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We introduce a setup which realises a tunable engineered environment for experiments in circuit quantum
electrodynamics. We illustrate this concept with the specific example of a quantum bit, qubit, in a
high-quality-factor cavity which is capacitively coupled to another cavity including a resistor. The
temperature of the resistor, which acts as the dissipative environment, can be controlled in a well defined
manner in order to provide a hot or cold environment for the qubit, as desired. Furthermore, introducing
superconducting quantum interference devices (SQUIDs) into the cavity containing the resistor, provides
control of the coupling strength between this artificial environment and the qubit. We demonstrate that our
scheme allows us to couple strongly to the environment enabling rapid initialization of the system, and by
subsequent tuning of the magnetic flux of the SQUIDs we may greatly reduce the resistor-qubit coupling,
allowing the qubit to evolve unhindered.

T
he field of circuit quantum electrodynamics1–15 (cQED), wherein quantum mechanical cavity modes couple
to nonlinear elements such as two-level quantum systems made of electric circuits, has proven to be a very
attractive architecture for quantum computing. Indeed, progress has been so impressive that recently

fabricated superconducting qubits offer coherence times of such length that prototype fault-tolerant quantum
computing is already beginning to look like a genuine possibility14. Simultaneously, recent advances in nanoscale
engineering have opened up the possibility to enter regimes in which single photons are the dominant heat
carriers in mesoscopic systems16–20. In particular, superconductor–insulator–normal-metal (SIN) junctions pro-
vide exquisite temperature control and thermometer sensitivity for small metal islands21. In Refs. 22 and 23, these
two fields were unified with a study of the photonic heat conduction between two resistors in a superconducting
cavity. We present an advancement to these works by demonstrating that bringing together the excellent qubit
control of cQED with the sophisticated normal-metal components used in SIN thermometry can offer great
benefits for quantum computing.

Ensuring correct system initialization is vital for efficient operation of quantum algorithms24. For many cQED
experiments this initialization can be adequately achieved simply by waiting for a sufficiently large multiple of the
qubits natural lifetime, after which it can be assumed to have de-excited with high probability25. As the limits of
cQED are pushed harder and harder by increasingly sophisticated techniques, the comparatively slow and
imprecise nature of this process is highlighted. Recent works suggest several solutions which offer improvements
in performance26–32. In particular, Ref. 32 has demonstrated initialization by measurement, a promising route
which offers a significant speed advantage. In its current realization, however, this approach requires multiple
imperfect measurements to rule out the presence of residual cavity excitations.

Here we report on a simple and possibly more efficient alternative which may also be employed as a comple-
mentary technique to further enhance the efficiency of these previously introduced schemes. To this end, we present
a setup in which a capacitor is used to divide a superconducting coplanar transmission line into two coupled
cavities. There are numerous examples of using such coupled cavities in an advantageous manner in related
literature33–36. We place a resistor into one of these cavities, and we introduce a qubit into the second, which retains
a high quality-factor. When the frequencies of both the cavities and the qubit are detuned, the cavity housing the
qubit is coupled only weakly to the resistor. In this case, both the excited state of the qubit and the photonic
excitations of this cavity are well protected from the artificial resistor environment. The inclusion of one or more
superconducting quantum interference devices (SQUIDs) into the dissipative cavity, enables us to tune the inter-
action between the two cavities, and thus modify the probability amplitude of the photonic excitations at the
position of the resistor. In this way, we may independently vary the photonic and qubit decay rates over several
orders of magnitude. Consequently, it becomes possible to switch the environment of the qubit between a high
quality-factor regime, essential for protecting the qubit during evolution, and a low quality-factor regime, so that the
qubit state may be initialized at will.
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Results
We first revisit work relating to the integration of components within
a superconducting coplanar waveguide cavity. Our method follows
the usual treatment2,37, but includes a capacitor dividing the cavity
into two regions. These regions act as the high-and low-quality cav-
ities depending on their configuration.

Modification of cavity modes due to a dividing capacitor. We con-
sider a setup in which we insert at position xc, a capacitor of capa-
citance Cc into the central conducting strip of a high-quality
superconducting coplanar waveguide cavity, as shown schematically
in Fig. 1. We employ the usual representation of the cavity as a one-
dimensional circuit, a model into which the capacitor may be
conveniently incorporated. Our starting point to calculate the
photonic modes is the classical Lagrangian which may be written in
terms of H(x, t), the integral of the charge density in the cavity from 0
to x, as

LLagr~

ðL
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where the cavity has a length L, with a capacitance per unit length c,
and we allow for a position-dependent inductance per unit length ,(x)
of the form

‘ xð Þ~ ‘L, 0ƒxƒxc,
‘R, xcvxƒL:

�
ð2Þ

We look for solutions to the Euler-Lagrange equation of the form
H x,tð Þ~

P
j Xj xð ÞTj tð Þ, where the functions Xj(x) form an ortho-

normal basis,
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where vj is a constant, i.e., the eigenfrequency of the jth mode.
Applying the boundary conditions Xj(0) 5 Xj(L) 5 0, and
continuity at xc leads to the solution
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The normalization ensures that
Ð
‘ xð Þ Xj xð Þ

� 	2
dx~1.

Integrating Eq. (3) over an infinitesimal range around xc provides
a condition for the eigenvalues,
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which can be utilized to obtain the spectrum {vj}, for example,
numerically. The range of integration is selected for convenience
and could be extended over any path that covers xc to obtain the
same spectrum. In the limit c/Cc R ‘, Eq. (6) gives the solutions

vB
L~

1ffiffiffiffiffiffi
‘Lc
p jp

xc
, and vB

R~
1ffiffiffiffiffiffiffi
‘Rc
p jp

L{xc
with j 5 0, 1, 2… We denote

these as the bare cavity frequencies, describing uncoupled cavities of
length xc, and L 2 xc, and with inductance per unit length of ,L, and
,R, respectively. For finite but still small capacitance Cc, placed close
to the center of the cavity, the lowest-energy pair of modes have
nearly equal energy at the cavity resonance point v1 < v2, separated
only by the cavity interaction energy Dvres= vB

R, vB
L . Far away

from this resonance, the lowest frequencies, v1, and v2, are approxi-
mately equal to vB

L and vB
R such that if vB

L=vB
R, we find v1<vB

L and
v2<vB

R, and if vB
L?vB

R, we obtain v1<vB
R and v2<vB

L . This is
illustrated in Fig. 2(b), which shows the frequencies of the two
lowest-energy modes as a function of vB

L . The dependence of the
spectrum on the cavity parameters is reflected in the mode profiles
[Fig. 2(a)], in which the amplitude of the fundamental mode is pre-
dominantly located in the left-hand side of the cavity for vB

L=vB
R. In

Fig. 2(a), the modification of the mode profile is examined with
respect to a magnetic flux W threading each of the identical control
SQUIDs inserted into the left cavity. For the purpose of interpreting
Fig. 2(a), it suffices to note that ,L , 1/jcos(pW/W0)j, where W0 5

h/2e is the flux quantum, [see Eq. (12)] so that decreasing W corre-
sponds to increasing vB

L . Increasing vB
L subsequently shifts the

mode profile primarily to the right-hand side of the cavity, via an
intermediate resonance region in which the amplitude on the left and
right is comparable. We therefore refer to these modes as left and
right photon excitations, in order to indicate their most probable

Figure 1 | Schematic and circuit diagrams of the system. (a) A coplanar

waveguide cavity which consists of a center conductor located between two

ground planes. The cavity has been modified by adding a resistance R and

capacitance Cc at positions xr and xc, respectively. In addition, one or more

SQUIDs, each with an inductance LJ(W), where W is the magnetic flux

penetrating the SQUID loop, are positioned evenly into the left cavity. Our

approach makes no assumptions about the type of qubit, however, for the

sake of concreteness, we assume a transmon qubit that is capacitively

coupled to the resonator with a capacitance CQ at xq. (b) The cavity may be

represented using an infinite number of capacitors (C0 5 cdx) and

inductors (L0 5 ,dx). The horizontal dots represent many sequences of

these L0, C0 pairs. It is also possible to include series resistors to model the

internal losses of the superconductor but these are assumed to be negligible

in our setup.

www.nature.com/scientificreports
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position in the cavity. This convention is well justified away from
cavity-cavity resonance. Close to the resonance point the distinction
between left and right is somewhat arbitrary, nevertheless to simplify
the discussion we maintain this convention.

We perform the standard quantization of the system, as outlined
in the Methods section, to find the decomposition of the operator
describing the integral of the charge density, Ĥ~

P
j Ĥj~

P
j XjT̂ j.

The quantization yields

Ĥj x,tð Þ~
qj âjzâ{j
h i
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j x

� �
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>: ð7Þ
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s
, and â{j tð Þ and âj(t) are the standard bosonic cre-

ation and annihilation operators for the jth photon mode in the

Heisenberg picture, respectively. Applying the same notation,
we can also write the cavity Hamiltonian as Ĥcav~

P
j vj
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� �

. The current operator, Îj~
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and the operator for the voltage in the cavity, V̂j~
1
c
LĤj

Lx , is given by
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Cavity–qubit coupling. We assume that the qubit is introduced at
the position xq . xc, and consider it to be a Cooper-pair box
described by a Hamiltonian Ĥq~CPV̂2

q

.
2zEJ cosŵ where CS 5

CJ 1 CQ 1 C0 is the total capacitance of the Cooper pair box, CJ is
the capacitance of the Josephson junction defining the
superconducting island, CQ is the coupling capacitance, C0 is the
self-capacitance of the superconducting island, and V̂q and ŵ are
the operators for the voltage and superconducting phase difference
across the junction. The Josephson and charging energies of the box
are defined as EJ and EC 5 (2e)2/CS, respectively. The cavity–qubit
interaction Hamiltonian is given by Ĥtot

c{q~{CQ
P

j V̂qV̂ j which,
after performing the rotating wave approximation38, takes the form2

Ĥc{q~
P

j gj ŝzâjzŝ{â{j
� �

. The operators ŝz, and ŝ{ corres-

pond to excitation, and de-excitation of the qubit in the energy
eigenbasis, respectively. The effect of the cavity–qubit coupling
capacitance on the cavity modes is neglected. By employing
Eq. (9), we may identify the coupling strength gj between the qubit
and the jth cavity mode as

gj~{
CQ

CP
e kR

j bjqj

c
cos kR

j xq{L

 �h i

, ð10Þ

where we assumed that the qubit is in the charging regime EC ? EJ,
and we operate it at the charge degeneracy point. We denote the
elementary charge by e. In the transmon limit for which EJ ? EC,
the coupling strength becomes39

gj~{
ffiffiffi
2
p EJ

8EC

� �1=4CQ

CP
e kR

j bjqj

c
cos kR

j xq{L

 �h i

: ð11Þ

Realizing a tunable inductance for the dissipative cavity. Let us
make the qubit–cavity interaction tunable by inserting one or more
SQUIDs distributed evenly throughout the dissipative cavity. Similar
approaches providing an inhomogeneous and tunable coupling
between the qubit and the cavity have been previously studied40,41.
Moreover, inserting SQUIDs to control the features of the cavity has
attracted recent interest42–44. The setup is shown schematically in
Fig. 1 for the case of a single SQUID. Each SQUID is modelled as a
linear inductor LJ(W) 5W0/(4pIc0j cos(pW/W0)j), Ic0 being the critical
current of each identical Josephson junction comprising the SQUID,
andW the magnetic flux through the SQUID. We can thus modify the
effective inductance of the center conductor of the cavity by varying
W. In the following, we show that this can have a large impact on the
eigenfrequencies and mode profiles, which may in turn affect the
cavity–qubit coupling, the eigenstates of the system Hamiltonian,
and the transition rates due to the bath coupling substantially. In
addition to the setup described in this paper, we expect that tunability
can be obtained by inserting a SQUID array at the end of the cavity
connecting the center conductor to the ground plane but for
simplicity we will refrain from discussing this case.

Figure 2 | Mode profiles and frequency spectrum in the divided cavity.
(a) The mode profile of the lowest-energy cavity mode, calculated using Eq.

(4), with a flux through the SQUIDs of (i) W 5 0.35W0, (ii) W 5 0.28W0,

and (iii) W 5 0.14W0. (b) The frequencies of the two lowest modes,

calculated from Eq. (6), as functions of the bare left-cavity frequency to

give the spectrum in the frequency range around the left-right cavity

resonance. The first and second modes, for the flux values considered in

(a), are marked with squares and circles, respectively. For the cavity

parameters, we take a cavity of length L 5 12 mm, and a capacitor

positioned at xc 5 0.45 L, with capacitance Cc 5 0.5 fF. We introduce ns

SQUIDs, each with a critical current Ic0 5 0.3 mA 3 ns, into the left side of

the cavity. For the center conductor, c 5 130 3 10212 Fm21, and we take the

inductance per unit length of the right cavity region to be ,R 5 3.25 3

1027 Hm21, resulting in a characteristic impedance Zc : ~
ffiffiffiffiffiffiffiffiffi
‘R=c

p
~50 V.

For these parameters, the bare right-cavity frequency has a value

vB
R~2p|11:66 GHz, and the interaction frequency is

Dvres~0:0012|vB
R.

www.nature.com/scientificreports
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A simple but effective approximation to account for the effect of
the SQUIDs on the system is to consider only the induced change in
the average inductance per unit length in the left cavity as

‘L~
1
xc

nsLJ Wð Þz‘i
Lxc

� 	
, ð12Þ

where ns is the number of SQUIDs of equal inductance, and ‘i
L is the

intrinsic inductance per unit length of the center conductor. In order
to approximate the effect of the SQUIDs as a uniform inductance in
this manner, their number must be significantly large but a qualitat-
ive correspondence should be achievable even for a small number. In
considering only the inductance of the SQUIDs, we have neglected
their parallel capacitances CJ9. This is a valid approximation when the
signal frequency is low compared to the plasma frequency of the
SQUID, vp : ~1=

ffiffiffiffiffiffiffiffiffiffi
LJ CJ ’
p

. In practice, it is possible to reproducibly
fabricate SQUIDs with vp higher than 2p 3 70 GHz; such values are
several times higher than the typical frequencies considered here.

Interaction of the resistor with the cavity modes. In this section, we
incorporate a resistor of resistance R, located at xr , xc, into our
model for the capacitor-modified cavity. The average voltage across
the resistor vanishes but the voltage noise from the resistor has the
Johnson–Nyquist spectral density

SdV vð Þ~ 2R v

1{exp {
v

kBT

� � , ð13Þ

with T the temperature of the electrons in the resistor. We restrict our
analysis only to those systems in which the coupling between the
photonic modes and the resistor is weak. This weak coupling
criterion is guaranteed provided that the resistor is situated where
the current mode amplitude is small and/or the resistor has
sufficiently small magnitude in comparison to the characteristic

impedance of the cavity Rsin2 kL
j xr

� �
=Zc : ~

ffiffiffiffiffiffiffiffiffi
‘R=c

ph i
. In this

limit we can arrive at a relatively simple analytic result for the
resistor–cavity interaction Hamiltonian by utilizing the procedure
described in Ref. 22, and reviewed in the Methods section, in which
the bath couples to the cavity via the voltage fluctuations across the
resistor. This results in an interaction term

Ĥint~Ĥ xrð Þ6dV̂, ð14Þ

where dV̂ is the operator for the voltage fluctuation over the resistor.
Applying Fermi’s golden rule to an interaction Hamiltonian in the

form of Eq. (14) yields transition rates between the eigenstates of the
cavity–qubit Hamiltonian without the coupling to the environment.
The transition rate from the mth eigenstate to the lth eigenstate is
given by

Cm?l<
lh jĤ xrð Þ mj i
��� ���2

2 SdV {vmlð Þ, ð15Þ

where vml 5 (El 2 Em)/ , and SdV(v) is the spectral density of the
voltage noise given in Eq. (13).

Resistor-induced transition rates. The total Hamiltonian of the
complete cavity–resistor–qubit system, shown in Fig. 1, is

Ĥtot~ĤcavzĤc{qzĤqzĤRzĤint: ð16Þ

We first consider only the cavity and qubit terms, i.e., the cavity

Hamiltonian Ĥcav~
P

j vj â{j âjz1=2
� �

, the qubit Hamiltonian,

for which we assume the usual form, Ĥq~
vQ

2
ŝz , and the cavity–

qubit coupling term, Ĥc{q~
P

j gj ŝzâjzŝ{â{j
� �

. Here ŝz is the

Pauli Z-operator given in the basis of the two lowest energy
eigenstates of the qubit, and acting non-trivially only on the qubit

state. In general, the number of modes required for an accurate
description of the dynamics depends on the effective bath
temperature. Since we assume low temperatures compared with
the cavity frequencies, we may consider only the lowest pair of

modes in our analysis. We therefore take Ĥcav~ vL â{LâLz1=2
� �

z vR â{RâRz1=2
� �

, and Ĥc{q~ gL ŝzâLzŝ{â{L
� �

z gR ŝzð
âRzŝ{â{RÞ. As above, the subscripts L and R denote the left and
right cavity modes, where vL 5 v1, vR 5 v2, if the left cavity is tuned
below the cavity resonance point, and vR 5 v1, vL 5 v2, above it.
We write the Hamiltonian in the basis js, nL, nRæ, which is a tensor
product of the qubit state jsæ (s 5 g, e), and the photon number
states, jnLæ, and jnRæ. Here, nL is the population of the mode with
frequency vL, and nR is the population of the mode with frequency
vR. Far detuned in the frequency space from either the cavity–cavity,
or cavity–qubit resonances, we are able to identify eigenstates of the
cavity–qubit system which are, to good approximation, equivalent to
the excited states jg, 1, 0æ, jg, 0, 1æ, and je, 0, 0æ, and hence we refer to
these eigenstates as left-photon–like, right-photon–like, and qubit-
like, respectively. Close to cavity–qubit resonance, these photon-like
eigenvectors will have a significant qubit component and vice-versa,
and hence this correspondence is no longer strictly applicable.
Nevertheless, studying these eigenvectors still yields much insight
into the dynamics of the system.

The resistor acts as an environment for the cavity–qubit system
through the interaction term, Ĥint~Ĥ xrð Þ6dV̂ . We take Ĥint to be a
weak perturbation which stimulates transitions between the different
eigenstates of the pure system without the environment due to the
presence of the resistor. The system is linear in the weak coupling
limit and hence there is no direct interaction between the modes.
The interaction Hamiltonian therefore remains in the form
Ĥint~Ĥ xrð Þ6dV̂ , where Ĥ xrð Þ~XL xrð ÞT̂LzXR xrð ÞT̂R has two
components in Eq. (14), one for each mode. We access the solution
of this system numerically, and calculate the transition rates between
each of the eigenvectors using Eq. (15).

Figure 3 shows the transition rates for the qubit-like and photon-
like eigenstates as functions of ,L. The behaviour of the photon-like
transition rates can be explained by referring to Fig. 2(a). If the
cavities are far detuned from cavity–cavity resonance, the eigenstates
of Ĥcav correspond closely to a photonic excitation in either the left or
the right of the dividing capacitor, Cc, as evident by the mode ampli-
tudes being predominantly on either side. The left-photon–like
eigenstates always have a large jg, 1, 0æ component, and thus high
amplitude at the position of the resistor. These left-photon–like
states therefore decay very quickly. In contrast, for most values of
,L, the right-photon–like states are approximately equivalent to the
states jg, 0, 1æ, which have a much smaller amplitude at xr, and thus
the right–photon–like states are protected from decay. As the cavity–
cavity resonance point is approached, the right-photon–like eigen-
state obtains an increased amplitude at the resistor and, hence decays
rapidly, resulting in a peak of several orders of magnitude in the
decay rate.

The qubit-like state couples to the resistor only indirectly via the
cavities. To achieve a strong qubit–photon coupling requires a large
mode amplitude at the position of the qubit in the right cavity, while
to achieve a large photon–resistor coupling requires a large mode
amplitude at the position of the resistor in the left cavity. In most
frequency regimes, it is therefore not possible to simultaneously
strongly couple the qubit to the mode, and the mode to the resistor.
Only if the qubit-like eigenstate is in resonance with the left cavity,
and hence a superposition with a significant jg, 1, 0æ component, does
this eigenstate decay quickly. We would like to emphasize that such
decay is achieved at resonance even if the cavity-cavity detuning is
negative. In Fig. 4, the decay rate for the qubit-like eigenstate is
shown as a function of both vQ, and vB

L . The behaviour of the qubit
rate shown in Fig. 3, can be recovered by taking a horizontal trace

www.nature.com/scientificreports
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through Fig. 4, and is marked with a dashed line. Furthermore, the
additional degree of freedom provided by selecting the qubit fre-
quency, equivalent to scanning vertically through Fig. 4, gives access
to an even wider range of decay rates. Most notably, around full
resonance, vQ~vB

L~vB
R, qubit lifetimes of only a few nanoseconds

are predicted. In summary, we can move the system to the left-
cavity–qubit resonance point and quickly reset the state of the qubit,
or to the cavity–cavity resonance point in order to reset the photon
state. By utilizing also the tunability of the qubit, we may bring both
cavities and the qubit into joint resonance, and rapidly initialise the
entire system. Alternatively, by detuning both the cavities from each

other, as well as the qubit, we can simultaneously protect both the
photon in the right cavity, and the qubit from decay.

In addition to tuning the frequency of the qubit and the left cavity,
our setup can utilize SIN thermometry, which gives us control of the
resistor temperature, T. In the simplest application of such ther-
mometry, the resistor is implemented using a voltage biased SIN
junction20,21 where the normal metal island acting as the resistor is
formed at the center conductor. The existence of the gap in the
density of states of the superconductor prevents electrons in this
energy range from tunnelling out of the normal metal. By applying
a suitable bias voltage, we can effectively modify the Fermi distri-
bution of the island allowing for the temperature control. In general,
there is back-action from the SIN junction to the cavity but this can
be made insignificant with current technologies20,21. The effect of the
resistor temperature on the qubit decay can be studied if we define an
effective qubit temperature45

Tef f ~
vQ

kB ln C{

Cz

� � , ð17Þ

where we assume that the system is in quasi-equilibrium. The rates
C6 refer to the excitation and relaxation rates for the qubit, respect-
ively. In calculating Teff, we may phenomenologically account for
external noise sources by adding intrinsic excitation and relaxation
rates Ci

+ to the rates calculated with Eq. (15) which result from the
presence of the resistor. In Fig. 5, we show the effective qubit tem-
perature as a function of the resistor temperature for two cases of a
bare left-cavity frequency close to resonance with the qubit, or
detuned from the qubit frequency. We note that by changing the
resistor temperature, the effective qubit temperature is almost con-
stant in the detuned case, as the qubit is effectively decoupled from
the artificial environment. If the left cavity is brought close to res-
onance with the qubit, where the artificial environment couples
strongly to the qubit, Teff may be decreased drastically.

Discussion
In summary, we have presented a system in the framework of circuit
quantum electrodynamics for which an engineered resistor is able to

Figure 4 | Contour plot of the qubit–like decay rate. Decay rate to the

ground state, for a system prepared in an initial eigenstate of the cavity-

qubit system corresponding, away from resonance, to a qubit excitation, as

a function of the frequencies of both the qubit, vQ, and bare left cavity, vB
L .

We plot the logarithm of the decay rates, with darker areas representing

higher rates. The cavity parameters are otherwise identical to those used in

Fig. 3. The horizontal dashed line marks the trace covered in Fig. 3.

Figure 5 | Effective qubit temperature vs. resistor temperature. Effective

temperature of the qubit as a function of the temperature of the resistor,

which may be manipulated using SIN tunnel junction thermometry. The

results are shown for bare left-cavity frequencies of vB
L~1:002|vQ (solid

line) and vB
L~0:75|vQ (dashed line) resulting in zero-temperature

relaxation rates of 9.59 3 109 s21 and 1.01 3 105 s21, respectively. The

frequency vB
L~1:002|vQ is selected to yield the maximum decay rate for

the qubit–like eigenstate. In calculating the total excitation and de-

excitation rates, we include an intrinsic qubit relaxation rate of

Ci
{~1:0|105 s{1, and excitation rate of Ci

z~1:7|102 s{1, to give an

intrinsic qubit temperature of Ti 5 120 mK. The parameters are otherwise

identical to those used in Fig. 3.

Figure 3 | Decay rates vs. inductance per unit length of the left cavity.
Decay rates to the ground state, for a system prepared in an initial

eigenstate of the cavity-qubit system corresponding, away from resonance,

to either a qubit excitation (solid line), the excitation of a photon in the

right cavity (dashed line), or in the left-cavity (dotted line), as functions of

the average inductance per unit length of the left cavity, ,L. We observe a

peak in the decay rate of the right-photon–like state at cavity–cavity

resonance, and a peak at the left-cavity–qubit resonance for the decay rate

of the qubit-like state. The resistor has an effective temperature T 5

10 mK, and a resistance of R 5 230V. The angular frequency of the qubit is

held fixed at 2p 3 15.91 GHz. The cavity length is L 5 12 mm, and

includes a capacitor positioned at xc 5 L/2, with capacitance Cc 5 0.5 fF,

and cavity interaction energy Dvres 5 2p 3 16.73 MHz. For the center

conductor, we have c 5 130 3 10212 Fm21, with a characteristic impedance

of the right cavity Zc : ~
ffiffiffiffiffiffiffiffiffi
‘R=c

p
~50 V, resulting in a bare right-cavity

frequency vB
R~2p|12:82 GHz.
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act as the dominant environment for a qubit. Unlike the natural
environment, which can have unpredictable effects and may also
be a source of particularly problematic high-frequency noise, we
can conveniently control this artificial environment. We dem-
onstrate that both the photon and qubit lifetimes can separately be
tuned over many orders of magnitude. This allows for rapid initia-
lization, or essentially unhindered operation of the cavity–qubit sys-
tem as desired. A similar operating principle was also recently
studied for a system utilizing coupled LC resonators46 complement-
ing our results. By employing techniques from SIN tunnel junction
thermometry, we may not only determine the temperature of the
artificial environment with high accuracy, but are also able to control
it. With these techniques, variations of the resistor temperature over
a range of several hundred millikelvins are attainable20,21, providing
control over the effective temperature of the qubit.

Our work presents an efficient means to utilize normal-metal
components within a cQED framework, and is likely to inspire fur-
ther developments in this direction in order to expand the toolbox of
cQED. Though undoubtedly experimentally challenging, the para-
meters used in our analysis have been selected in line with what is
currently achievable47, and thus we expect these results to be experi-
mentally reproducible.

Methods
Quantization of the cavity. We begin by rewriting the Lagrangian of Eq. (1) in the
form

LLagr~
X

j

1
2

LTj tð Þ
Lt

� �2

{
v2

j

2
Tj tð Þ2

" #
, ð18Þ

where Eq. (3) and the orthonormality of the modes have been used. The Hamiltonian
is then constructed as the Legendre transform of the Lagrangian density, that is

H~
P

j
_T

2
j

.
2zv2

j T2
j

.
2

h i
. Promoting _Tk and Tj to operators with the requirement

T̂ j,
_̂Tk

h i
~i dj,k , results in a Hamiltonian which is diagonal in the cavity number

basis, Ĥ~
P

j
vj â{

j tð Þâj tð Þz1=2
h i

, where we defined

T̂j~

ffiffiffiffiffiffiffi
2vj

s
âj tð Þzâ{

j tð Þ
h i

, ð19Þ

_̂Tj~i

ffiffiffiffiffiffiffi
vj

2

r
â{

j tð Þ{âj tð Þ
h i

, ð20Þ

where â{
j tð Þ and âj(t) are the bosonic creation and annihilation operators of the jth

photon mode.

Resistor–cavity coupling. We calculate the interaction Hamiltonian as the difference in
the energy of the resistor–cavity system for the instances in which the resistor does and
does not interact with the modified cavity. The Hamiltonian can be found by integrating
the energy density in the cavity along its length. In the non-interacting situation, this
process results in the Hamiltonian Ĥ0~ĤcavzĤR~

Ð L
0 cV̂2z‘Î2

 �

2 dxzĤR, where
Î is the current operator, and V̂ the voltage operator in the cavity, given by Eqs. (8) and
(9), respectively. The resistor Hamiltonian is ĤR, which we may consider to describe an
infinite bath of harmonic oscillators, though the explicit form of ĤR will play no role in
our analysis. For the case in which the resistor and the cavity interact, the calculation is
marginally more involved. We proceed similarly to the non-interacting setup and write

Ĥ tð Þ~ĤRz
c
2

ðxr

0
V̂cav6 resz cav6dV̂L

 �2

dx

z
c
2

ðL

xr

V̂cav6 resz cav6dV̂R

 �2

dx

z
‘

2

ðL

0
Î2

cavdx:

ð21Þ

Here dV̂L Rð Þ is the time-dependent resistor-induced shift in the voltage on the left

(right) side of the resistor. As in Ref. 22, the second order terms in dV̂L Rð Þ as well as the
fluctuations in the current operator, dI = dV/R are neglected due to the fact that the the
fluctuations are weak and the resistor is situated close to the end of the cavity. Denoting
the voltage operator on the left of the capacitor by V̂cav

L and on the right by V̂cav
R ,

Ĥint~Ĥ tð Þ{Ĥ0

~c½ ðxr

0
V̂cav

L 6dV̂Ldxz

ðxc

xr

V̂cav
L 6dV̂Rdx:

z

ðL

xc

V̂cav
R 6dV̂Rdx�:

ð22Þ

Performing the integrals we obtain Eq. (14), the weak-coupling interaction Hamiltonian

Ĥint~Ĥ xrð Þ6dV̂ , ð23Þ

where we have defined the total voltage fluctuation dV̂:dV̂L{dV̂R and used the
continuity of Ĥ at xc. We note, by comparison with Ref. 22, that the introduction of the
capacitor does not affect the functional form of the interaction Hamiltonian although it
affects Ĥ.
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