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ABSTRACT

Objective: Predicting patient outcomes using healthcare/genomics data is an increasingly popular/important

area. However, some diseases are rare and require data from multiple institutions to construct generalizable

models. To address institutional data protection policies, many distributed methods keep the data locally but

rely on a central server for coordination, which introduces risks such as a single point of failure. We focus on

providing an alternative based on a decentralized approach. We introduce the idea using blockchain technology

for this purpose, with a brief description of its own potential advantages/disadvantages.

Materials and Methods: We explain how our proposed EXpectation Propagation LOgistic REgRession on Per-

missioned blockCHAIN (ExplorerChain) can achieve the same results when compared to a distributed model

that uses a central server on 3 healthcare/genomic datasets, and what trade-offs need to be considered when

using centralized/decentralized methods. We explain how the use of blockchain technology can help decrease

some of the problems encountered in decentralized methods.

Results: We showed that the discrimination power of ExplorerChain can be statistically similar to its counterpart

central server-based algorithm. While ExplorerChain inherited some benefits of blockchain, it had a small in-

creased running time.

Discussion: ExplorerChain has the same prerequisites as a distributed model with a centralized server for coor-

dination. In a manner similar to secure multi-party computation strategies, it assumes that participating institu-

tions are honest, but “curious.”

Conclusion: When evaluated on relatively small datasets, results suggest that ExplorerChain, which combines

artificial intelligence and blockchain technologies, performs as well as a central server-based method, and may

avoid some risks at the cost of efficiency.

Key words: blockchain distributed ledger technology, privacy-preserving predictive modeling, online machine learning, clinical

information systems, decision support systems
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INTRODUCTION

Predictive modeling and cross-institutional

collaboration
Applying machine learning methods to predict patient outcomes us-

ing data sources such as electronic health records and genomics data

or healthcare predictive modeling, is an increasingly popular and im-

portant area and can facilitate research studies and advance quality

improvement initiatives. Specifically, such modeling methods based

on artificial intelligence (eg, logistic regression or deep learning algo-

rithms) can help generate scientific evidence for comparative effec-

tiveness research,1 accelerate biomedical discoveries,2 and improve

patient care.3 For example, a medical center may use predictive ana-

lytics to identify and take measures that can potentially prevent 30-

day readmissions, thus improving care while avoiding penalties

from regulatory agencies.4,5 Although the concept of predictive

modeling is appealing, some diseases and conditions are rare and

therefore require data from multiple institutions. To obtain enough

data for model construction, sharing healthcare/genomic data across

institutions is an intuitive solution to improving models. While a sin-

gle institution may only have few patient records, taken together, a

set of institutions may provide adequate numbers for a generalizable

model. Aggregating all cases in a registry or data coordinating center

database has been a common strategy to manage these databases.

However, this leads to a single point of failure or breach, inaccessi-

bility of data, or improper data disclosure that may place sensitive

protected health information at risk, respectively. Once data are

passed on to other entities, it is difficult to ascertain the chain of cus-

tody, leading to potential misuse.

Distributed predictive modeling and potential

blockchain solution
As a result, combining cross-institution data into a single repository

for model learning has been challenged as the ideal model to protect

privacy of individuals6,7 and/or institutions8,9 while ensuring that no

institution has full responsibility for all the data. Multiple algo-

rithms have been proposed to conduct predictive modeling in a dis-

tributed way10–18 without the need to aggregate data centrally. That

is, by disseminating machine learning models instead of transferring

observation-level patient data, the privacy of individuals can be fur-

ther protected.10–18 However, many of these privacy-preserving

modeling algorithms still need a central server to intermediate the

process of modeling and combine the global model.10–18 Such an ar-

chitecture carries its own risks (Figure 1a), such as failure to build,

tune, or evaluate a model in case the central coordinating server is

down, and the potential for this central coordinating server to try to

breach the privacy of individuals or institutions by examining aggre-

gate statistics.

To address these challenges, a plausible solution is to adapt dis-

tributed databases to build and evaluate predictive models in a peer-

to-peer architecture. These peer-to-peer distributed models cannot

(a) (b)

Figure 1. The network topology for a 4-site (s1, s2, s3 and s4) setting, with each site holding protected health information data (d1, d2, d3 and d4). (a): Centralized

network topology adopted by state-of-the-art learning methods. Such an architecture carries several risks: (R1) the sites may not be allowed to transmit data out-

side specific computer environments due to their institutional policies,19 (R2) the data being disseminated and the transfer records could be altered without a

clear way to determine immutability,19–21 (R3) trained models could also be tampered within the central server without being noticed by other participating sites

and thus undermines provenance,19,22 (R4) the server represents a single point of failure,23,24 (R5) additional security to protect data is not offered,22 (R6) the cli-

ent-server architecture may present synchronization problems,19,25–27 and (R7) the sites cannot join/leave the network at any time.28 Furthermore, long-term sus-

tainability of the whole network becomes dependent on the institution that serves as the central coordinating node (R8). Typically, once a coordinating institution

is chosen, the network architecture is built around the coordinating center, with nodes serving as data providers that are unable to assume the role when needed.

(b): Decentralized network topology (blockchain) adopted by ExplorerChain. Five desirable features22 make blockchain suitable to mitigate the problems faced by

centralized architectures: (R1) Blockchain is, by design, decentralized; the verification of transactions is achieved by majority voting.22,29 Each institution can con-

trol the use of computational resources. (R2) A blockchain provides an immutable audit trail.19–21 That is, changing the data or records is very difficult.22,29 (R3)

The traceable origins certify data provenance.19,22 In our case, each trained model is recorded in a collaborative and distributed ledger, which cannot be updated

silently by any of the sites without being noticed. (R4) The peer-to-peer architecture of blockchain ensures that there is no risk of single point of failure,23,24 and

thus improves security and robustness. Also, by removing the dependency on a central node, blockchain increases the availability of the models at all sites at all

times.30 (R5) The enhanced security/privacy features of blockchain further protect data and models. Additionally, (R6) The blockchain mechanism can remove

synchronization conflicts.23,25,31,32 (R7) Each site can join/leave the network freely without imposing overhead on a central server or disrupting the machine learn-

ing process.23,24,28 Finally, network long-term sustainability (R8) is increased because its architecture is fully transparent and each participating site can collabo-

rate with low operation/maintenance costs.
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work with all the data at once. However, partial batch training (ie,

batch training at each site) is possible, followed by an online or

“transfer learning” strategy in which the next site or peer gets a par-

tially trained model and improves it using its own data. In this se-

quential peer-to-peer process, it is important that no site constitutes

a single point of failure and that all sites can easily verify how the

model is evolving.

One of the main problems with online machine learning models

(centralized or distributed) is the potential for a limited number of

initial inputs force gradient descent methods to be trapped into lim-

ited solutions.33 Although the proposed strategy does not eliminate

or necessarily mitigate this problem per se, enabling the use of data

from multiple sites for model training in a way that does not central-

ize the data allows more institutions to participate, so the model

parameters can evolve in different directions. Also, a major chal-

lenge with distributed databases that rely on a central coordinating

server is the vulnerability to a single point of failure and potential

tampering with logs at the central server side.16,17,22 On the other

hand, for distributed databases that rely on a peer-to-peer network,

one of the main problems relates to the coordination of access.34 If

the path from peer-to-peer is easily traceable and broadcasted to the

whole network, this problem is solved. Transparency of usage in the

form of an immutable ledger that can be easily verified by the whole

network is therefore a desirable feature. When asking queries and

building machine learning models using sensitive data from several

institutions, maintaining a robust immutable ledger of access is criti-

cal. Additionally, resilience to failure at any node and disintermedia-

tion (ie, lack of a central authority) are desirable in clinical data

research networks. Blockchain technology19–21,23,25,28,29,31,32,35,36

has many of these desirable features, in addition to being developed

by a community of developers as opposed to being a custom-

tailored software solution that is hard to document and maintain.

We propose to treat each institution in a network as a node in a

blockchain network in a way that allows batch training at a site, but

online training across sites, in a sequential fashion that is resilient to

node failure and immutably recorded. We thus take advantage of

known characteristics of blockchain technology (resilience to single

point of failure, ability to create an immutable ledger, transparency

of use, and development by the community) to build a multi-center

predictive model.

Blockchain is a decentralized peer-to-peer technology that has

evolved significantly since the development of Bitcoin blockchain,

which is the underlying technology of Bitcoin crypto currency.29

Blockchain nodes (ie, computers running the blockchain software)

compose a distributed peer-to-peer network (Figure 1b) that follow

an agreed-upon time stamp and consensus protocol to create a chain

of transaction blocks (ie, “blockchain”). Such a blockchain allows

nodes to collaboratively generate a consensus ledger without the

need of a central intermediary.22,29 The chain can store arbitrary

data22 in either space reserved for the “metadata” space of the trans-

actions19,28,37–40 or as part of “smart properties” managed by

“smart contracts.”41–45 A blockchain network can be either permis-

sionless (ie, a public network in which any node can participate,

such as Bitcoin) or permissioned (ie, a private network in which

only authorized nodes can participate, such as most networks that

focus on healthcare).22,46

Advantages and disadvantages of blockchain-based

modeling
A recent review paper22 summarized the key benefits and potential

challenges of blockchain technology and compared blockchain to tra-

ditional distributed database management systems. The use of one of

the main blockchain platforms ensures that code is maintained, en-

hanced and documented by the community at large, and not limited

to the site that created the infrastructure’s code.46 Among many other

decentralized systems, including less-connected systems based on gos-

sip algorithms,47–49 blockchain brings benefits and addresses many

current challenges in distributed networks. On the other hand, some

challenges related to how certain types of cryptography can be incor-

porated, scalability, and threat of a 51% attack still exist.16,17,22 Also,

there might be potential network security concerns such as leaving

particular Internet ports open to allow remote blockchain access, al-

though in permissioned networks this can be protected. A robust

method to integrate this distributed ledger technology with the distrib-

uted learning algorithms is yet to be investigated in depth. Several

methods have been proposed to solve the distributed learning problem

with or without blockchain,10–18 as shown in Table 1. GLORE,10 EX-

PLORER,11 WebGLORE12 and SMAC-GLORE13 are based on a

client-server architecture, which possess potential risks such as single

point of failure, while ExplorerChain is based on peer-to-peer archi-

tecture without such weaknesses. GloreChain14 and Hierarchical-

Chain15 are based on blockchain, however, it is not resilient in

situations in which a site leaves or joins the network. ModelChain16,17

was blockchain-based and proposed online learning, but it was not ac-

tually evaluated in practice. Finally, LearningChain18 is an online

learning method on blockchain, but it focuses on improving privacy

(ie, adopting differential privacy scheme) and security (ie, defending

against the Byzantine attack) on stochastic gradient descent algorithm,

and not on healthcare institutions’ needs for immutable ledgers, and

transparency of use.

OBJECTIVE

We developed and evaluated a decentralized blockchain-based

predictive modeling method, EXpectation Propagation LOgistic

Table 1. Comparison of the state-of-the-art distributed learning methods

Method Author Reference Architecture Learning Focus Status

GLORE Wu et al 10 Client-Server Batch Healthcare Evaluated

EXPLORER Wang et al 11 Client-Server Online Healthcare Evaluated

WebGLORE Jiang et al 12 Client-Server Batch Healthcare Evaluated

SMAC-GLORE Shi et al 13 Client-Server Batch Healthcare Evaluated

GloreChain Kuo et al 14 Peer-to-Peer Batch Healthcare Evaluated

HierarchicalChain Kuo et al 15 Peer-to-Peer Batch Healthcare Evaluated

ModelChain Kuo et al 16,17 Peer-to-Peer Online Healthcare Proposed

LearningChain Chen et al 18 Peer-to-Peer Online Privacy/Security Evaluated

ExplorerChain Kuo et al – Peer-to-Peer Online Healthcare Evaluated
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REgRession on Permissioned BlockCHAIN (ExplorerChain), to sup-

port cross-institution healthcare/genomic research and quality

improvements initiatives. This approach should, theoretically, re-

move certain risks introduced by the client-server architecture na-

ture of distributed networks that rely on a central node. We aimed

at empirically showing results of such a design on healthcare and ge-

nomic datasets.

MATERIALS AND METHODS

ExplorerChain
In developing the consensus protocols for predictive modeling block-

chain networks, we adopt online distributed learning11,50,51 to train

predictive models on the decentralized network architecture. Our

working hypothesis was that online algorithms on a distributed

blockchain-based network that does not rely on a coordinating node

can provide better security/robustness than models that use a central

node, without sacrificing predictive power.10,11,50–52 We chose the

online logistic regression algorithm of EXPLORER11 as our predic-

tive modeling method. In ExplorerChain, we utilize the metadata

space of the transactions to disseminate the online machine learning

models and integrate the blockchain network with distributed online

learning (Figure 2).16,17 Intuitively, permissioned/private blockchain

platforms22,46 are feasible for ExplorerChain, because the sites need

to be permitted to participate in the predictive model learning pro-

cess. We selected MultiChain28,39 as the underlying permissioned

blockchain platform based on our prior review.46

Datasets
In our experiments, 3 clinical/genomic datasets were utilized to test

ExplorerChain. The first dataset (“Edin”) is the Edinburg Myocar-

dial Infarction (MI) data,53 which contains predictor features and

one binary MI outcome (ie, presence of disease). The clinical ques-

tion pursued by this data set is how accurate a prediction model for

MI can be when only signs, symptoms and certain electrocardio-

graphic data are available at presentation.53 The second dataset

(“CA”) has cancer biomarkers (ie, CA-19 and CA-125) and a binary

cancer outcome (ie, presence of cancer).54 The clinical question at

hand is whether combining the level values of the 2 biomarkers

helps identify pancreatic cancer. The third dataset, “THA,” was

used to predict hospital length of stay following unilateral primary

total hip arthroplasty (THA) surgery. Following the practice used in

other anesthesia publications, the outcome to be predicted was a di-

chotomized prolonged hospital length-of-stay (LOS) outcome (ie,

whether the actual LOS is greater than the expected LOS (3 days)

for THA at our institution).55,56 The Institutional Review Board at

University of California San Diego (UCSD) approved this study with

Project Number 171344X on February 9, 2018, and the informed

consent requirement was exempted by our institution’s Human Re-

search Protections Program because the dataset was defined as

Health Insurance Portability and Accountability Act (HIPAA)

“deidentified.”57–64 The statistics/features of the test datasets are

summarized in Table 2. Given the age and limited size of the Edin

and CA datasets, they are presented for illustration purposes only.

The THA dataset was recently used in a quality improvement proj-

ect at an academic medical center.

Experiment settings
We aimed at determining whether ExplorerChain could reach equiv-

alent predictive performance as state-of-the-art central server-based

learning approaches, while taking advantage of some key benefits of

blockchain technology. Specifically, we compared this approach

with a central server-based method using an online machine learning

method that we adapted for ExplorerChain. We selected the central-

ized version of EXPLORER11 as our baseline comparison method,

and tested ExplorerChain on the iDASH private HIPAA-compliant

computing environment network.65,66 Each dataset was evenly and

randomly split into 2-, 4-, and 8-site combinations. Then, for each

site, a training dataset was generated by randomly selecting 80% of

records, while the test dataset was created using the remaining 20%.

We adopted the area under the receiver operating characteristic

curve (AUC)67,68 to evaluate whether the discrimination perfor-

mance of ExplorerChain was comparable to that of EXPLORER.

Figure 2. A simplified example of ExplorerChain. Only the aggregated data (ie, the machine learning model) and the meta information are stored on-chain, while

the protected health information (PHI, the observation-level patient data) are stored off-chain. This design ensures that the institutions can share information to

improve the predictive model without transmitting PHI. It should be noted that the amount of transactions is set to be zero, indicating that the blockchain serves

purely as a nonfinancial distributed ledger.
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The averaged AUCtest among all N sites was used as the result for

one trial. We repeated the above dataset splitting process (including

both multiple-site and training/test splitting) over 30 trials. Also, we

evaluated the Pearson Correlation Coefficient (PCC) between the

AUC results of the 2 methods, to verify if their results were linearly

correlated (the closer the PCC is to 1, the higher positive linear cor-

relation between 2 methods). Furthermore, we used 2-sample t-test

of AUCs between 2 methods with alpha ¼ 0.05, and obtained a

mean difference (delta) between the AUC results of the 2 methods

that was not statistically significant (ie, P value > .05). We also

computed iterations of ExplorerChain and compared the execution

times with those of EXPLORER.

RESULTS

Correctness
The predictive performance results are shown in Table 3. The differ-

ences of the means (� 0.016) and the standard deviations (� 0.011)

of the AUC values were relatively small. The PCC values (> 0.7) in-

dicated high linear correlation between 2 methods. The P values for

the 2-sample t-tests were above .05 for all datasets, demonstrating

that the discrimination performance of ExplorerChain was very sim-

ilar to that of EXPLORER (mean AUC difference � 0.002). Explor-

erChain approximates EXPLORER, and thus the latter may

outperform the former; however, the difference was small and not

statistically significant. Also, for both methods, the mean AUC val-

ues of the Edin data set are the highest and the ones of the THA are

the lowest among all 3 datasets. The standard deviations of AUC of

the CA data set are the highest and the ones of the Edin data set are

the lowest. This pattern appears repeatedly for simulations involving

N¼2, 4, and 8 sites, suggesting that the performance of Explorer-

Chain is consistent with that of EXPLORER.

Iteration
The iteration results (ie, rate of convergence) are shown in Table 4

and Figure 3. In general, ExplorerChain required a low number of

iterations (2 or 3), indicating a fast rate of convergence. This held

for N¼2, 4, 8 sites on the Edin and the CA data sets, as well as for

N¼2 for the THA. For N¼4 and 8 sites on the THA, higher mean

iterations were required (8 or 9). For the THA and N¼8, although

the maximum number of iterations (10) was reached in almost every

one of the 30 trials (Figure 3), the AUC was still comparable to that

of EXPLORER (PCC ¼ 0.909 and P value of the 2-sample t-test ¼
.070 in Table 3), indicating that an increase in the limit of iterations

may not be necessary. These speedy convergence results are consis-

tent with EXPLORER (ie, < 10 iterations).11

Time
The time results are also shown in Table 4. Compared to EX-

PLORER, our proposed ExplorerChain required significantly longer

total time because of the synchronization time required to collect

errors from all other sites, and also longer total times as the number

Table 2. Statistics and features of the datasets tested in our experiments. The class distribution (ie, the percentage of the positive/negative

classes) is also included. The numerical covariates are labeled with an asterisk symbol (“*”), while the categorical ones are converted into

binary through dummy coding. The values for the myocardial infarction and cancer biomarker datasets are adapted from11

Dataset

Myocardial

Infarction

(Edin)

Cancer

Biomarker

(CA)

Length of Hospitalization

(THA)

# of Covariates 9 2 34

# of Samples 1,253 141 960

Class Distribution 0.219 / 0.781 0.638 / 0.362 0.278 / 0.722

Outcome Presence of Disease Presence of Cancer Hospital Length of Stay is greater than 3 days

Covariates Pain in Right Arm CA-19* Male Sex SA - Posterior

Nausea CA-125* Age � 65 years old SA - Anterolateral

Hypo Perfusion – Preoperative METs < 4 SA - Anterior

ST Elevation – General Anesthesia (versus

Neuraxial Anesthesia)

CM - Chronic Kidney Disease

New Q Waves – Non-English Speaker CM - Chronic Obstructive

Pulmonary Disease

ST Depression – OG - Mild CM - Congestive Heart Failure

T Wave Inversion – OG - Moderate CM - Coronary Artery Disease

Sweating – OG - Severe CM - Hypertension

Pain in Left Arm – OG - Avascular Necrosis CM - Diabetes Mellitus

– – CHD - No osteoarthritis CM - Obstructive Sleep Apnea

– – CHD - Mild osteoarthritis CM - Dialysis

– – CHD - Moderate osteoarthritis CM - Psychiatric history (depression,

anxiety, or bipolar disease)

– – CHD - Severe osteoarthritis CM - Active Smoker

– – CHD - Previous Surgery (ie, hip

replacement)

CM - Asthma

– – CHD - Avascular Necrosis CM - Thrombocytopenia (platelets <

150 000/uL)

– – Obesity (BMI > 30kg/m2) CM - Anemia

– – Preoperative Opioid Use CM - Dementia

Abbreviations: BMI, body mass index; CHD, Contralateral Hip Description; CM, comorbidities; METS, metabolic equivalents; OG, osteoarthritis grade (oper-

ative side); SA, surgical approach; THA, total hip arthroplasty.
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of sites increased. Such a synchronization time is related to hyper-

parameters of ExplorerChain and blockchain/network speed. Re-

garding running time, ExplorerChain was slower than EXPLORER

because of the additional waiting time to find the consensus model.

On the other hand, the per-iteration time results showed that, in

each iteration, the running time of ExplorerChain was similar to

that of EXPLORER. ExplorerChain required about 60 seconds of

synchronization time on average. Specifically, the 30 seconds of

waiting time period contributed to about half of the 60-second aver-

age synchronization time per iteration. The results of the per-

iteration total time show variations (30–70 seconds) among the 3

datasets, while the results of the per-iteration running time remained

stable (around 3 seconds).

DISCUSSION

Findings
Our study suggests that the proposed blockchain-based Explorer-

Chain method can learn cross-institution predictive models without

transferring observation-level patient data and without relying on a

central coordination node. Because of the distributed architecture

that is not based on a central node, this approach may avoid con-

cerns encountered in architectures that rely on a central node. The

discrimination of the model learned using ExplorerChain was com-

parable to that of EXPLORER, a central server-based online learn-

ing method. ExplorerChain added a layer of protection, provided by

the blockchain technology, that helped improve the security/robust-

ness of the learning process. The cost for such improvement was

paid mainly in terms of synchronization time, since, without a cen-

tral server, it took a larger number of iterations for all sites to find a

final consensus model (a similar trade-off noted for data-

bases19,30,69,70). As the number of sites increased, the number of iter-

ations and time grew linearly. We used relatively small but real-

world data for our experiments. The THA data set is contemporary

and motivated by medical center needs that address quality of care

from the clinical and administrative perspectives. Although surgical

outcomes registries such as American Joint Replacement Registry

(AJRR)71 are helpful to develop predictive models for orthopedic

surgery outcomes, they suffer from the following problems: registry

fees, required data entry and maintenance, and institutional data

privacy restrictions which may limit the inter-institution data

Table 3. The experiment results for the myocardial infarction (Edin), the cancer biomarker (CA), and the length of hospitalization (THA) data-

sets. The evaluation metric is the averaged full area under the receiver operating characteristic curve (AUC) among N sites, for 30 trials. The

Pearson Correlation Coefficient (PCC) was computed to evaluate the linear correlation between 2 methods. Finally, the alpha in the 2-sam-

ple t-test was 0.05, and the p-values larger than 0.05 (shown in bold italic) indicate no statistically significant difference between the AUC

results of EXPLORER and ExplorerChain

EXPLORER ExplorerChain Correlation Two-Sample t-Test

Dataset N Mean AUC Standard Deviation Mean AUC Standard Deviation PCC Delta Test Statistics P-value

Edin 2 0.965 0.013 0.965 0.013 0.999 0.000 �1.559 0.130

4 0.962 0.010 0.960 0.011 0.867 0.000 1.868 0.072

8 0.957 0.014 0.954 0.015 0.906 0.002 1.371 0.181

CA 2 0.893 0.054 0.891 0.055 0.977 0.000 1.106 0.278

4 0.862 0.075 0.853 0.078 0.932 0.000 1.694 0.101

8 0.892 0.060 0.876 0.071 0.746 0.000 1.811 0.080

THA 2 0.734 0.035 0.733 0.036 0.995 0.000 1.622 0.116

4 0.738 0.047 0.735 0.047 0.975 0.000 1.529 0.137

8 0.718 0.040 0.712 0.040 0.909 0.000 1.878 0.070

Abbreviations: AUC, area under the receiver operating characteristic curve; CA, cancer biomarker; PCC, Pearson correlation coefficient; THA, total hip arthro-

plasty.

Table 4. Number of iterations and time results of ExplorerChain among N sites for 30 trials of the 3 datasets. All time measurements are av-

eraged over N sites, and the total time includes both running time and synchronization time. For ExplorerChain, the per-iteration time is

computed by dividing the time by the mean number of iterations, and the additional pausing time (240 seconds per trial) between trials for

result collection was deducted

# of Iterations Time (Seconds)

ExplorerChain EXPLORER ExplorerChain

Dataset N Mean Standard Deviation Total Running Total Running Total/ Iteration Running/ Iteration

Edin 2 2.433 1.455 2.477 2.426 144.519 7.609 59.391 3.127

4 3.033 1.542 2.451 2.399 165.890 9.939 54.689 3.277

8 3.633 2.157 2.432 2.383 184.086 12.145 50.666 3.343

CA 2 2.000 0.000 2.000 1.945 129.618 6.125 64.809 3.062

4 2.700 1.088 2.011 1.949 154.175 8.829 57.102 3.270

8 3.233 1.547 1.996 1.947 172.654 10.938 53.398 3.383

THA 2 2.533 1.814 2.399 2.348 147.259 8.045 58.128 3.176

4 8.000 2.533 2.366 2.315 317.266 23.865 39.658 2.983

8 9.833 0.913 2.364 2.314 365.355 32.713 37.155 3.327
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comparisons. With machine learning and block chain technology,

there exists the possibility to process sensitive data, such as that re-

lated to complications and cost, without human intervention in a

decentralized, more private fashion.

Potential clinical applications
Gabriel et al56 showed that it is possible to build accurate models

for patient LOS after total hip arthroplasty. Their model was based

on a single institution and performed well, but if more institutions

could participate in a way that preserves individual and institutional

privacy, the model would be more robust. This is particularly valu-

able in the era of value-based care where the focus is on incentivizing

higher quality care at lower costs. Given the sensitive nature of ad-

ministrative processes and the fact that many institutions are com-

peting with each other, institutions may want to keep their data

hidden from other institutions and insurance companies, while still

contributing to the development of a better predictive model. The

method presented here enables this participation, while preserving

institutional privacy, using a novel strategy based on blockchain

technology. Future applications of this technology may be seen in

development of a risk-stratification model for reimbursement. At

present, in the bundled care model, there is a single reimbursement

fee for all lower extremity arthroplasties, for the entire episode of

care, regardless of patient factors that can affect complication rates.

This has led to the practice of “cherry-picking” younger, healthy

patients who are less likely to have complications. Such a decentral-

ized model with protection of institutional privacy through the

blockchain technology presented could encourage participation

from a diverse group of practices to build an accurate model. The

results of the THA data set show that the differences in AUC from

the blockchain-based model and a benchmark centralized model do

not have clinical significance: the models’ performances are essen-

tially the same (AUC difference of 1%–2%).

Limitations
Two major concerns for the heavy use of blockchain includes scal-

ability of the approach and acceptability by users. The scalability is-

sue consists of several aspects, such as (S1) the number of users, (S2)

the number of records in the datasets, and (S3) the number of the

covariates in the datasets. For (S1), we expect a small number of

users in most of the research networks, and therefore the impact to

the blockchain network should be negligible. For (S2), the increment

of the number of the records will not affect the size of transactions.

This is because the size of the transaction is only related to the num-

ber of covariates. Additionally, the blockchain transaction speed

will still be fast enough. Thus, this issue may not be a serious barrier

for a well-designed blockchain network. For (S3), the transaction

metadata size for the largest dataset (THA with 34 covariates) was

small when compared to the default upper limit transaction meta-

data size for MultiChain.

Regarding the acceptability by users, one feasible solution is to

start from a small number of pilot institutions within a system, and

build the blockchain network in parallel with current operating plat-

forms. Users should not be concerned about the technology underly-

ing the network as long as it is reliable. Misconceptions about

blockchain technology need to be overcome at the design, develop-

ment, and dissemination levels. Given the hype surrounding block-

chain and some unwarranted claims that it is an ideal solution for

various problems, it is not surprising that the healthcare sector is

exercising caution before adopting the technology. At the same

time, it would be unwise not to consider the technology for situa-

tions in which its built-in advantages overcome its limitations.

Figure 3. Number of iterations of ExplorerChain on 3 datasets and 2-, 4- and 8-site settings for each of the 30 trials. The number of iterations increases with the

number of sites, with an upper limit to the maximum number of required iterations (10 in our experiment) to reach consensus. However, the relatively large stan-

dard deviation, especially when the number of sites is small (eg, N¼2), suggests that the number of required iterations is highly dependent on the dataset.
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We presented here a specific situation in which blockchain tech-

nology features such as disintermediation, immutable logging capa-

bility, resilience to node failure, and transparency of transactions

match the needs of machine learning models being built across

healthcare and research institutions. We also presented the practical

drawbacks in terms of additional time for synchronization and com-

mented on potential vulnerabilities. We anticipate that this informa-

tion, when coupled with direct comparisons of platforms and use

cases that are now emerging in the healthcare industry46 will help

decision-makers choose among various technologies available for

distributed machine learning.

CONCLUSION

ExplorerChain integrates 2 important technologies, artificial intelli-

gence (online machine learning) and a distributed ledger (block-

chain), without a central authority, to learn a predictive model

across institutions in a distributed architecture (ie, without the need

for sharing the patient-level data nor the need for a central coordi-

nating node). We discussed the advantages/disadvantages of adopt-

ing blockchain, and showed empirically on 3 datasets that

ExplorerChain produces results that are equivalent to the level of

the state-of-the-art central server-based method. Additionally,

through a traceable and immutable “path,” and as a peer-to-peer

blockchain network without a central intermediary, ExplorerChain

can improve security and robustness. These are useful for healthcare

and genomics applications, as bottlenecks associated with local serv-

ers and network downtimes are eliminated. While ExplorerChain

requires more iterations and time to reach a consensus without a

central intermediary, the extra time may prove irrelevant for the de-

velopment of machine learning models. ExplorerChain’s promising

results warrant further evaluation and refinement, while suggesting

that it is feasible to adopt blockchain-based artificial intelligence

methods to build decentralized learning models across multiple sites.

There are still mixed opinions and profound misunderstandings

with corresponding questions about blockchain technology and its

potential applications in healthcare/genomics. Examples, to name a

few, include whether blockchain technology will prove to be practi-

cal and useful for healthcare; whether blockchain will only become

practical as networks get faster and computer speeds increase; and

whether the turnkey solution of blockchain will become available to

all biomedical informatics researchers. ExplorerChain, as an early

stage feasibility study, may serve as a step towards answering these

open yet critical questions about the future of blockchain technology

for applications in healthcare and genomics.
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