and colored red, while PFN1 KO is classified as patch values >

ature masks of patch values for representative images from control and PFN1

enter. Transparent bands depict 95%confidence intervals. Representative cell

d whisker plots in (A and B) denote 95th (top whisker), 75th (top edge of box),

n (bold line in box). ****p % 0.0001. p values were generated by a two-sided
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To test whether TDAExplore can detect other structures using

the same type of microscopy, we altered mitochondrial

morphology using the oxidative uncoupler carbonyl cyanide

m-chlorophenylhydrazone. The classifier still performed well

with an 81% accuracy between groups (Figures S4A and S4B).

We also tested if TDAExplore was broadly applicable by using

it on published datasets (summarized in Table S3). Datasets

were selected because they represented different modes of mi-

croscopy, size, and features that were imaged, as well as for

having been previously used to assess classification perfor-

mance of feature-based and CNN classifiers. The latter allowed

for a direct comparison with TDAExplore. TDAExplore per-

formed comparably well with these methods, including on data

from low-resolution or non-fluorescent images (Tables S3 and

S5; Figures S5A and S5G).

Comparison of TDAExplore with transfer learning
To further assess how TDAExplore compares with standard

models in the field, we used CNNs to assess our imaging data.

While CNNs typically require large datasets,28 transfer learning

can be applied to small datasets.29 Transfer learning is a ma-

chine learning method in which a model trained for a certain

task is reused as the starting point for a different task. We

used the 71-layer-deep Xception CNN architecture for transfer

learning. First, we obtained a publicly available pre-trained

version of the model that was trained by its maintainers on

more than a million images from the ImageNet database.30 We

then updated its training using patch data from our PFN1 KO

and CK-666 datasets. Since TDAExplore uses patches for

training, patches were generated from the PFN1 KO and CK-

666 datasets using the same hyperparameters (patch radius

and number of patches per image) as for TDAExplore. These

patches were divided into training (75%) and testing (25%)

groups and fed to the neural network. The models were then

tested and achieved accuracies of 97.10% (PFN1 KO) and

72.36% (CK-666). TDAExplore obtained somewhat lower

average accuracies of 80.9% (PFN1 KO) and 69.7% (CK-666).

It is not surprising that the CNN model outperformed

TDAExplore for patch classification. The Xception architecture

has roughly 20 million trainable parameters, while TDAExplore

has roughly 20,000. However, TDAExplore required less training

time (Figure S6) and appeared better suited for segmentation

tasks on our datasets. To test this, we used theweights assigned

by the CNN’s transfer learning model to create score masks for

the PFN1 KO dataset. TDAExplore correctly identified regions of

the control cell containing punctate actin structures that were

similar to the knockout cell, while the CNN model did not (Fig-

ure S7). Some similarities between the two datasets were ex-

pected, since knocking out PFN1 affected most, but not all,

cellular actin structures.25 It was also anticipated that this partic-

ular cytoskeletal topology would be associated with the PFN1

KO group, since an abundance of actin puncta in the cell interior

was a hallmark of PFN1 KO cells.25

Image segmentation with TDAExplore reveals
subcellular differences between image groups
Next, we used TDAExplore to extract spatial information at the

subcellular level for our CK-666 and PFN1 KO datasets. In a pro-

cess similar to the previously discussed t-SNE mask generation,
6 Patterns 2, 100367, November 12, 2021
patch scores generated from an SVR classifier trained on persis-

tence landscapes were mapped back to their pixels of origin so

that topological scores could be visualized on the input image as

a mask. This provides a visualization of the spatial effect of each

perturbation with red colored pixels predicted as CK-689/control

KO and blue pixels predicted as CK-666/PFN1 KO (Figures 2C

and 2E). To test whether the process of mask production is sen-

sitive to changes from random sampling, a PFN1 KO classifier

was trained five times and masks were generated for each clas-

sification run. Masks were consistent across training sessions,

indicating that random sampling did not have a significant effect

on mask generation (Figure S3F).

To further quantify spatial components of the topological

score, the center of each cell was defined, and patch values

were assessed based on distance to the center (Figures 2D

and 2F). Arp2/3 inactivation with the small molecule inhibitor

CK-666 causes a striking rearrangement of actin architecture

at the cell boundary without changing total polymerized actin

levels.25,31 Our feature mapping recapitulated these results

and showed that the average topological score for CK-666-

treated cells deviated most strongly from their controls

near the cell boundary (Figures 2C and 2D). PFN1 KO (Figures

2E and 2F) and depletion of cofilin (Figures S8A and S8B)

also showed differential effects based on subcellular location.

The largest topological score difference between control

and PFN1 KO cells was approximately 50% of the distance

from the boundary to the cell center, while the largest differ-

ence in topological scoring between cofilin KD cells and

control was at the cell boundary. The deviation in topological

scoring did not map strongly to specific subcellular locations

for Tb4 KD cells, although there was a slightly larger difference

at the cell interior than at the edge (Figures S8C and S8D).
TDAExplore computational requirements
To understand how accessible TDAExplore would be to users

with different computational resources, we collected usage sta-

tistics with our PFN1 KO dataset (Figures S7A and S7B) for mul-

tiple hyperparameter selections. Our results indicate that, with 8

processors, 5-fold cross-validation with patch radius 75 pixels

and twice as many total pixels in all the patches as in the image

would take less than 13 min and 5 GB of memory. The pipeline

can utilize additional processors to decrease computation time.

In summary, TDAExplore combines TDA andmachine learning

for segmentation and feature extraction of high-resolution im-

ages. It is unbiased, relying on minimal user input for image

exploration, segmentation, and classification. It can differentiate

between multiple types of perturbations over a wide range of

subjects without overfitting. Importantly, it also visualizes fea-

tures at the sub-image level. Thus, TDAExplore should be well

suited to extract novel quantitative information from imaging

data in a wide variety of applications.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed and will be fulfilled by the lead contact, Eric Vitriol (evitriol@

augusta.edu).

mailto:evitriol@augusta.edu
mailto:evitriol@augusta.edu
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Materials availability

No unique reagents were generated in this study.

Data and code availability

Imaging data used to generate this manuscript’s figures and tables and scripts

for image analysis have been deposited at Zenodo: https://doi.org/10.5281/

zenodo.5486202. TDAExplore is available as a command line program:

https://doi.org/10.5281/zenodo.5487090 and as an R package: https://doi.

org/10.5281/zenodo.5486681 at Zenodo. All data, scripts, and code listed

above is publicly available. Additional information is available from the lead

contact upon reasonable request.

Cell culture

All cells used in this study were Cath.-a-differentiated (CAD) cells (originally

purchased from Sigma-Aldrich). CAD cells were cultured in DMEM/F12 me-

dium (Gibco) supplemented with 8% fetal calf serum, 1% L-glutamine, and

1% penicillin-streptomycin. Prior to imaging, cells were plated on coverslips

coated with 10 mg/mL laminin (Sigma). No new cell lines were generated in

this study and cell line generation is detailed elsewhere. For the generation

of cofilin KD refer to Vitriol et al.32 For details on the generation of thymosin

b-4 KD refer to Lee et al.22 For PFN1 KO, Arp2/3 inactivation, and Mena/

VASP sequestration refer to Skruber et al.25

Immunofluorescence

For visualization of actin filaments, cells were fixed with 4% electron micro-

scopy grade paraformaldehyde (Electron Microscopy Sciences) for 10 min

at room temperature (RT) and then permeabilized for 3 min with 1% Triton X.

Cells were then washed three times with PBS and actin filaments were stained

with Alexa Fluor 488 phalloidin or Alexa Fluor 568 phalloidin (diluted 1:100, Life

Technologies) for 30 min at RT in immunofluorescence staining buffer. For

visualization of mitochondria, cells were fixed with 4% electron microscopy

grade paraformaldehyde (Electron Microscopy Sciences) for 10 min at RT

and then permeabilized for 5 min with 0.1% Tween 20. Cells were washed

three times with PBS and incubated with an antibody to TOM-20 (rabbit,

1:500, CST) at 4�C overnight. Cells were then washed twice in PBS and incu-

bated with (goat anti-rabbit Alexa Fluor 568, 1:1,000) for 2 h and then washed

three times in PBS before mounting with Prolong Diamond (Life Technologies).

Microscopy and image processing

Images were acquired with a Nikon A1R+ laser scanning confocal microscope

with a GaAsP multi-detector unit using an Apo TIRF 603 1.49 NA objective.

Deconvolution-based super-resolution confocal microscopy 10 was per-

formed using zoom settings higher than the Nyquist criteria, resulting in over-

sampled pixels (0.03 mm). Confocal z stacks were created and then decon-

volved with Nikon Elements software using the Landweber algorithm (15

iterations, with spherical aberration correction) to create images with approx-

imately 150 nm resolution.33 For input into the analysis pipeline, three-dimen-

sional z stacks were reduced to a single image using maximum intensity pro-

jections. For analysis of the actin cytoskeleton, only the first 10 frames from the

bottom of the cell were included in the maximum intensity projection so that

only the ventral portions of the cells were analyzed. For analysis of mitochon-

dria, the entire z stack was included in the maximum intensity projection. Cell

boundaries were then identified by creating a mask based on intensity-based

thresholding. All pixels outside of the cell boundary were assigned a value

of zero.

Third-party datasets

We used image datasets BBBC 013v1, 014v1, 015v1, and 016v1 from the

Broad Bioimage Benchmark Collection34 and Binucleate and Liver Gender da-

tasets from the Image Informatics and Computational Biology Unit (IICBU)

Biological Image Repository35 to validate our TDA approach. BBBC data are

images of human osteosarcoma cells (U2OS) from high-throughput micro-

scopy assays. Only the GFP channel images were analyzed. If the data con-

tained multiple images from the same well, only one image per well was

used for the analysis to mitigate batch effects. Subsets of data with only two

classes of phenotypes were selected using the procedure described by

Uhlmann et al.20 IICBU data contain images from Drosophila melanogaster

cells and murine liver tissue. Only the red color channel was analyzed for

murine liver tissue images.
Extracting persistence landscapes from images

Gray scale images were first summarized by sampling patches and computing

persistence landscapesasdescribed inFigure1. Thismethodoptimizescompu-

tational demandswhilemaintaininganalysis quality. Patcheswere selected from

each image by repeatedly sampling patch centers from a probability distribution

constructed on the image’s pixels. The probability distribution was biased to-

ward higher intensity pixels to prioritize patches centered in non-background re-

gions.Theselectionalso integratedageometriccriterion:newly sampledcenters

were removed if they were within 2 pixels of a previously sampled pixel. This

method was an alternative to grid-based approaches used for CNNs, and mini-

mizes patch overlap while focusing on regions of interest. Because it involved a

probability distribution, this step was not deterministic.

Each selected patch was converted to a set of two-dimensional points by

taking the coordinates of the top 2.5% of pixels by intensity while observing

a similar geometric criterion. This resulted in point samples that captured

the most intense regions in patches while avoiding over-sampling. Each patch

sample was augmented by adding a circle of points along the patch’s circular

boundary. This enabled efficient computation of persistent local homology,

which captures features like straight lines in addition to holes.36 Alpha complex

persistence diagrams for 0� and 1� homology were computed using the R

package TDA,37 which wraps the software GUDHI38 for such computations.

Persistence landscapes were computed using the R package tda-tools39

which wraps the persistence landscapes toolbox.40 The first 50 landscapes

were retained for each degree of homology, and each was discretized using

201 values for a total of 10,050 dimensions per homology degree in the final

output vectors and 20,100 dimensions in total.

Other featurization methods

Weuse persistence landscapes7 to convert persistence diagrams into vectors,

which are then used for machine learning. There are many other ways to do

this41 and each of these may be used with our method in place of persistence

landscapes. We chose persistence landscapes for two advantages. First, they

do not lose any information—one may recover the persistence diagram from

the persistence landscape.7 Second, in contrast to methods that use a param-

eter to determine a level of smoothing,42–44 persistence landscapes are

parameter free. We note that, for computational reasons, we use a discrete

form of the persistence landscape40 that evaluates the persistence land-

scapes on a chosen grid, which is equivalent to requiring the coordinates of

the points of the persistence diagram to lie on the same grid.

SVR on patch landscapes

Two class (control versus experimental group) SVR models were trained on a

diverse range of datasets. For each dataset, images were used to generate

patches and corresponding persistence landscapes. Persistence landscapes

were labeled based on treatment. Every model training session consisted of

first splitting the set of images into a testing set (approximately 20% of the

data) and a training set (approximately 80% of the data). The labeled patch

landscapes from training images were used to train a linear SVR model (L2

regularized and L2 loss) via the R wrapper for Liblinear.45 The cost parameter

C was selected using the package’s built-in heuristic on the training land-

scapes. Per-class cost weights were used to penalize misclassification of

training points in the smaller class more heavily. Accuracy on patches was as-

sessed by comparing labels assigned to the testing data by the model to the

actual labels. The trained SVR model assigned a score to each patch land-

scape. These scores were averaged for each image to assign aggregate

scores to all training and testing images. A second SVR was trained similarly

to the first, but with the training image scores and labels. Image accuracy

was assessed by comparing predicted image labels with actual labels for

the testing set.

Assessing model performance

A single round of model assessment on a dataset consisted of first generating

persistence landscapes from the dataset, then performing 5-fold cross-valida-

tion by training and testing both patch and image level SVR models from the

persistence landscapes. The relatively small size of the datasets induced sub-

stantial variance in accuracy across folds. The total number of correctly clas-

sified testing images across folds was reported, rather than average testing

accuracy across folds.
Patterns 2, 100367, November 12, 2021 7

https://doi.org/10.5281/zenodo.5486202
https://doi.org/10.5281/zenodo.5486202
https://doi.org/10.5281/zenodo.5487090
https://doi.org/10.5281/zenodo.5486681
https://doi.org/10.5281/zenodo.5486681


ll
OPEN ACCESS Article
Since patch selection had a non-deterministic component, performance on

each dataset was assessed by conducting 50 independent rounds of model

assessment with the same hyperparameters and recording the average accu-

racy across the 5 cross-validation folds for each round. Table S1 reports sum-

mary statistics for these accuracies on each dataset. Standard deviations for

image classification accuracy were uniformly less than 5% across all datasets,

indicating low variance induced by random sampling.

Receiver operating characteristic curves (ROCs) and their corresponding

area under curve (AUC) scores, precision, recall, and F1 scores were also re-

corded across the 50 independent rounds of model assessment on each data-

set. Table S1 indicates which label in each dataset was considered ‘‘positive’’

when computing these scores. Testing results from all 5 cross-validation folds

were aggregated to compute these scores for each round of model assess-

ment. Tables S4 and S5, and Figures S9 and S10 report summary statistics

for these performance metrics.

Hyperparameter selection

The radius of patches (in pixels) and the number of patches sampled per image

were hyperparameters in the persistence landscape generation procedure.

The number of patches per image was selected by specifying the ratio of

the total number of pixels in all patches to be sampled from an input image

to the number of pixels in the image, which was called the ‘‘patch ratio.’’

The standard practice of tuning hyperparameters by splitting datasets into

hyperparameter training, model training, andmodel testing sets was infeasible

given the small number of images in the datasets. Instead, a uniform patch

radius of 75 pixels and patch ratio of 2 was used for all models. The radius

was initially selected based on the size of biologically relevant features in the

PFN1 dataset, while the patch ratio of 2 was selected arbitrarily.

To verify that this choice of hyperparameters did not produce misleading re-

sults, model performance using a range of hyperparameter values was as-

sessed. For each dataset, two single rounds of model assessment were per-

formed for each choice of hyperparameters with patch radii taking values of

30, 60, 90, 120, 150, and 180, and patch ratios taking values of 0.33, 0.67,

1.00, 1.33, 1.67, and 2.00. In total there were 36 combinations of hyperpara-

meters, each assessed twice, for 72 single rounds per dataset. Altering the

patch radius or ratio did not significantly affect image accuracy for our CK-

666 dataset (Figure S3B). More generally, we also found that classification ac-

curacy with patch radius of 75 pixels and patch ratio of 2 was not outlying for

any dataset (Figure S3C).

Generating image masks from patch scores

The SVR models and t-SNE dimensionality reduction allowed the assignment

of scores to image patches based on the patches’ persistence landscapes. To

visualize these scores on the original images, a modified version of kernel

convolution was used. Patches and persistence landscapes were computed

for an image, and each pixel in the mask was assigned the average score of

patches containing the pixel. For t-SNE-based scoring, mask pixels were

then scaled to values between �1 and 1. Two thousand patches with a radius

of 75 were sampled in total. Masks based on SVR classification were gener-

ated for all images in each dataset. The number of patches and pixel radius

were the same as those used for training the model.

Generating line summaries from image masks

To further explore the spatial distribution of topological differences identified

by the SVR models, image masks were converted to line summaries for

actin-labeled datasets. The centroid of each image and the distance of a

mask’s pixels from its centroid were computed. Distances were scaled be-

tween 0 and 1, and the average mask intensity for pixels with distances in

bins of width 5% (0%–5%, 5%–10%, etc.) recorded. The resulting line sum-

maries contained 20 scores, one for each bin. For each image class the

average line summary and confidence bands containing 95% of scores

were computed. Line summaries were visualized by linearly interpolating be-

tween the 20 data points.

Computational performance assessment

Computational performance was assessed by conducting 5-fold cross-valida-

tion rounds on the PFN1 dataset for a range of hyperparameter values.

Selected patch radii values were 25, 50, 75, 100, and 125. Patch ratio values
8 Patterns 2, 100367, November 12, 2021
were 0.4, 0.8, 1.2, 1.6, and 2. In total there were 25 combinations of hyperpara-

meters, each assessed once. Computations were performed using the Univer-

sity of Florida Research Computing’s ‘‘HiPerGator’’ cluster. Parallelization was

utilized with 24 computation threads (reported as ‘‘CPU’s’’) on a single Intel

Gold 6142 2.6 GHz processor. Resource usage statistics were collected using

the monitoring software REMORA.46 Figure S6 records the results. Resource

demands scale with the total number of persistence landscapes computed,

which in turn is directly proportional to the patch ratio divided by the patch

radius squared (see Equation S1).

Comparison with transfer learning

To compare TDAExplore with standard models in the field, we used CNNs.

While CNNs typically require large datasets,28 transfer learning can be applied

to small datasets.29 Transfer learning is a machine learning method in which a

model trained for a certain task is reused as the starting point for a different

task. We used the 71-layer-deep Xception CNN architecture for transfer

learning. First, we obtained a publicly available pre-trained version of the

model that was trained by its maintainers on more than a million images

from the ImageNet database.30 We then updated its training using patch

data from our PFN1 KO andCK-666 datasets. Since TDAExplore uses patches

for training, 150 3 150 patches (474 patches per image) were generated from

the PFN1 KO and CK-666 datasets. These patches were divided into training

(75%) and testing (25%) groups and fed to the neural network. The trainingwas

run in 5 epochs for both the PFN1 KO and CK-666 datasets, with a total run

time of 3,213 and 2,958 s, respectively, on a single GPU. Additional metrics

of performance (ROC, AUC, precision, F1 score, and recall) are reported in

the supplemental information (see Figure S11 and Table S6).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100367.
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