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INTRODUCTION 
 

Uveal melanoma (UM) is the most common type of 

malignant tumor of the adult eye, and 50% of patients 

with UM will eventually die as a result [1–3]. The 

prognosis for patients with UM remains poor, though 

there have been some certain advances in the diagnosis 

and treatment of UM [4]. Thus, there is an urgent need 

in this advancing field to further enhance prognostic 

accuracy and provide an efficient therapy [5]. 

 

In recent years, with the rapid development of 

immunotherapy, it has been reported that the tumor 

microenvironment (TME) plays a pivotal role in cancer 

progression and therapeutic responses [6–7]. Prognostic 

or predictive biomarkers related to TME may hold great 

promise in identifying molecular targets and guiding 

patient management [8]. 

 

In the context of the tumor microenvironment, immune 

and stromal cells are two major types suggested as 

crucial for the diagnostic and prognostic assessment of 

tumors [9]. An increasing body of literature suggests 

that immune cell infiltration may co-evolve with the 

sequential genetic changes occurring in UM [10–13]. 

Early changes resulting in a gain of chromosome 8q are 

reported to activate macrophage infiltration, while 

sequential loss of BRCA1-associated protein-1 (BAP1) 

expression could drive T cell infiltration in UM [12]. 

Although increasing numbers of studies have explored 
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the microenvironment using differentially expressed 

genes, a comprehensive analysis with an overall 

landscape is still lacking. Fortunately, the availability of 

public large-scale datasets, such as the cancer genome 

atlas (TCGA), could be used to gain numerous amounts 

of RNA sequencing (RNA-seq) data to represent the 

tumor microenvironment [14–15]. And Yoshihara et al. 

designed the “ESTIMATE” (Estimation of STromal and 

Immune cells in MAlignant Tumor tissue using 

Expression data) algorithm [16]. By analyzing specific 

gene expression signature of immune and stromal cells, 

immune and stromal scores can be calculated using the 

ESTIMATE algorithm to predict the infiltration of non-

tumor cells. In recent years, the ESTIMATE algorithm 

has been reported to be applied in breast cancer, 

glioblastoma multiforme, etc., proving the effectiveness 

of such big-data-based algorithms [9, 17, 18]. Effective 

use of all this information would be helpful in 

improving clinical management. 

In this study, we used a number of datasets with the 

ESTIMATE algorithm to identify the influence of 

immune and stromal cells in UM patients, and to 

develop and validate a prognostic signature to better 

guide the therapy and prognosis of UM. 

 

RESULTS 
 

Subgroup analysis of immune scores and stromal 

scores 
 

A total of 15,187 generally changed mRNA expression 

values and clinicopathological characteristics of UM 

were obtained from TCGA. Based on the ESTIMATE 

algorithm, immune scores were distributed between -

1600 and 1645 and stromal scores ranged from -2011 to 

-348, respectively. A subgroup analysis of clinical 

characteristics showed that only histological type has a 

significant difference in immune scores (Figure 1A). 

 

 
 

Figure 1. Immune scores and stromal scores are associated with Uveal Melanoma (UM) clinical subtypes, like histological 
type, metastasis, etc. (A) Distribution of immune scores and stromal scores of histological subtypes, Box-plot shows that there is a 
significant association between UM subtypes and the level of immune scores (P = 0.05); (B) Distribution of immune scores and stromal scores 
of stage subtypes; (C) Distribution of immune scores and stromal scores of sex subtypes; (D) Distribution of immune scores and stromal 
scores of age subtypes; (E) Distribution of immune scores and stromal scores of metastasis subtypes. Box-plot shows that there is no 
significant association between other subtypes and the levels of immune and stromal scores. 
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The subtype cases of epithelioid cells had the highest 

immune scores (P = 0.05). The clinical characteristics 

of stage, gender and age are statistically insignificant 

(Figures 1B–1D). Moreover, the metastatic UM showed 

a higher immune and stromal score, but this was 

statistically insignificant compared with the primary 

melanoma (Figure 1E). To determine the potential 

correlation of overall survival with immune scores and 

stromal scores, we divided the 80 UM samples of high 

and low immune or stromal score groups by median 

value. Kaplan-Meier survival curves show that the 

overall survival of samples with low immune scores and 

stromal scores is longer than that of the samples in the 

high score group (hazard ratio [HR], 5.35 [P < 0.001]; 

and 2.76 [P = 0.02], respectively) (Figure 2A, 2B). 

 

Gene set variation analysis 
 

To investigate the hallmark pathways shared by 

different immune or stromal groups, we performed gene 

set variation analysis (GSVA). According to the 

following criteria of P value < 0.05 and |GSVA score| ≥ 

1, four hallmark terms were commonly differently 

expressed in the high immune and stromal score group, 

and 12 hallmark terms were commonly differently 

regulated in the low immune and stromal score group. 

The same pathways are marked in red in Figure 2C, 2D. 

 

Clustering for immune and stromal cells infiltration 
 

To validate the above findings, the immune and stromal 

cells phenotypes expression profiles from UM were 

optimally clustered by applying the “ClassDiscovery” 

algorithm and the results are shown in Figures 3A, 3B. 

Cell infiltration in immune and stromal subtypes 

showed that the overall survival of the high infiltration 

group is significantly shorter than the low infiltration 

group (HR, 3.35; P = 0.004; and HR, 2.55; P = 0.03, 

respectively; Figure 3C, 3D). 

 

Identification and confirmation of prognostic model 

 

A log-rank test of Kaplan-Meier survival curves of 24 

immune cells and 11 stromal cells showed that there 

was a total of 13 immune cells and 1 stromal cell 

capable of significantly predicting poor overall survival 

rate (P < 0.05). Moreover, we used LASSO modeling 

with 500 iterations to evaluate associations between the 

14 selected cells and overall survival in the TCGA 

dataset. Finally, a four-cell (cytotoxic cells, Th1 cells, 

Th2 cells and myocytes cells) biomarker was screened 

out of the 14 selected cells to build a risk signature 

based on the criteria (Figure 4A). The risk score 

formula for overall survival was calculated as follows: 

risk score = 1.54 × (expression value of Cytotoxic cells) 

+ 1.20 × (expression value of Th1 cells) + 2.80 × 

(expression value of Th2 cells) - 0.46× (expression 

value of Myocytes). The risk system calculates a risk 

score for each patient. Applying the median cut-off 

value of the risk scores, 80 patients with UM were 

divided into high-risk and low-risk groups. Kaplan-

Meier curve indicated that there was a significant 

difference between high-risk and low-risk group (HR, 

6.39; 95% confidence interval (CI), 2.73 to 14.97; P < 

0.001) (Figure 4B). The area under the curve (AUC) 

values for the four-cell model was 0.802. To verify the 

predictive ability of the four-cell model, validation 

analysis was performed using the GSE44295 and 

GSE84976 datasets. The AUC values of four cells were 

0.681 and 0.658, respectively (Figure 5A, 5C). The 

Kaplan-Meier curve revealed that the low-risk group 

have a significantly better survival than the patients in 

high-risk group with log-rank test (HR, 2.54; P = 0.03 

and HR, 4.01; P = 0.003, respectively) (Figure 5B, 5D). 

Results of the subgroup analysis of clinical 

characteristics of low- and high- risk groups are shown 

in Figure 6. 

 

High-risk subgroup more sensitivite to 

immunotherapy and chemotherapy 
 

The correlations of cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) and programmed death-ligand 1 

(PD-L1) expression with low- and high- risk groups 

were analyzed. The results revealed that the expression 

in the high-risk group was generally higher than that in 

the low-risk group (Figure 7A). The relationships 

between risk score and previously established 

prognostic markers, such as tumor stage, chromosome 3 

status, mutated BAP1 and molecular subtype, were 

explored. The box plots in Figure 7B show that BAP1 

mutant, subtype D, and monosomy 3 have a higher risk 

score than BAP1 wildtype, subtype A and disomy 3, 

respectively. Compared with the 3 years AUC values of 

these established prognostic markers (BAP1 mutant, 

tumor stage, histological type, subtype and chromosome 

3 status), our signature can achieve higher accuracy 

value (Figure 7C). Furthermore, we used subclass 

mapping to compare the expression profile of the two 

subgroups and another dataset containing details of 47 

patients with cutaneous melanoma that responded to 

immunotherapies, published in the TIDE website. 

Interestingly, we found that the high-risk group is more 

promising to respond to anti-PD-1 therapy (Bonferroni 

corrected P = 0.02) (Figure 8H). To further explore the 

response to chemotherapy between high- and low-risk 

patients with UM, we performed “pRRophetic” 

algorithm to estimate the chemotherapeutic response 

based on half maximal inhibitory concentration (IC50) 

available in the Genomics of Drug Sensitivity in Cancer 

(GDSC) database. Seven chemotherapeutic drugs, 

including AZD6482, JNK Inhibitor VIII, Lapatinib, 
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Figure 2. Kaplan-Meier survival analysis and Gene set variation analysis (GSVA) of high vs. low immune scores/stromal 
scores groups. (A, B) Overall survival among patients with uveal melanoma (UM) based on their immune and stromal scores; (C, D) 
Differential pathway activities between high and low immune and stromal scores groups, the same pathways are marked in red in the 
immune and stromal groups. Hazard ratios (HRs) and 95% CIs are for high vs low immune and stromal risk. The log-rank test was used to 
calculate P values in comparing risk groups. 
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Mitomycin C, PF.4708671, Temsirolimus and 

X17.AAG were identified as producing significant 

differences in the estimated IC50 between the  

high- and low-risk groups. Remarkably, we observed 

from the estimated IC50 of these chemotherapeutic 

drugs, that the high-risk group could be more sensitive 

to chemotherapies than those in low-risk group. 

(Figure 8A–8G). 

 

DISCUSSION 
 

To the best of our knowledge, this is the first study to 

investigate the UM tumor microenvironment using the 

ESTIMATE algorithm based on large public datasets, 

developing and validating the contribution of one 

stromal and three immune cells signatures in UM 

prognosis. Our prognostic signature can further stratify 

clinically defined groups of patients (eg, age, stages I, 

II, III and IV UM, histological type) into subgroups 

with different risk analysis (Figure 6). 

 

Previous studies mainly focused on the intrinsic genes 

of tumors [19], and some have provided elegant 

analyses on expression of immune-related genes or 

immune-infiltration in UM [11, 20]. However, a 

comprehensive analysis of the UM microenvironment 

consisting of larger cohorts is needed in studies of the 

UM microenvironment. In our study, we conduct the 

research with the help of numerous computational tools 

and public data, such as TCGA. The ESTIMATE 

algorithm was chosen for its compatible with RNA-Seq 

data and microarray data. The overall survival is 

correlated with immune scores and stromal scores, 

where the prognosis of low immune scores and stromal 

 

 
 

Figure 3. Unsupervised clustering of immune and stromal cells for 80 patients in the UM cohort. (A, B) The low infiltration and 
high infiltration cells in immune and stromal group; (C) Kaplan-Meier curves for overall survival (OS) of UM patients show that immune 
infiltration patterns are significantly associated with overall survival (log-rank test, P = 0.004); (D) Kaplan-Meier curves for OS of UM patients 
show that stromal infiltration patterns are significantly associated with overall survival (log-rank test, P = 0.03). Hazard ratios (HRs) and 95% 
CIs are for high or low immune and stromal infiltration risk. 
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scores is better than that of the high-score group. TME 

infiltration patterns also show that the low immune and 

stromal infiltration pattern has a better prognosis than 

the high infiltration pattern, which is consistent with the 

immune and stromal scores. 

 

On further investigation, we found 13 immune cells and 

1 stromal cell capable of significantly predicting poor 

overall survival rate in log-rank test, but which cell is 

more responsible than another and which common 

pathway is involved? Finally, signatures for three 

immune cell types - cytotoxic cells, Th1 cells, and Th2 

cells - together with one stromal cell type - myocytes - 

were identified. Similarly, previous studies have 

reported that CD4+ T lymphocytes was present in UM 

inflammatory infiltrates. Moreover, CD4+CD25+ 

FoxP3+ Treg cells are capable of suppressing Th1 or 

Cytotoxic T lymphocytes responses and represent a 

major mechanism of tumor escape in several cancers 

[2]. Our pathway research also found that myogenesis is 

significantly expressed in both the low immune and low 

stromal groups, which is consistent with the cells 

identification. In cardiac myocytes research, it has been 

demonstrated that fibroblast growth factor-2 (FGF-2) 

synthesis can be regulated at the transcriptional level 

[21], and FGF-2 was found to rescue UM cells from 

growth inhibition by bromodomain and extraterminal 

protein inhibitors [22]. It has been suggested that co-

targeting of FGF receptor signaling is required to 

increase the responses of metastatic UM to BET 

inhibitors [22], which is a point we could consider with 

the stromal findings. The epithelial-to-mesenchymal 

transition (EMT) investigated is also a common 

pathway in low immune and stromal group of UM, 

 

 
 

Figure 4. Identification of optimal cell signature for overall survival (OS) prediction. (A) The process of building the signature 
containing four cell types (3 immune cells and 1 stromal cell) and the coefficients calculated using the lasso method: from 500 iterations of 
lasso-penalized multivariate modeling, four cell types were reported as optimal for survival prediction more than 400 times; (B) The AUC 
curves of cell type models and Kaplan–Meier survival analysis of four-cell-type model in TCGA. Then the number of cells is four, the value of 
AUC is the highest (0.802). Kaplan–Meier curves indicated that there is a significant difference between high- and low-risk groups (log-rank P 
< 0.001). 
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Figure 5. External validation of four-cell-type model in GSE44295 and GSE84976 datasets. (A–C) The AUC curves in GSE44295 and 
GSE84976 datasets. (B, D) Kaplan-Meier survival analysis in GSE44295 and GSE84976 datasets, revealed that the low-risk groups have a 
significantly better survival than the patients in high-risk group. 
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Figure 6. Forest plot for the odds ratio (OR) of high or low 4-cell-type model related risk groups. The length of the horizontal line 
corresponds to the confidence interval, and the size of the OR data marker is inversely proportional to the confidence interval. The vertical 
dotted line indicates OR of 1.0. 
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which is said to enable trans-differentiation of epithelial 

tumor cells, endowing them with migratory and invasive 

properties [23]. The EMT is demonstrated to be related to 

myogenesis [24]. Taken together, the myocyte expression 

is also an unusual phenomenon that deserves more 

attention and the risk score of prognostic signature is a 

tool that we could validate further in clinic. 

 

All the three datasets showed that the correlation of 

CTLA-4 and PD-L1 expression with the low-risk group 

is significantly less than that of the high-risk groups. 

Thus, we were interested in investigating the response to 

treatment. It has been reported that the primary targets of 

immune checkpoint blockade (ICB) treatment are PD-1 

and CTLA4 [25]. Previous studies have clarified that the 

success of anti-PD-1 and anti-CTLA-4 agents in UM has 

been much more limited [26–27]. Some of our results are 

consistent with the previous studies, but an interesting 

point is that the high-risk group is more responsive to 

anti-PD-1 therapy and several chemotherapeutic drugs. 

Furthermore, we checked several more drugs like 

mitomycin C and lapatinib, which could also be used as 

supplementary or combined treatment agents [28]. 

However, more benchwork and clinical studies are 

needed to further validation. As aforementioned, we first 

developed the prognostic model and calculated the  

risk score. It would be more helpful to identify patients  

at high-risk in clinic and attempt the sensitive 

immunotherapy and chemo-treatment. 

 

In summary, our study reveals a comprehensive 

landscape of the immune and stromal microenvironment 

in UM, and provides a promising prognostic signature 

for UM. Patients with the high risk scores could benefit 

more from anti-PD-1 therapy and chemotherapy. 

Further investigations are needed to verify the accuracy 

in estimating prognoses and to test its clinical utility in 

patient management. 

 

 
 

Figure 7. Subgroup analysis and risk score distribution. (A) Box-plot analysis of high and low groups in CTLA-4 and PD-L1 expression. 
(B) The association between risk score distribution and established prognostic markers, including BAP1 mutant, tumor stage, histological 
type, chromosome 3 status, and molecular subtype. (C) The 3 years area under the curve (AUC) of risk score and prognostic markers (BAP1 
mutant, tumor stage, histological type, chromosome 3 status and molecular subtype) associated with OS in TCGA. *P < 0.05, ** P < 0.01, 
***P < 0.001,****P < 0.0001. 
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Figure 8. Differential putative chemotherapeutic and immunotherapeutic response. (A–G) The box plots of the estimated IC50 for 
the most sensitive chemotherapeutic drugs. (H) Submap analysis manifested that high risk group could be more sensitive to the programmed 
cell death protein 1 inhibitor (Bonferroni-corrected P = 0.02). *** P < 0.001. 
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MATERIALS AND METHODS 
 

RNA and clinical data 

 

The RNA sequencing dataset and corresponding 

clinical follow-up information of UM were obtained 

from the TCGA database. This dataset was derived 

from the tissue samples from 80 adult patients, and an 

integrative analysis by UM area consortia has also 

been conducting used this dataset [29]. Survival time 

was regarded as the time from tissue removal to  

death. Another two UM datasets (GSE44295 and 

GSE84976), consisting of 85 UM samples from the 

Gene Expression Omnibus, were used as external 

validation sets. 

 

Tumor microenvironment estimation 
 

Immune scores and stromal scores were calculated by 

applying the ESTIMATE algorithm in R package 

(“ESTIMATE”). By running ESTIMATE on TCGA 

RNA-Seq data, the immune scores and stromal scores 

of each uveal melanoma sample can be estimated. To 

quantify the proportions of immune and stromal cells in 

the UM samples, we first identified the biomarker genes 

of immune and stromal cells from the previously 

published articles [30, 31], and used single sample gene 

set enrichment analysis (ssGSEA) method to 

specifically discriminate 24 human immune cells and 11 

stromal cells phenotypes using the R package 

(“GSVA”) to validate the ESTIMATE algorithm. The 

immune cells considered were dendritic cells (DCs), 

immature DCs (iDC), activated DCs (aDC), 

plasmacytoid DCs (pDC), natural killer (NK) cells, 

CD56dim NK cells, CD56bright NK cells, 

macrophages, neutrophils, eosinophils, mast cells, T 

cells, T central memory cells (Tcm), T effector memory 

cells, Tgd cells, CD8 T cells, regulatory T cells (Treg), 

T follicular helper cells (TFH), T helper cells, Th1, Th2, 

Th17, B cells, and cytotoxic cells. The stromal cells 

included fibroblasts, lymphatic endothelial cells, 

microvascular endothelial cells, endothelial cells, 

mesenchymal stem cells, osteoblasts, myocytes, and 

skeletal muscle cells. 

 

Gene set variation analysis 
 

The uveal melanoma samples were divided into high vs. 

low immune score/stromal score groups by the median 

value. Then, GSVA was used to evaluate the common 

pathways shared in the tumor-infiltrating immune and 

stromal groups. These 50 hallmark pathways described 

in the molecular signature database, exported using the 

“GSEABase” package. Next, pathway activity estimates 

were assigned to individual samples by using the R 

package (“GSVA”). 

Heatmaps and clustering analysis 
 

Heatmaps and clustering were generated using an R 

package (“pheatmap”). 

 

Survival analysis of immune and stromal cells 

 

The best separation survival analysis of immune and 

stromal cells was performed using the “survminer” 

package. Kaplan-Meier were plotted and the differences 

among groups were compared using log-rank tests. 

 

Identification of prognostic model 
 

The survival-related cells in primary selection are not 

suitable for clinical diagnosis. Therefore, a robust 

survival modeling approach was used to identify 

suitable cell signature. We constructed prognostic 

models by using the “lasso” package and ran the 

analysis for 500 iterations. Statistical stability under 

each model was evaluated and a frequency greater than 

400 regarded as indicating a stable model. Kaplan–

Meier survival curves were plotted and differences 

between the subgroups were compared using log-rank 

tests. Receiver operating characteristic curves [1] were 

drawn for the predicted 3-year overall survival (OS), 

and the AUC values was used to evaluate the specificity 

and sensitivity of the cell signature. Moreover, to prove 

the reliability of the result, this cell signature was 

further validated in another two independent datasets 

(GSE44295 and GSE84976). 

 

Immuno- and chemotherapeutic response prediction 
 

To explore the likelihood of an immune- or 

chemotherapeutic response, we predicted the 

chemotherapeutic response for each sample based on 

the Genomics of Drug Sensitivity in Cancer (GDSC) 

database (https://www.cancerrxgene.org) [32]. The 

most significant chemotherapeutic drugs were selected 

(P < 0.0001). The prediction process was implemented 

using the R package “pRRophetic”. Although immune 

checkpoint inhibitors have not yet been approved as 

routine drugs for UM, we also predicted the likelihood 

of response to immunotherapy by using the TIDE 

website tool (http://tide.dfci.harvard.edu/) [25]. 

 

Statistical analysis 

 

All statistical analyses were conducted using the R 

package (version 3.5.2). For comparisons of two 

groups, the statistical significance for normally 

distributed variables was estimated using Student’s t 

tests, and non-normally distributed variables were 

analyzed using Mann-Whitney U tests (also called the 

Wilcoxon rank-sum test). For comparisons of more than 

https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/
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two groups, Kruskal-Wallis tests and one-way analysis 

of variance were used as non-parametric and parametric 

methods, respectively. The association between cell 

signature and clinicopathological characteristics was 

analyzed using Fisher’s exact test. 
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AUC: area under the curve; BAP1: BRCA1-associated 

protein-1; CI: confidence interval; CTLA-4: cytotoxic 
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