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Abstract: The rapid development of omics technologies has drastically altered the way biologists
conduct research. Basic plant biology and genomics have incorporated these technologies, while
some challenges remain for use in applied biology. Weed science, on the whole, is still learning how to
integrate omics technologies into the discipline; however, omics techniques are more frequently being
implemented in new and creative ways to address basic questions in weed biology as well as the more
practical questions of improving weed management. This has been especially true in the subdiscipline
of herbicide resistance where important questions are the evolution and genetic basis of herbicide
resistance. This review examines the advantages, challenges, potential solutions, and outlook for omics
technologies in the discipline of weed science, with examples of how omics technologies will impact
herbicide resistance studies and ultimately improve management of herbicide-resistant populations.

Keywords: weed genomics; herbicide resistance database; herbicide resistance diagnostics; precision
herbicide resistance management; functional genomics; weed biology; weed evolution; integrated
pest management

1. Introduction

Reference genome assemblies have enabled many advances in our understanding of gene
function and the linkages between the genome and phenome. Modern plant biology has become
quantitative, systems-oriented, and predictable. The fields of genomics, transcriptomics, proteomics,
and metabolomics—collectively referred to as ‘omics’—describe the component parts of the biological
system that lead to the presentation of traits. Profound developments have been realized in model
plant and crop species where the genome and associated omics systems have led to new biological
understanding and application [1]; however, the question remains—how can omics and associated
systems-scale biology contribute to our understanding of herbicide resistance and ultimately help
improve weed management? Fundamentally, this is a question of how omics discoveries can translate
into applied outcomes and innovations. Within weed science, genomics and transcriptomics have been
the most utilized of the various omics techniques and are the focus of this review. Proteomics and
metabolomics are also emerging as potential areas of research for herbicide resistance [2–4]; however,
the full potential of omics techniques has not yet been realized [5].

Several weed genomes have been completed to various levels of assembly completeness (Figure 1).
Plans are in progress to rapidly and substantially expand the availability of weed genomics resources [6].
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While the costs for sequencing are on a continuous decline and computational capacity is increasing,
major challenges remain to fully realize the potential of omics and their contribution to improved weed
management. In this review, we present what omics studies have already contributed to herbicide
resistance and weed management, explore the challenges for omics in weeds, identify translational
aspects of model systems, discuss the trajectory and impact of integrating omics in weed science,
and propose a road map for where the discipline should go in the future to harness the power of omics
for improved herbicide resistance management.
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for which scaffolding was completed by aligning with a related crop genome, Amaranthus
hypochondriacus [8]. Other weeds with assembled genomes in various stages of completeness
include Erigeron canadensis [9], Thlaspi arvense [10], Echinochloa crus-galli [11], Bassia scoparia [12],
and Eleusine indica [13]. Assemblies for Amaranthus palmeri and Alopecurus myosuroides are in
progress. Image sources: Arabidopsis, https://www.eurekalert.org/multimedia/pub/159783.php; field
pennycress, https://www.agweb.com/article/pennycress-gets-in-the-middle-chris-bennett; horseweed,
https://oregonstate.edu/dept/nursery-weeds/weedspeciespage/horseweed/horseweed_habit.html;
wild radish, http://science.halleyhosting.com/nature/plants/4petal/must/raphanus/raphanistrum.html;
barnyardgrass, http://swbiodiversity.org/seinet/taxa/index.php?taxon=2915&taxauthid=1; kochia,
photo courtesy of Phil Westra, CSU; goosegrass, https://www.invasive.org/browse/detail.cfm?
imgnum=5387295; Palmer amaranth, https://www.mda.state.mn.us/plants/pestmanagement/
weedcontrol/noxiouslist/palmeramaranth; waterhemp, https://agfaxweedsolutions.com/2019/02/11/

waterhemp-scores-again-new-resistance-found/; blackgrass, https://www.fwi.co.uk/arable/crop-
management/weed-management/blackgrass/how-to-use-integrated-methods-to-control-blackgrass;
rice, http://aaasjournal.org/rice-fields-chemical-physical-properties-implications-breeding-strategies/
rice-plant/.

2. Challenges Specific to Weed Science

Omics research in weed science faces several challenges, some specific to weed science and some
generic to the entire field of omics research. Several of these will be addressed with new discoveries
and technologies that are currently being developed, while others may need a concerted effort by the
weed science community to address. We will lay out several of these challenges and some possible
solutions that may arise to meet them.
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2.1. Managing Omics Datasets

The size and complexity of omics datasets being generated necessitates excellent database resources
including large data storage, data backups, easy access, and data manipulation tools both in weed
science and omics research at large. Several toolkits for genome databases have been developed
and successfully implemented with support from both private and public sectors. For example,
Tripal was developed with support from various academic and government funding agencies and
is freely available for download [14]. Tripal was designed to streamline and simplify the process of
omics database generation and organization, even in an online format [14]. Tripal also allows for the
integration and use of several important bioinformatics tools such as BLAST, InterPro, gene function
enrichment analysis, etc., an approach employed by several plant genome groups such as the Cucurbit
Genomics Database [15] and the Genome Database for Rosaceae [16]. Other database services for omics
can be licensed from the private sector, e.g., CropPedia by KeyGene (https://www.croppedia.com/).

Aside from establishing a contemporary platform for data housing and manipulation, deciphering
a complex, quantitative phenotype still remains a challenge. Data from the genome, epigenome,
transcriptome, proteome, and metabolome can now be collected from the same plant, and even
single cells in some cases. A primary goal is to understand the latent relationships among the omics
datasets to derive a comprehensive understanding of the underlying biology. In the example above,
taking a holistic approach (e.g., collection of different omics datasets) offers power and resolution in
comprehensively understanding the cellular and molecular components (and their interactions) [17];
however, integrating discrete experimental results is still difficult because of the inherent differences
in the data [18]. Furthermore, there are limitations in omics technologies that are confounded by
the complex nature of living systems [19]. As data integration techniques and strategies continue
to advance, holistic interpretation of systems data will improve our biological understanding of
complex phenotypes.

2.2. Genome Annotation

Another significant challenge facing the entire genome community is efficient and accurate
annotation of reference genome assemblies and eventual pan genomes. Homology-based gene
annotation pipelines, such as Maker [20] and Blast2GO [21], rely heavily on well-annotated,
phylogenetically close relatives to the species of interest for gene model evidence. These tools
perform even better with the availability of transcriptome datasets that are representative of key tissue
sources selected across the developmental life cycle. Many weed species of interest do not reside close
enough to a genomically-enabled neighbor species to be useful in homology-based gene annotation.
Frequently, the closest species to weeds with sequenced genomes reside in distant plant families or even
orders. Typical gene annotation strategies include the use of several popular prediction algorithms,
such as SNAP [22], Augustus, GenesFH, GeneMark, Glimmer, and others. These algorithms can be
trained with species specific data, manual curation, and consensus predictions extracted with programs
such as EVidenceModeler [23]. In any case, weed species are often described as having exceptional
genomes, with dynamic genomic plasticity and unique genetic content that can rapidly adapt and
endow extreme phenotypes [7,12,24,25].

Another profound gap exists between computational prediction of genes and gene function,
and validation of gene expression and its role and interaction with components of the omics system.
A primary goal in weed science is to develop modern tools that leverage omics datasets to enable
the study and verification of gene function in situ. A current constraint in closing this gap is the lack
of curated and well-maintained germplasm banks and the lack of gene editing and transformation
protocols. The lack of such tools prevents functional studies on genes and gene families, limiting the
ability to fully harness the power of genomics for weedy traits.

https://www.croppedia.com/
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2.3. Diversity of Evolutionary Strategies in Weeds

Weed genomics has other challenges that are specific. One of the biggest challenges is the number
of species being studied globally. It seems impossible to select a weed species (or even a handful of
weed species) that represent the diversity in weed science (not only the phylogenetic diversity but also
the diversity of weed management problems). Currently, the priority species for genomics research are
those that have the largest economic impact; species such as Amaranthus palmeri, Alopecurus myosuroides,
Echinochloa crus-galli, and Lolium spp. However, these species are not always the most tractable for
basic biology research. For instance, Amaranthus palmeri is dioecious, confounding the development of
specific populations for population-level genetic analysis; or the fact that Alopecurus myosuroides has an
exceptionally large, repeat-rich genome (~3.5 Gb) with high amounts of heterozygosity; or polyploid
genomes like Echinochloa crus-galli. A ‘model weed’ approach could be used to deeply investigate
fundamental questions about the great diversity of weedy traits and variation in evolutionary strategies
found in weeds [26–28], while new resources may be developed for specific applications to compare
results across multiple weed species.

One proposed explanation for the way in which some weed species continue to be dynamic in
the face of elastic environmental pressures (avoiding genetic bottlenecks) is through maintenance or
generation of genetic diversity [29]. Genetic diversity is critical for adaptation, and is perhaps, a key
component in understanding the origins of traits and speciation; however, distinguishing genetic
diversity from environmentally-induced phenotypic variability and linking phenotypes to genes poses
several challenges. First and foremost is the ability to find, maintain, and accurately characterize lines
with quantifiable heritability for traits of interest. Without consistent, well-characterized phenotypes,
finding the genes through traditional methods (test crosses, genome-wide association studies (GWAS),
QTL-seq, etc.) becomes a much more difficult task. Secondly, highly homogenous lines are desired
as the starting point for genome assembly projects. Highly heterogeneous genomes are much more
difficult to assemble and typically result in lower contiguity and completeness with a higher degree of
inaccuracy [12]. To compensate, extra sequencing and haplotype phasing is typical in the assembly
process, requiring additional time and expense. Furthermore, genetic studies that take advantage
of segregating populations comprised of recombinant inbred lines (RILs) [30] offer high degrees of
resolution and discrete QTL windows. For weed species that are obligate outcrossers (e.g., dioecious
Amaranthus spp., self-incompatible Lolium spp.), the development of homozygous populations is not
possible, leaving mapping resolution to be defined by half-sibling segregating populations and/or
GWAS approaches where population structure confounds mapping resolution.

Weed scientists have ambitious goals to study complex traits in weeds, such as abiotic stress, seed
germination, and non-target site resistance (NTSR) [6,31,32]. A major challenge is that these traits will be
investigated across multiple weed species representing diverse plant families. No one model weed can
represent the full range of life history traits and biology present across weeds. An interesting example
of a (generally, but not always) highly quantitative complex trait is NTSR to herbicides. The study of
NTSR is further complicated by the many combinations of weed species and registered herbicides for
which multiple resistance mechanisms are possible [31]. The genetic basis and inheritance of herbicide
resistance can be complex [33,34], such as NTSR mechanisms that are quantitative between populations
and between individuals in a given population [35–39]. Elucidating the basis of NTSR to one herbicide
in one species is not necessarily extensible to other herbicides and other species. In addition, NTSR
mechanisms can endow cross-resistance to multiple herbicides with different sites of action [40–42],
and single plants can contain multiple different NTSR mechanisms [36,43]. This further confounds the
use of omics strategies to disentangle the underlying genetic mechanisms. Likewise, weed species in
general display an interesting disposition of resilience for complex abiotic traits that are of agronomic
importance such as drought, heat, salt, and cold resilience, as well as seed longevity and many others.
Dissecting these traits on a molecular basis can prove to be difficult without modern omics approaches.
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3. Addressing Challenges by Looking at Other Disciplines

Many research disciplines that work in model systems have already begun to fully exploit the
decreased costs of next generation sequencing (NGS). Looking at the diverse ways researchers working
in model systems are using omics technologies in their respective fields can provide established tools
and templates to address the unmet needs of the weed science community.

3.1. Method Standardization for Utilizing NGS in Weed Science

With more and more researchers utilizing NGS, the need for quality and methods standards that
enable comparisons between studies becomes paramount. First and foremost, weed scientists need
access to reference lines used in NGS studies, especially since the high usage of herbicides worldwide
has made it more difficult to obtain purely susceptible populations. For some species, reference
susceptible lines are in common use such as the ‘Roth’ line of Alopecurus myosuroides maintained by
Rothamsted Research Institute, which has never had herbicide exposure in the past 150 years [44],
the Lolium rigidum line VLR1 from Victoria, Australia [45], and the susceptible Bassia scoparia line 7710
from Colorado [12,46]. Likewise, references exist for resistant weed populations like the established
A. myosuroides “Peldon” [44], the L. rigidum lines VLR69 [47] and SLR31 [42], and the first Amaranthus
palmeri population reported to be resistant to glyphosate [48,49]. Distribution of these reference lines is
currently only on an ad hoc basis by contacting the labs that maintain them. The greater challenge is
to capture the diversity of resistance mechanisms and combinations and maintain their availability
over a long period for future studies. Reference lines should be stored with institutions like the USDA
National Laboratory for Genetic Resource Preservation (USDA-NLGRP), which already houses a broad
germplasm collection, or an arrangement similar to the NSF-funded Sequence-Indexed Library of
Insertion Mutations for A. thaliana [50] that propagates seed for distribution to the community. Easily
accessible reference lines can then be used for sequencing projects, dose response experiments for
herbicide sensitivity or fitness penalty studies, population genetics studies, as control groups, or to test
gene function. In the future, we hope to see homozygous recombinant inbred lines (RIL) or multi-parent
mapping populations in weed science for the identification of more complex quantitative trait loci (QTL).
For situations in which homozygous lines may be difficult to produce (e.g., self-incompatible species,
dioecious species, multiple resistance mechanisms), we encourage the production and availability of
multiple reference populations.

Due to the high demand from researchers working on model systems, NGS data analysis can
be performed through several publicly available platforms, for example the NSF-funded CyVerse
with data storage and bioinformatic tools through the Discovery Environment web interface [51],
or the Galaxy project [52]. Furthermore, NSF-funded labs have produced easy to use online tools
like the Genome Sequence Annotation Server (GenSAS) that provides a pipeline for de novo gene
prediction and whole genome structural and functional annotation [53]. More tools that are weed
science specific may need to be developed or adapted from other existing tools; for instance, a database
of consistent annotations and gene ontologies. The Antibiotic Resistance Ontology (ARO) service [54]
and the Cytochrome P450 homepage [55] have shown how important proper annotations are to provide
consistent vocabulary for genes, which form much of the foundation of genomic bioinformatics.

Currently, omics techniques used for weeds are limited in scope, usually to a pair of samples
and just a few individuals per population. In the future, more NGS studies will be available for
meta-analyses that can provide insights into more complex evolutionary questions and the basic
mechanisms driving complex traits like metabolic herbicide resistance. Additionally, we may soon be
able to perform whole genome sequencing from many individuals of a single species for genome-wide
association studies (GWAS) and pangenome analysis, which will provide key information about genetic
variability and evolutionary history of individuals and populations. Similar to human genotypic
ancestry services, the more individual genome information is available for weeds, the better genetic
relatedness, movement patterns, and invasion biology can be understood.



Plants 2019, 8, 607 6 of 14

3.2. Improving Herbicide Resistance Diagnostics with Omics

We predict that improved resistance diagnostics in combination with field history data will allow
for field-tailored precision weed control recommendations that avoid unnecessary one-size-fits-all
treatments and improve risk prediction tools. Improved diagnostics and precision mapping might
also support or refute zero tolerance approaches in the case of new and agriculturally troublesome
herbicide resistance mutations.

Currently, the International Survey of Herbicide Resistant Weeds [56] is the main database for
herbicide resistant weeds and provides an extensive collection of new resistance reports and genomic
DNA sequences that encode for herbicide targets in various weed species. The antibiotic resistance
field maintains the Resistance Map, which provides interactive data on antibiotic use and resistance
patterns worldwide and predicts resistance trends [57]. The Comprehensive Antibiotic Resistance
Database (CARD) collects antibiotic resistance genes and associated proteins and takes the idea a step
further to also provide information on antibiotics, resistance mechanisms, antibiotic targets, associated
phenotypes, and tools to analyze molecular sequences. It also predicts putative antibiotic resistance
genes from unannotated but assembled contigs and their prevalence from sequenced genomes [54,58].
These data are also essential to weed scientists to ask questions such as when and where are the first
cases of resistance, how widespread are they, by what mechanism of resistance it is conferred, what
is the agricultural relevance for the grower, and how are herbicides being used on a global scale?
We foresee the need for weed resources such as weedscience.org expanding in scope to include more
reporting of resistance mechanism (e.g., target-site resistance, TSR, and NTSR) and being partially
modeled based on resources developed by microbiologists.

3.3. Improved Gene Function Validation for Herbicide Resistance Mechanisms

The increase in sequencing efforts to investigate mechanisms of resistance has led to an increase
in the identification of candidate driver genes that correlate with resistant phenotypes. Unfortunately,
many studies do not continue to functionally validate these candidate genes and the actual cause
for resistance remains undetermined. In successful validation studies, researchers have utilized
Agrobacterium tumefaciens-mediated transformation of candidate genes in model plant systems, such
as Arabidopsis thaliana [59–62], tobacco (Nicotiana benthamiana) [63], rice calli (Oryza sativa) [64,65],
transgenic rice [66,67], or budding yeast (Saccharomyces cerevisiae) [68]. However, most weed science
studies fall short of functionally validating identified genes due to lack of investment to date in stable
plant transformation methods for weeds. Plant transformation is an area where method development
is urgently needed.

Plant gene function can be investigated using transient expression systems to either knock out or
overexpress a candidate gene variant. Currently, there are several alternative techniques available
in non-model species for the investigation of gene function by RNA interference (RNAi) such as
virus-induced gene silencing (VIGS) [69,70]. Relevant to herbicide resistance, this technique has been
recently utilized to silence CYP749A16 in trifloxysulfuron-tolerant cotton [71] and to silence a GST gene
cluster in Verticillium wilt-resistant cotton [63]. Plants can also be inoculated with modified virus alone,
resulting in transcription of anti-sense RNA and subsequent target mRNA cleavage, such as the barley
stripe mosaic virus system used in cereals [72]. Alternative techniques to suppress target mRNA by
direct topical applications of anti-sense silencing oligos have been developed such as small interfering
RNAs (siRNAs) in a complex with a protein carrier [73], high-pressure spraying of double-stranded
RNA (dsRNA) [74], or through simple application of long dsRNA [75]. In contrast to reverse genetics
approaches that knock out gene function by anti-sense transcript silencing, gain of function due to
candidate gene variants can be assessed with transient expression in plants using promoter-targeted
RNA-directed DNA methylation (in cases where DNA methylation can affect gene transcription) [76]
and transient infection with Agrobacterium to express a candidate gene [77].

Most gene function studies in model systems have used alternative transfer DNA (t-DNA) or
transposon insertional mutagenesis to create mutant plants (gene knock-outs) for phenotype screening
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where plants with interesting phenotypes were further characterized for the affected gene(s). These
techniques require the production and maintenance of a large amount of germplasm as well as
huge resource input. This is only feasible when a large community is working on a single species
(e.g., Arabidopsis). For weed scientists it may be more viable to take a targeted approach for gene
knockouts using gene editing techniques like zinc finger nucleases (ZFNs) [78,79] or transcription
activator-like effector nucleases (TALEN) [80]. Additionally, gene editing using clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) guided by small
RNA instead of proteins for sequence-specific DNA cleavage [81] may be the quickest way to achieve
targeted gene editing. CRISPR systems have been shown to work both transiently or stably and
with high efficiency and specificity [82]. The weed science community would benefit greatly from
implementing these techniques to validate candidate gene function; however, as for other approaches
to study gene function, investment in plant transformation methods for weed species is needed to fully
enable gene editing in weeds.

4. Using Current and Future Omics Tools to Improve Herbicide Resistant Weed Management

Potential applications of genomics for improving applied weed control have been
reviewed [5,6,27,28,83]. A striking example of technology that could advance weed management is
the gene drive system [84]. Gene drives that could result in species extinction may be unfeasible for
regulatory and/or public acceptance reasons. However, some weedy traits may be excellent gene
drive targets to reduce the impacts of weeds. For example, if genomics can identify the basis of
extreme allergenicity in weeds (e.g., ragweed species), a gene drive system could target elimination
of the allergen from populations. If genomics can identify the basis of seed dormancy, a gene drive
system could lead to greater synchronization of germination. Tumbleweeds require the development
of an abscission layer at the base of the plant to break off, tumble, and disperse seed. A gene drive
system could potentially eliminate the abscission layer trait from a population, reducing spread of the
tumbleweed seeds.

Externally-applied gene silencing techniques to manipulate gene expression and potentially
reverse herbicide resistance mechanisms are another application of new knowledge gained from
genomics [85]. However, major challenges remain to utilize externally-applied gene silencing in plants,
specifically difficulties in stability, delivery, and efficacy of gene silencing oligonucleotides [74,75].
The resources from expanded weed genomics efforts will be crucial to design effective gene silencing
triggers with maximum specificity to target species and with minimal off-target effects, both in the
target organism and in non-target organisms.

Improved understanding of pathogen response pathways in weeds could lead to opportunities for
improved biocontrol. For example, pathogens could be engineered to be more virulent on weeds but
not on crops [86,87]. Gene drive systems could be combined with bio-control to spread susceptibility
to a pathogen within a weed population, potentially enabling long-term suppression of populations
without further intervention. Weeds that are alternate hosts for crop pathogens could be targeted with
gene drive or gene silencing to eliminate their ability to serve as alternate hosts.

The UK BioBank provides an example from the biomedical science field as to how large-scale
availability of genotypic and phenotypic data on thousands of individuals can democratize genomics
and make possible the discovery of the genetic basis of many diseases and traits in humans [88]. For the
model plant Arabidopsis, full genome sequences and phenotyping data exist for more than 1000 lines,
along with databases of corresponding RNA-Seq gene expression data and gene knockout mutation
phenotypic effects [89]. We envision a similar weed biobank database empowering research on weeds
across the world, consisting of reference genomes for multiple species, phenotypic data contributed
from collaborators around the world, and genome wide genotype data sets that are publicly available
and can be mined to discover the basis of quantitative traits, complex herbicide resistance mechanisms,
and other traits of interest in weeds. A weed biobank for GWAS will be complemented by other tools
from quantitative genetics, such as utilizing F2 mapping for herbicide resistance traits and abiotic stress
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tolerance traits. The integration of quantitative genetics with phenotyping including metabolomics,
proteomics, and transcriptomics on segregating individuals will initially enable markers associated
with traits of interest, and ultimately identify genomic regions and specific genes controlling the traits.
In addition, as in cancer therapy [90], genomic diagnostics might help to choose the best herbicide
combination(s) to mitigate the evolution of NTSR, in particular metabolic resistance.

5. Where Is Weed Omics Going?

Looking ahead to the next five to 10 years, we see several applications for weed omics. Large
scale, high-throughput detection of known resistance mutations is possible using targeted amplicon
NGS, bringing down the cost of genotyping and increasing the scope of available information [91].
The precision to identify resistant genotypes at low frequency within field-scale management units
will enable improved management recommendations specific for growers and their unique situation
of resistance mechanism(s), frequency, crop rotation, soil type, etc. The detection of low frequency
resistance will enable early warning systems, both for individual growers and within regions. The use
of metadata from digital agriculture will enable integration of field history and geospatial data on
weed populations to further inform best practice recommendations for growers.

Like the standards proposed in Section 2 for defining and characterizing the phenotype of
herbicide resistance, we envision the same standards to define and report herbicide resistance based
on characterized mutations in candidate genes. Currently, resistance is defined according to biological
criteria, primarily greenhouse dose responses, which has pros (reliable, not dependent on specific
mechanism), but it also has cons, including the cost and time required. Additionally, the current
resistance definitions in use consider resistance to be defined only when resistant individuals are at
a high frequency in a population. The common term used is biotype, which is not necessarily an
accurate term for many of the reports in the resistance database when there may be mixtures of different
resistance mechanisms within a population (e.g., TSR and NTSR). We ask to consider whether a few
highly resistant individuals within a population of mostly sensitive individuals should have a definition
(e.g., early stage resistance), as this initially rare resistance frequency is when active measures can be
taken to slow the increase in resistance. Improved diagnostics (faster, cheaper, more individuals tested)
will enable early detection of resistant individuals within populations, and corresponding management
measures to be prescribed. In-field diagnostics may have utility to provide rapid information for
grower decision making, similar to how various rapid PCR techniques can be used to identify plant
pathogens in the field [92].

We argue that resistance databases should accept molecular criteria to report known,
well-characterized cases of resistance, both for TSR and NTSR (when the genetic basis is known).
Improved resistance testing with rapid markers and database tracking is possible with modern molecular
biology. Resistance cases are likely underreported in databases because, for example, reporting the
next observation of acetolactate synthase (ALS) resistance has little incentive for researchers to conduct
laborious and expensive assays, while ALS resistance can be easily diagnosed with molecular markers
for target-site mutations. The ease in identification and reporting should help address the current bias
in data for prevalence of common herbicide resistance mechanisms, data that will be important for the
herbicide discovery industry.

In addition to utilization of molecular markers, resistance databases should be further improved
through advances from omics technologies. More technologies should be developed to diagnose
known resistance mechanisms, including nucleic acid probes, antibodies, and metabolite screens.
More knowledge gaps exist for NTSR, with a few examples of known genetic variants for metabolic
resistance characterized to date in weeds [61,64,93], but with many more cases of metabolic resistance
to be discovered. With an improved understanding of metabolic resistance genes and pathways,
transcriptional and/or protein markers can be screened as a diagnostic panel, in which the presence of
defined subsets of markers indicates a sample is positive for metabolic resistance, similar to what is
currently performed in cancer diagnostics [94,95]. Such a diagnostic panel has already been shown for
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weeds, with different sets of transcriptional markers for cytochrome P450s and other NTSR genes able
to differentiate metabolic resistant and susceptible Lolium field populations collected in France [96,97].

We propose a system to classify metabolic resistance genes, such as cytochrome P450s and GSTs, by
their capacity to metabolize the known herbicide structures. To achieve this will require both discovery
and validation of genes in these gene families utilizing genomics, as well as cloning these genes into
heterologous systems (e.g., yeast, Arabidopsis) to determine their metabolic activity on each herbicide
of interest. Undertaking this objective will require considerable investment and coordination, due to
the high number of cytochrome P450s genes in plants and their sequence and functional divergence
across plant families [98]. Collectively, this information will inform management by shedding light on
cross-resistance patterns due to metabolism, as well as enable testing of compounds in development
and those yet to be discovered for their susceptibility to metabolism by resistant weeds.

6. Summary

The weed omics era is enabling translational research to bridge from basic science to field
applications, by linking systems-scale science to applied science for practitioners. The rise of digital
farming and dense geospatial data will enable prediction tools for the occurrence and spread of herbicide
resistance within fields and across landscapes. This metainformation will improve diagnostics as well
as provide greater insight into the factors driving selection for various resistance mechanisms. Machine
learning will lead to algorithms to select the best options from chemical and non-chemical control
technologies [99]. Weed omics will contribute to better define these prediction tools and associated
algorithms. These benefits of weed omics will be more challenging to realize for farms not utilizing the
advanced data science approaches necessary for implementation of digital farming.

While there are substantial challenges today to apply omics to weed science, the coming years
will see development of new approaches to help overcome these challenges. As the increase in data
acquisition continues to coincide with the development of new statistical approaches to systems biology,
what seems like insurmountable obstacles now may soon be trivial issues. Whole genome sequencing
projects have evolved from large-scale international efforts to routine tasks often undertaken by an
individual lab. For example, obtaining a high quality reference genome of a heterozygous plant would
not have been possible only a decade ago, and now the International Weed Genomes Consortium has
pledged to generate 10 in only a few years [6], in addition to several key species recently completed
outside this collaboration [7,12].
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