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Abstract

Why do people often exhaust unregulated common (shared) natural resources but manage to preserve similar private resources?
To answer this question, in this study we combine a neurobiological, economic and cognitive modeling approach. Using functional
magnetic resonance imaging on 50 participants, we show that a sharp decrease of common and private resources is associated with
deactivation of the ventral striatum, a brain region involved in the valuation of outcomes. Across individuals, when facing a com-
mon resource, ventral striatal activity is anticorrelated with resource preservation (less harvesting), whereas with private resources
the opposite pattern is observed. This indicates that neural value signals distinctly modulate behavior in response to the depletion
of common vs private resources. Computational modeling suggested that overharvesting of common resources was facilitated by the
modulatory effect of social comparison on value signals. These results provide an explanation of people’s tendency to over-exploit
unregulated common natural resources.
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The sustainability of environmental resources is of worldwide
concern in the twenty-first century. Currently, the world faces
a rapid decline of many natural resources, such as fish stocks,
clean air and primeval forests (Ostrom, 2009). The collapse of
the Atlantic northwest cod fisheries in 1992 (Myers et al., 1997)
lead to the endangering of the Atlantic cod and the devasta-
tion of fishing communities in Newfoundland; its fisheries have
not recovered to this day despite a moratorium on fishing. This
is just one of the many instances of overexploitation of natural
resources plaguing the environment (Rosser and Mainka, 2002).
Thus, understanding how modern human cooperative behavior
forms in shared resource systems such as fishing grounds (Klein
et al., 2017), water and timber in the context of social hetero-
geneity (Sugiarto et al., 2017) is an issue of vital importance. In
the present article, we explore the neurobiological underpinnings
of shared resource overexploitation. We combine neurobiological,
economic and computational approaches to explain why humans
treat a resource differently in a competitive social environment as
compared to a private environment.

Economic theory predicts the overexploitation of common
resources by self-interested people. This claim is illustrated by
the ‘tragedy of the commons’ (Hardin, 1968): a dilemma in
which multiple individuals, acting independently and rationally,

will ultimately deplete a shared, limited resource even if it is
against their long-term interest. For example, a group of peo-
ple sharing fishing grounds often realize that they greatly benefit
from increasing their own catch. Yet if every person focuses too
much on his or her own profit the fish stock becomes eventually
depleted (Osten et al., 2017). This social dilemma is commonly
conceptualized as a common-pool resource (CPR) dilemma. In such
a situation a natural or urban system generates benefits that
can be consumed by individuals who cannot be excluded from
consumption (Ostrom, 1990). According to economic theory, non-
excludable goods that anyone can enter and/or harvest are likely
to be overharvested and destroyed. However, behavioral eco-
nomics also gives many examples in which people behave fairly
and cooperatively contrary to the standard self-interest model
(Fehr and Schmidt, 1999): under some conditions, in particular
in two-person interactions, people often show high rates of coop-
eration (Fehr and Gachter, 2000). Why, then, is it so difficult even
for cooperative people to overlook short-term benefits and sustain
CPRs for larger, long-term benefits?

It has been shown that overharvesting is particularly preva-
lent in social groups containing a substantial number of ‘free
riders’, that is, people who take benefits without paying
any costs (Camerer, 2003). One explanation for the tendency
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to overharvest CPRs refers to people’s social preference for
equity and reciprocal cooperation (Fehr and Schmidt, 1999;
Falk and Fischbacher, 2006): If others are cooperative, then people
act cooperatively, but if others free ride, people correspondingly
retaliate. Accordingly, in a group that contains few free riders,
the average consumption of the CPR will be higher than the con-
sumption of its cooperative members. If cooperative members
perceive that returns from the common resource are meagerer
than expected (Brandt et al., 2012), or even if they behave recip-
rocally by choosing the average consumption rate for the future,
an upward spiral of consumption is set off and CPRs are overex-
ploited (Fehr and Fischbacher, 2003). Thus, overexploitation can
result even for cooperative people who monitor their own and
their conspecifics’ behavior and act reciprocally.

Here we hypothesize that the brain dopaminergic system, a
set of brain areas involved in reward and performance monitor-
ing, not only continuously monitors our own outcomes (Osten
et al., 2017) during CPR interactions but also monitors the out-
comes of others. The dopaminergic system has been previously
implicated in social comparison (Fliessbach et al., 2007; Dvash et al.,
2010; Bault et al., 2011) —the spontaneous tendency to com-
pare one’s own behavior with that of others (Festinger, 1954).
We suggest that when dealing with CPRs, the dopaminergic
system continually compares personal outcomes with the out-
comes of others. In case of noticing free-riding behavior that
results in inequality, the dopaminergic systemmight facilitate an
overharvesting response. When dealing with private resources,
however, the dopaminergic system would monitor deviations
from outcomes that maintain long-term resource sustainabil-
ity. More specifically, we hypothesize that individual overex-
ploitation tendencies have to be depicted in the ventral striatum
activity.

A recent meta-analysis has identified consistent involvement
of the ventral striatum in social comparison (Luo et al., 2018).
Furthermore, neuroimaging studies suggest that the ventral stria-
tum processes social rewards (Delgado, 2007; Izuma et al., 2008,
2010; Meshi et al., 2013), on top of its established crucial role
in general reward processing. Importantly, it has been hypoth-
esized that when people detect differences between self and
others, social (norm) prediction errors might be detected in the
ventral striatum (Klucharev et al., 2009; Luo et al., 2018; see
also Montague and Lohrenz, 2007, for the concept of ‘norm pre-
diction errors’). Thus, by analyzing neural activity in the stria-
tum we can investigate why people adopt suboptimal patterns
in the consumption of CPR because (1) its response to learning
signals under social and nonsocial contexts will help to eluci-
date the way social comparisons affect the encoding of reward
and (2) it provides a means to validate computational models of
learning.

To find a computational explanation for the increasing CPR
depletion, we developed a computational model that posits a
reward prediction error (RPE) that compares a person’s own out-
come with the harvesting behavior of conspecifics. We hypothe-
size that the ventral striatum is associated with this RPE signal.
The suggestedmodel of social comparison follows the classic idea
of people’s social preference for equity (Fehr and Schmidt, 1999;
Falk and Fischbacher, 2006), with the difference that we assume
that receiving more than the competitors induces social prefer-
ences for equity (see e.g. Fliessbach et al., 2007, for a similar
concept). Thus, we hypothesize that social comparison is encoded
in the neural learning signal that facilitates overharvesting of the
common natural resources.

Materials and methods
Participants
After informed consent, 50 healthy, right-handed students partic-
ipated in the neuroimaging experiment (aged 18–32 years, mean
23.4 years, 26 females). None of the participants reported a his-
tory of drug abuse, head trauma, neurological or psychiatric
illness. Participants were randomly assigned to the social or pri-
vate (nonsocial) condition (N=24 for the social and N=26 for
the nonsocial condition). This sample size was chosen to yield an
approximate statistical power of 80% (Murphy and Garavan, 2004;
Friston, 2012) assuming an approximate Cohen’s d effect size
of 0.7 for a conventional functional magnetic resonance imag-
ing (fMRI) analysis, i.e. linear mixed-effects analysis using a 5%
family-wise error rate (FWER) threshold from random field the-
ory (Poldrack et al., 2017). Three participants were rejected from
the fMRI analysis due to headmotion exceeding 3mm; one partic-
ipant was excluded due tomisunderstanding the instructions and
a high error rate (N=22 for the social andN=24 for the nonsocial
condition). The study was approved by the local ethics committee
of the Canton of Basel City, Switzerland.

Task design
Participants had tomanage CPR in the form of fish stock, by imag-
ining that they were fishing by a lake together with two other
fishermen. Their task was to collect as much fish as possible and
each collected fish led to a monetary payoff (0.25 Swiss Francs
per fish). In every trial, participants decided between three pos-
sible net sizes for fishing: one, two or three. Depletion of the
resource (fishing out the lake) was caused by their own behavior
and the behavior of two other anonymous players present in the
room. Participants were informed that although the fish stock in
the lake decreases by fishing, it is also replenished naturally; the
maximum capacity of the lake was 16 fish. At the end of every
trial, the number of fish was multiplied by 1.5 (rounded down)
and shown to the participant. This fish stock was carried over for
the next trial. If the lake was fished out, the session ended auto-
matically. The instructions clearly explained that the number of
fish taken out could increase, sustain or decrease the fish popu-
lation, and that if the total number of fish collected by the three
participants was less than six, the fish population would increase
over the trials; otherwise, the fish population would decrease over
the trials. If the total number of fish collected by the three peo-
ple was six, the fish population would stay constant. A net size of
two fish corresponded to a cooperative/sustainable level of har-
vesting, whereas three represented overharvesting and one led
to replenishment. Participants were told that their pre-recorded
opponents played under the same conditions; in particular, their
opponents were motivated by the same payment stipulation.
The opponents were pre-recorded surrogates from a pilot behav-
ioral study [Supplementary Information (S.I.), section A]. In the
nonsocial condition, the task structure was kept identical, but
the instructions replace the opponents by natural action, i.e. fish
stock decrease was attributed to ‘migration’ (S.I., section E). The
participants of the pilot behavioral studywere not informed about
the follow-up fMRI study, but they gave permission to use their
(anonymized) data in later studies. The experiment started with a
short training session. On average, participants earned 33.3 Swiss
Francs (30 SFR as participation fee and 3.3 SFR as monetary pay-
off). Under the game-theoretic assumption that participants play
rationally (with the sole goal to maximize utility), it can be shown
that chosen net sizes should be always maximal in the social
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condition, and rapidly increase from one to themaximumnet size
by the middle of the session the in the nonsocial condition. How-
ever, players’ behavior strongly deviated from it. This is analyzed
in sections A, B and C of S.I.

To avoid any demand effects and suspicion toward the two dif-
ferent (but structurally identical) conditions, we implemented a
between-subject design: participants were randomly assigned to
either a social or a nonsocial condition. Importantly, this was
done because in a within-subject design the risk of the partici-
pant realizing that they go through exactly the same scenario,
but received a different ‘story’ would be too high. Previous studies
(e.g. Levin et al., 1987) indicate that the initial framing setup car-
ries over despite subsequent frame changes. Participants played
16 sessions in total (maximum 8 trials per session). In every trial,
participants decided between three possible net sizes for fishing
with one, two or three fish, respectively (Figure 1). Their task was
to collect as many fish as possible, and each collected fish led
to a monetary payoff (0.25 Swiss francs per fish). In the social
version of the experiment (social condition), two other partici-
pants pre-recorded in a behavioral study (see S.I., section B) also
decided between the three net sizes. In the nonsocial version of
the experiment (nonsocial condition), the same number of fish
‘migrated’ to two neighboring lakes. Importantly, the change of
the resources due to the two other pre-recorded participants or
the ‘migration’ to the two neighboring lakes was identical in both
conditions. This replicated the results of the behavioral study
(S.I., section B). Although pre-recorded data are often used in fMRI
studies (e.g. Engelmann et al., 2019), it is important to assess their
effect on the results: in a pilot study, the behavior of players per-
forming a simultaneous and interactive version of the same task
(S.I., section A) was similar to the results of the fMRI study. To
preserve the interactive nature of the game, participants were
told that their choices had real, but delayed, consequences for

their counterparts, who were sent additional payments accord-
ing to their decisions made in the scanner after completion of
the experiment. We verified that participants had understood this
during debriefing. Results from an exit questionnaire assessing
participants’ perception of the social nature of their interactions
during the main experiment indicated that participants trusted
our experimental instructions and believed that they were inter-
acting with a real partner (for the same approach, see Engelmann
et al., 2019).

fMRI data acquisition
Functional MRI was performed with ascending slice acquisition
using a T2*-weighted echo-planar imaging sequence (3T Siemens
Magnetom Verio whole-body MR unit equipped with a twelve-
channel head coil; 40 axial slices; volume repetition time (TR),
2.28 s; echo time (TE), 30ms; 80◦ flip angle; slice thickness
3.0mm; field of view 228mm; slice matrix 76×76). For struc-
tural MRI, we acquired a T1- weighted MP-RAGE sequence
(176 sagittal slices; volume TR 2.0 s; TE, 3.37ms; 8◦ flip angle;
slice matrix 256×256; slice thickness, 1.0mm; no gap; field of
view, 256mm).

fMRI data analysis
Image analysis was performed with SPM12 (Friston et al., 1994).
The first four EPI volumeswere discarded to allow for T1 equilibra-
tion, and the remaining images were realigned to the first volume.
Images were then corrected for differences in slice acquisition
time, spatially normalized to the Montreal Neurological Institute
(MNI) T1 template, resampled to 3×3×3mm3 voxels, and spa-
tially smoothedwith a Gaussian kernel of 8mm full-width at half-
maximum. Data were high-pass filtered (cutoff at 1/128Hz). All
five-time windows (frames) of the trial were modeled separately

Fig. 1. The nonsocial and social versions of the CPR task. The sequence of events within a trial is shown. Participants removed 1, 2 or 3 fish from the
CPR and observed either ‘migration’ of the fish into neighboring lakes (nonsocial condition) or ‘fishing’ by two pre-recorded participants (social
condition). At the end of each trial and at the beginning of the next trial participants were informed about the remaining number of fish in the CPR.
ISI: inter-stimulus interval.
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in the context of the general linear model implemented in SPM.
The last trial in each session was excluded from the analysis
because participants had no incentive to preserve the resource.
Motion parameters were included in the GLM as covariates of no
interest.

We constructed separate regressors for different scenarios of
resource decrease due to either fishing by others or migration:
feedback upon a sharp (6 fish) loss, conducive to resource deple-
tion, or amoderate (2, 3 or 4 fish) loss, which is always sustainable,
were modeled as individual hemodynamic responses (2 s after
trial onset). Based on the ensuing parameter estimates, contrasts
of interest were generated. The contrast imageswere then entered
into a second-level analysis with the participant as a random
grouping factor. Here, the individual GLM regressor coefficients
implied by the first level contrasts are used to draw inferences
about effects at the level of the population from which individ-
ual coefficients were sampled. Specifically, we used a conven-
tional summary statistics approach (Holmes and Friston, 1998),
which assumes homogeneous within-subject variance. To exam-
ine regions monitoring perceived CPR fluctuations in a separate
analysis, one regressor specified at feedback events, regardless
of specific scenarios of resource depletion, was parametrically
modulated by the fish stock remaining in the lake each trial
during the trial end screen showing the fish stock size. Besides
these regressors of interest, to control for potential confounds,
the GLM regressor matrix included the following events: choice
stage, outcome stage (boxcar and its parametric modulation by
the number of fish) and the stock size screen ending each trial
(cf. Figure 1). In addition, different cognitive models were used
to analyze the data: to examine regions associated with RPE, the
regressor associated with the feedback event was parametrically
modulated by the RPE that was calculated for each trial based on
a social or nonsocial version of the reinforcement learningmodels
(see below for details).

We focused on the ventral striatum and the ventromedial
prefrontal cortex (vmPFC) because they belong to the brain’s valu-
ation system through their essential role in valuation and reward-
based learning (Levy and Glimcher, 2012; Bartra et al., 2013).
Similarly to (Bartra et al., 2013), we built vmPFC and striatum
regions of interest (ROI) with labels from the 1mm anatomic atlas
parcellation resolution of (Rolls et al., 2015) by taking the bilateral
union of gyrus rectus, medial orbitofrontal, anterior orbitofrontal
and posterior orbitofrontal regions for vmPFC. The volume of the
bilateral vmPFC ROI was 39.896 cm3. We created a bilateral ROI
in the ventral striatum with a 10mm-radius sphere with cen-
ter in MNI coordinates [x=±12, y=11, z=−6], corresponding
to the peak meta-analytic statistic location for a positive effect
of subjective value on BOLD signal, along with its contralateral
hemisphere homologue, based on an fMRI meta-analysis of sub-
jective value neural correlates (Bartra et al., 2013). To control for
Type I errors in whole-brain analyses we set the cluster-forming
threshold at P< .001. ROI statistics were calculated using the Mat-
lab toolbox Marsbar v0.44 (Brett et al., 2002). Brain images were
created with MRIcroGL v1.2 (Rorden and Brett, 2000) and SPM
(Friston et al., 1994).

Social learning model
To explain the effect of the social context on fishing behavior in
the CPR task, we used a variation of the reinforcement learning
model (Sutton and Barto, 1998). The model assigns to each choice
option a subjective expectation value, which is updated on a trial-
by-trial basis. The probability pt(i) of choosing an option (net size)

i at time t depends on the option’s subjective expectations, as
specified by a softmax choice rule:

pt (i) =
exp [β ·Qt−1 (i)]∑
exp [β ·Qt−1 ( j)]

(1)

where Qt-1(i) is the current subjective (expected) value for choice
i and β>0 is the inverse temperature parameter that determines
the choice sensitivity of the chosen option with the highest sub-
jective value. Large values of β signify that the option with
the highest subjective value is chosen with a high probability,
whereas low values of β signify high choice randomness. The
subjective values Qt(i) were updated each trial after the par-
ticipant made a decision and obtained feedback about the two
competitors’ decisions (social condition) or migration (nonsocial
condition). Thus, in all trials t—with t an integer between 1
and 8, included—we calculated the subjective value for each
choice i:

Qt (i) = Qt−1 (i)+α(Ri,t −Qt−1 (i)) (2)

where Ri, t is the participant’s reinforcement from the current
choice and where (Ri, t—Qt-1(i)) represents the RPE between the
participant’s expectation and the actual reward. The reinforce-
ment Rt(i) in a given trial t is a weighted sum between the direct
reward from the resource-derived reward and a social comparison
component SocCompi, t:

Ri,t = (1−θs) ·OwnPayof fi,t +θs · SocCompi,t (3)

where 0≤ θs ≤1 indicates the relativeweight given to the personal
payoff and the social comparison value. The social compari-
son component SocCompi, t was calculated at every trial t for the
three net sizes i as the difference between the participant’s own
payoff OwnPayof fi,t and the average payoff of the other players
⟨OthersPayof ft⟩:

SocCompi,t = OwnPayof fi,t −⟨OthersPayof ft⟩ (4)

Equation (4) weighs the social and nonsocial components of
reward with a free parameter θs while defining social reward as
the excess reward with respect to other players, which incorpo-
rates the postulate that people try to minimize disadvantageous
inequity of outcomes (Fehr and Schmidt, 1999).

The parameter a∈[0,1] denotes the learning rate. Unlike stan-
dard reinforcement models (Sutton and Barto, 1998), we assumed
not only that the expectation of the chosen option was updated,
but also that the expectations of the two unchosen options were
updated (Camerer and Ho, 1999; Coricelli et al., 2005). There-
fore, our model represents a variant of a standard reinforcement
model with the difference of updating all options as suggested
by fictive updating (Montague et al., 2006) and recent work in the
neuroimaging literature on fictitious prediction errors (Hampton
et al., 2007, 2008; Glascher et al., 2009). For the non-chosen option,
a counterfactual payoff (given by a hypothetical choice) was used
to determine the fictive prediction error. For the fMRI analysis, we
nevertheless used the prediction error of the chosen option as a
parametric modulator.

Participants believed that each session they played in a new
environment with different opponents or migration dynamics. To
estimate the a priori expectations about the outcome of choices
Q0(i) when a participant starts fishing in the first trial (t=1),
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we calculated the actual frequencies of choosing each net size in
the first trials of all sessions multiplied by four:

Q0 (i) = 4 ·
(
ni
N

)
t=1

(5)

where (ni/N)t=1 is the number of particular choices (e.g. net size
in the first trial in each session) divided by the total number of
sessions. The expected frequencies were multiplied by four to
scale the initial expectations to the range of rewards that could
be obtained in the task (number of fish: 1, 2 and 3). Thus, Q0 (i)
is a constant in the model. We further hypothesized that in the
social condition people not only take their personal payoff into
account but also compare their payoff with the other players’
payoffs to determine an overall reinforcement (following social
preference models, e.g. Fehr and Schmidt, 1999). Therefore, the
reinforcement of an outcome results from the personal payoff and
a social comparison component. According to the social compar-
ison component of our model, the participant received a negative
reinforcement if the participant’s payoff was lower than the other
players’ average payoff. When the participant took more than the
other players took on average this led to a reward. The social learn-
ing model has three free parameters: the learning rate α, the inverse
temperature β and the social comparison weight θs. We designate
the RPE derived from the social learning model as the social RPE
(sRPE).

Sustainable nonsocial learning model
We suggest that in the nonsocial condition, people take their per-
sonal payoff into account but are also motivated to sustain the
resource in the long term. Therefore, the reinforcement of an
outcome would result from the weighted personal payoff and a
sustainability component SustCompi, t:

Ri,t = (1−θn) ·OwnPayof fi,t +θn · SustCompi,t (6)

SustCompi, t is the negative absolute value of the difference
between the optimal (sustainable) fish stock decrease (i.e. Sus-
tainableCatch= six fish) and the sum of the actual number of fish
taken out (i.e. OwnPayoffi, t) and migrated to another lake (i.e.
Outflowi, t):

SustCompi,t =−|SustainableCatch−OwnPayof fi,t −Outflowi,t| (7)

This implies that the value of the sustainability component
was either zero (when the sum of fish taken from the resource was
equal to the sustainable number) or negative (when ‘too many’ or
‘too few’ were extracted). The rationale behind this ‘punishment’
was that taking ‘too few’ misses a chance to profit and taking
‘too many’ harms the sustainability of the resource and thereby
jeopardizes future payoffs. Thus, according to the sustainability
component, a participant was penalized for taking toomany from
the resource if themigration was large, and similarly, participants
were also penalized for taking too few if the migration was small.
Importantly, in the social and the nonsocial conditions, partici-
pants were clearly informed in the instructions of the experiment
that when the resource decreased by six fish the number of fish
in the lake would stay constant over time. The sustainable nonso-
cial learning model also had three free parameters: the learning
rate α, the inverse temperature β and the sustainability weight
θn. We designate the RPE derived from this model as nonsocial
RPE (nRPE).

Rescorla–Wagner and Fehr–Schmidt models
We also tested the previous two learning models against another
two competing models (Table 1): a vanilla reinforcement learn-
ing model (RWmodel, Rescorla andWagner, 1972) and a modified
inequity aversion model (FS; Fehr and Schmidt, 1999). The RW
model only considers the personal payoffs in the task as reinforce-
ment and had no sustainability component, so in essence, it is an
asocial model, i.e. it is unconcerned with the sociality of rewards.
Thus, the RW model is nested within the (social or nonsocial)
learning model when setting the weight θs (or θn) of the corre-
sponding models equal to zero. The FS model was identical to
the social learningmodel, with the exception that the comparison
component was defined as:

Ci,t = OwnPayoffi,t − δ−
2∑

j=1

max
[
OthersPayof fi,j,t −OwnPayof fi,t,0

]

− δ+
2∑

j=1

max
[
OwnPayof fi,t −OthersPayof fi,j,t,0

]
(8)

where the δ’s were the advantageous (δ+) and disadvantageous
inequality (δ−) coefficients (Fehr and Schmidt, 1999).

Evaluation of the models
Initially, we evaluated the models by comparing them to the null
(baseline) model, which assumed a uniformly random choice of
the three net sizes (i.e. predicting a uniform choice probability
of 1/3) using the Bayesian Information Criterion (BIC; Schwarz,
1978). BIC scores are an approximation tomodel log-evidence that
accounts for model complexity. The average BIC per observation
was 2.075 (s.d.=0.265) for the social learning model and 2.080
(s.d.=0.235) for the sustainable nonsocial learningmodel as com-
pared to the average BIC of 2.242 for the null (baseline) model. A
mixed ANOVA with the participant as a grouping random effect
and model type as a fixed effect factor showed that on average
the learning models described the data better than the baseline
model (Social-Null: df=1, F=19.78, P=4.98e-5; Nonsocial-Null:
df=1, F=23.73, P=1.2e-5). In the social condition, to examine
individual differences, the social learning model was better than
the null model for 75% of the participants according to BIC and in
the nonsocial condition, the sustainable nonsocial learningmodel
was better than the baseline for 69% of the participants. Thus,
although both learning models on average did better than the
baselinemodel, for some participants the better fit of the learning
models in comparison to the baselinemodel was not large enough
when taking model complexity into account. A mixed ANOVA
with the participant as grouping random effect and model type
as fixed effect confirmed that there was a difference between the
learning models and the null model (Social-Null: df=1, F=19.78,
P=4.98e-5; Nonsocial-Null: df=1, F=23.73, P=1.2e-5). To fur-
ther examine the empirical validity of the models, we compared
the social learning model with the sustainable nonsocial learning
model by ‘cross-fitting’ both models: we fit the nonsocial model
to the participants in the social condition and the social learn-
ing model to the participants in the nonsocial condition. This
approach should show that the models were unsuitable when
applied to incongruent conditions (i.e. nonsocial model fit to the
social condition). We further compared thesemodels with the RW
and FSmodels (Table 1); the social learning model performed bet-
ter than the two competing models in the social condition, but
the sustainable nonsocial learningmodel wasmatched by the RW
model in the nonsocial condition (Figure 2). We also compared the
BIC scores of the social vs FS model and nonsocial vs RW model,
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Table 1. Learning models (N=number of participants). The value updating equation Qt (i) = Qt−1 (i)+α(Ri,t −Qt−1 (i)) and policy (action

selection) equationpt (i) =
exp[β·Qt−1(i)]∑
exp[β·Qt−1(j)]

are common to all models (except the null)

Model type Number of parameters Reinforcement (reward) component
Null (baseline) N None

Social learning 3N Payoff and Social comparison
Ri,t = (1−θs) ·OwnPayof fi,t +θs · SocCompi,t
where
SocCompi,t = OwnPayof fi,t −⟨OthersPayof ft⟩

Sustainable nonsocial learning 3N Payoff and Sustainability
Ri,t = (1−σ) ·OwnPayof fi,t +σ · Si,t
where
SustCompi,t = −

∣∣SustainableCatch−OwnPayof fi,t −Outflowi,t
∣∣

Model free reinforcement learning
(Rescorla–Wagner)

2N Payoff
Ri,t = OwnPayof fi,t

Inequity aversion (Fehr–Schmidt) 5N Payoff and
Social comparison with inequity aversion
Ri,t = (1−θs) ·OwnPayof fi,t +θs · SocCompi,t
where

SocCompi,t = OwnPayof fi,t−δ+
2∑

j=1
max

[
OthersPayof fi,j,t −OwnPayof fi,t,0

]
−δ−

2∑
j=1

max
[
ownPayof fi,t −OthersPayof fi,j,t,0

]

Fig. 2. Distribution of goodness of fit, as measured by BIC scores across
subjects per observation, by model type and experimental condition.
Abscissa labels: Null model (Null) Social model (Soc), Nonsocial model
(Nsoc), Rescorla–Wagner model (RW), Fehr–Schmidt inequity aversion
model (FS). Bar heights correspond to BIC score group means and error
bars indicate s.e.m.

we added the individual BIC scores of each participant for each
model and compared the sums (Table 2). Since BIC scores can be
hard to interpret, we also calculated McFadden pseudo-R-squares
(McFadden, 1974) and balanced accuracy (Brodersen et al., 2010),
where the (non)social model won in the (non)social condition.
For the balanced accuracy computation, we assumed RW to be a
nonsocial model and FS to be a social model. Again, the relevant
models won in the relevant conditions in a Bayesian model selec-
tion analysis (Table 2) as measured by model frequency (expected
multinomial parameters, i.e. the probability that eachmodel gen-
erated the observed data) and exceedance probability (Stephan
et al., 2009; Daunizeau et al., 2014). Finally, we also performed
a model recovery analysis, to show that our approach to select
the model is reliable in this context. The learning models were

used to generate behavior, faced with the same pre-recorded sur-
rogates as human participants. This requires small modifications
in the algorithm that furnish it with a policy to select actions on
the basis of learned Q-values (Eq. 1). This enacts artificial players
that behave as specified by each of the four learning algorithms
described in this section. Each of the learning models was run
50 times (matching the number of participants) pitted against
the same pre-recorded dataset as human subjects; the produced
simulated data were then fitted exactly as behavioral data were
(see next subsection). The analysis results are shown in Table 5,
and the resulting fitted parameters are can be found in the S.I.
(Figure S3).

Learning models fitting procedure
We estimated four models (Table 1): social learning model, sus-
tainable nonsocial learning model, RW model and FS model on
a trial-by-trial basis (Daw, 2011). Additionally, we estimated the
null model as a benchmark. All models were estimated individ-
ually to the behavior of each participant by maximum likelihood
estimation. The likelihood functions were optimized using Mat-
lab 9.2 (MathWorks, Natick) (see S.I., section D). In all cases,
the estimated parameters were constrained to lie within [0,1] for
learning rate (α), social comparison and sustainability weights θs

and θn, and advantageous (δ+) and disadvantageous (δ−) inequal-
ity coefficients; and within [0, inf] for the inverse temperature
β. After fitting the models, the estimated parameter values were
later used to generate a learning process according to the specific
model, so that various learning variables (i.e. sRPE, nRPE, social
comparison component and sustainability component) could be
determined. The predicted learning process and the learning
variables were then correlated with the neural activity through
parametric regressors in the SPM design matrix.

Results
Behavioral results
Participants depleted the CPR faster in the social than in the
nonsocial condition: average number of 6.28 (s.d.=0.52) trials in
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Table 2. Aggregate BIC scores, model frequency, exceedance probability, McFadden pseudo-R-squared and balanced accuracy for each
learning model and condition

Measure Condition Null Social Nonsocial Rescorla–Wagner Fehr–Schmidt t

BIC scores Nonsocial 6456.6 6247.1 6208.1 6208.9 6512.8 –
Social 5412.5 4895.0 5104.2 4957.0 5114.7 –

Model frequency Nonsocial 0.1662 0.2159 0.2358 0.2333 0.1489 –
Social 0.1268 0.2802 0.1804 0.2357 0.1769 –

Exceedance probability Nonsocial 0.0884 0.2312 0.3170 0.3040 0.0594 –
Social 0.0293 0.4952 0.1053 0.2720 0.0981 –

McFadden pseudo-R-squared Nonsocial 0 0.0688 0.0762 0.0614 0.0694 –
Social 0 0.1681 0.1546 0.1066 0.1622 –

Balanced accuracy – – 0.5929 0.6138 0.3863a 0.5a –

aRescorla–Wagner and Fehr–Schmidt models were assumed to be, respectively nonsocial and social models in calculating their balanced accuracy.

the social condition as compared to an average number of 6.93
(SD=1.06) trials in the nonsocial condition; two-sample t-test:
t(48)=2.703, P=0.0095. Furthermore, different styles of fishing
in the two conditions were indicated by an interaction of Net
Size (1, 2 or 3 fish)×Condition (social, nonsocial), F(2.45)=15.41,
P=0.0001. The participants used the smallest net size more often
in the nonsocial condition than in the social condition (Figure 3),
whereas they used the largest net size more often in the social
condition than in the nonsocial condition. Crucially, in the social
condition, after others overexploited the fish resource (six fish
extracted in total), the participants in return also overexploited
the resource in the next trial. In contrast, in the nonsocial con-
dition a similar reduction of the fish stock (six fish migrated)
triggered a trend toward resource preservation. This observation
was supported by an interaction of Resource Reduction (small=1,
large=3) ×Condition, F(2.45)=9.67, P=0.003 (Figure 3C).

Modeling of the behavioral results in the social condition fur-
ther supported the role of social comparisons in overharvesting
of CPR. Perceived depletion of CPR by others facilitated overhar-
vesting behavior in subsequent trials through social comparison:
the individual weights of the model given to the social compari-
son correlated with the relative increase of harvesting in the trials
following CPR depletion (i.e. mean selected net size in the tri-
als following resource depletion by others minus mean selected
net size in the trials following resource preservation by others;
r=0.49, P=0.015, n=24).

Next, we assessed the interaction effect between social and
nonsocial models and conditions (Figure 2). The choice sensitivity
parameter values were fairly homogeneous across both subjects
andmodel type fit (β∼1.5, Figure S3), whereas learning rates var-
ied greatly across both participants and model types (Figure S3).
We also used a linear mixed-effects model (LME) to test the effect
ofModel Type (fourmodel types) andCondition (nonsocial, social) on
BIC score with the participant as a random effect grouping factor
(Table 3), with random intercepts to account for the unobserved
heterogeneity due to sampling subjects from a population, that
is, to allow generalizing statistical inference to the population
level. Random slopes were not included because the variability
in the model type and condition predictors across participants
was too low to yield meaningful random-effects estimates. The
LME was fit with the Matlab function fitlme, which implements
restricted maximum likelihood with a trust region based on a
quasi-Newton optimizer. The LME coefficients corresponding to
the interaction between model types and conditions were all neg-
ative except for RW, suggesting that BIC scores were lower in the
social condition for the other models (Table 3); however, this is
likely due to the lower number of trials in the social condition

(Figure 3A). To further examine interactions, an ANOVA was per-
formed using the Satterthwaite approximation to the effective
degrees of freedom afforded by the LME (Table 3) to test the
effect of Model Type and Condition. The F-statistics and P-values
of the Model Type main effect and the interaction term were
F(4192)=3.58, P=7.7e-3 and F(4192)=5.86, P=1.79e-4, respec-
tively. Therefore, the learning models’ scores were congruent
with the observed behavior across social and nonsocial condi-
tions. This agreed with the social comparison and sustainability
weight estimates: the social component was higher in the social
condition and the sustainability weight was higher in the nonso-
cial condition (Figure S3). To confirm this result we sought to
ascertain directly whether the social model fit the social (and the
nonsocial model fit the nonsocial) group data better in a mixed
ANOVA (which does not rely on the Satterthwaite approximation
of the LME model analysis) with participant as grouping random
effects to test the interaction between Model Type and Condition
(Table 4, Figure 3). Mauchly’s test reported no violation of the
sphericity assumption. The interaction term was larger than zero
(F(1,48)=8.98, P=4.3e-3), confirming the congruency between
social and nonsocial models and conditions. Thus, the social
learning model fits behavioral data during the social condition
better than the sustainable nonsocial learning model, whereas
the sustainable nonsocial learning model fits behavioral data in
the nonsocial condition better than the social learning model.
Finally, we computed aggregate BIC scores within each condition
for eachmodel. The BIC-based Bayes factors obtained by pairwise
subtracting BIC score pairwise differences of more than 2 are con-
sidered as positive evidence, and of more than 10 as very strong
evidence (Kass and Raftery, 1995). According to this measure, the
social learning model was best in the social condition, and the
sustainable nonsocial model fared the best in the nonsocial con-
dition but not significantly better than the RW model—which is
also a sort of nonsocial learning model. To assess to what extent
sRPE and nRPE are dissociable, we also fitted a hybrid model com-
bining both social and nonsocial RPEs in both social and nonsocial
conditions. This hybrid model comprised a continuous parameter
ξ ∈ [0, 1] that weighted the sRPE and nRPE (SocComp and Sust-
Comp, respectively, see equations (3 )and (6) such that for ξ=0
it degenerates into the social model, and for ξ=1 it becomes
the nonsocial model. The estimated ξ was ξ=0.26± .07 in the
social condition was and ξ=0.61± .06 in the nonsocial condition
(where±denotes s.e.m.), thus showing that parameter estima-
tion within the hybrid model was sensitive to the type of RPE.
However, the BIC scores of the hybrid model showed that its
fit was worse than its social and nonsocial competitors (social:
5269.5, nonsocial: 6159.2, cf. Table 2). To sum up, participants
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Fig. 3. The experimental effects on resource depletion in the behavioral
study and corresponding posterior predictive checks. Participants used
the larger net size and depleted the resource faster in the social
condition than in the private (nonsocial) condition, similar to the main
fMRI study. (A) Mean number of trials per session in the two
experimental conditions. The graph illustrates faster depletion of the
resource in the social than in the nonsocial condition. Each session
continued as long as the resource was sustained, with a maximum of
eight trials. (B) Mean net size decision and posterior predictive check.
Participants decided to take one fish more often in the social than in the
private condition. The opposite was true for the largest net size of three
fish. (C) Mean fish catch decision (in next trials) following resource
depletion or preservation due to behavior of others or migration and
posterior predictive check. After the depletion of the resource by others
(social condition), participants also increased the fish catch in the next
trial, whereas in the private (nonsocial) condition, an analogous
reduction of the fish stock triggered instead a resource preservation
reaction. Moderate migration/others preserve denotes a decrease of 2–4
fish; large migration/others exploit denotes a decrease of six fish. Error
bars denote s.e.m.

depleted CPR faster in the social than in the nonsocial condition,
and this overexploitation could be explained by a learningmecha-
nismmodulated by social comparison in the social condition. The
model recovery analysis results (Table 5) show that both the social
and nonsocial artificial players were identified (as measured by
BIC scores, not shown) to belong to their actual class, more often
than to any other class. The associated fitted parameters can be
found in Figure S3 in S.I. The parameter ranges are roughly in
agreement with the behavioral fits, but with a substantially larger
variance, which is expected. The poor concordance for the FS and
RW models is likely due to the lower estimation precision associ-
ated with worse goodness of fit. In brief, model recovery analysis
results that models and parameters can be in principle recovered
by using a rule, whereby the model with the lowest BIC score is
selected.

Neuroimaging results
A sharp decrease of the CPR (extraction of six fish due to over-
exploitation by others or to extensive migration) was associated
with ventral striatum deactivation more strongly than a mod-
erate CPR decrease (extraction of four or fewer fish) in both
conditions (Figure 4A, Table S2). A mixed ANOVA test (Subject as
random factor and Condition and CPR decrease as fixed factors)
yielded a main effect for CPR decrease: F(1,86)=10.06, P=0.002).
In the social condition, ventral striatum activations were smaller
than in the nonsocial counterpart (factor Condition: F(1,86)=5.62,
P=0.019 in an analogous mixed ANOVA test). However, we could
not find in the social condition statistical evidence that overex-
ploitation by others evokes stronger deactivation of the ventral
striatum than the similar large migration in the nonsocial condi-
tion (Figure 4B, top), according to a mixed ANOVA test interaction
term F(1,86)=2.44, P=0.121 (Subject as random factor, and Condi-
tion and CPR decrease as fixed factors). However, it is worth noting
here that the total number of small net size trials in pre-recorded
data was much smaller than for large net size trials (2: 3.4%,
3: 2.7%; 4: 34.9%; 5: 25.3%; 6: 33.7%), so the actual (within-subject)
uncertainty associated to the bars corresponding to 2 and 3 is
much larger than for 4, 5 and 6. However, there was some evi-
dence for a dissociation in the vmPFC activation sign for social
vs social conditions during large net size trials (Figure 4B, bot-
tom). To further test the hypothesis that the ventral striatum
differently monitors the resource changes in social and nonso-
cial contexts we conducted a more detailed parametric analysis.
Using the total number of fish remaining in the lake in every trial
as the modulation parameter, we found an effect of the total
resource change on the activity of the ventral striatum: activity
of the ventral striatum negatively correlated with CPR depletion
(remaining CPR, Figure 5A left). As shown in Figure 5B, the pos-
terior predictive check suggests that the social learning model
predicted the overexploitation of CPR. This was supported by pos-
terior predictive checks for choice frequencies (Figure 3B and C).
Using parametric fMRI analyses, we investigated the modulation
of the ventral striatum (Figure 5A right) and vmPFC activity by
different versions of RPE (Table 4). Social RPE (sRPE) was defined
as the RPE in the social learning model, whereas nonsocial RPE
(nRPE) was defined by the sustainable nonsocial learning model.
ROI-average analyses indicated that sRPE modulated activity of
the ventral striatum in the social group (df=21, t=2.19, P=0.040)
but there was no evidence that it did in the nonsocial group
(df=23, t=1.52, P=0.14). There was some evidence for nRPE
modulating activity in the ventral striatum in the nonsocial group
(t=2.04, P=0.053), and for a neural dissociation in the sense that
sRPE correlated with striatal activity more in the social than in



M. Martinez-Saito et al. 845

Table 3. LME model fit with BIC as response variable; model type and condition with their interaction as fixed effects predictors and
random intercepts (grouped by subject) predictors (BIC∼1+ModelTypeFactor * ConditionFactor + (1 | SubjectFactor), df=240 for all
predictors. Condition is a dummy variable denoting 1 for the social condition and 0 for the nonsocial condition. ModelType is a factor
with 5 levels: the null model (reference level) and the four displayed models. Only fixed effects coefficients are shown

Predictor ß SE t P Confidence int.

Intercept 248.33 6.48 38.3 ∼0 [235, 261]
Social −8.06 3.14 −2.56 0.011 [−14.2, −1.86
Nonsocial −9.56 3.14 −3.04 2.63e-3 [−15.8, −3.36]
Rescorla–Wagner −9.52 3.14 −3.03 2.72e-3 [−15.7, −3.33
Fehr–Schmidt 2.16 3.14 0.688 0.492 [−4.03, 8.36]
Condition −22.8 9.34 −2.44 0.015 [−41.2, −4.40
Social × Condition −13.9 4.53 −3.07 2.4e-3 [−22.9, −4.98
Nonsocial × Condition −3.29 4.53 −0.724 0.469 [−12.2, 5.65]
Rescorla–Wagner × Condition −9.46 4.53 −2.08 0.038 [−18.4, −0.515
Fehr–Schmidt × Condition −14.6 4.53 −3.21 1.5e-3 [−23.5, −5.63]

Table 4. Mixed ANOVA testing the effect of the factors model type (social and nonsocial) and sociality condition on BIC score

Mixed ANOVA SumSq DF MeanSq F P p-GGa p-HFa p-LBa

(Intercept): ModelType 0.0804 1 0.0803 4.2e-4 0.984 0.984 0.984 0.984
Condition × ModelType 1707.2 1 1707.2 8.98 4.32e-3 4.32e-3 4.32e-3 4.32e-3
Error(ModelType) 9129.1 48 190.19

a: P-values based on corrected degrees of freedom; GG: Greenhouse-Geisser correction; HF: Huynh–Feldt correction; LB: lower bound correction. SumSq: sum of
squares. DF: degrees of freedom. MeanSq: mean SumSq per DF.

Table 5. Model recovery analysis. Fraction of runs (over a
total of 50) simulating the social and nonsocial learning models
(in rows) that were identified as belonging to each of the learning
models described in the main text (in columns)

Social Nonsocial Rescorla–Wagner Fehr–Schmidt

Social 0.38 0.34 0.14 0.14
Nonsocial 0.26 0.34 0.26 0.14

the nonsocial group (t=1.97, P=0.062), and nRPE correlated with
striatal activity more in the nonsocial than in the social group
(t=2.79, P=0.010); this would suggest that striatal dopamin-
ergic regions differentially monitor resources in the social and
nonsocial conditions. Finally, we found no evidence in favor
of nRPE modulating activity in vmPFC in both social (t=1.58,
P=0.128) and nonsocial groups (t=1.80, P=0.085), and likewise
for sRPE (t=1.32, P=0.20 for social group; t=1.06, P=0.29 for
nonsocial).

Discussion
The current study explores the differences of how people deal
with a private good as compared to a common/public good.
The results of our study indicate that during the CPR task the
ventral striatum encodes opposite harvesting strategies: rela-
tive deactivation of the ventral striatum in response to resource
depletion correlates positively with participants’ attempts to pre-
serve their own private resources and correlates negatively with
their attempts to preserve the CPR. The ventral striatum receives
dopamine projections from the midbrain and is activated by a
wide range of rewarding stimuli, from foods, odors and drugs to
beautiful faces (Breiter et al., 1997; Aharon et al., 2001; Gottfried
et al., 2002; O’Doherty et al., 2004). The activity of the ven-
tral striatum was also associated with social comparison of col-
lected rewards (Fliessbach et al., 2007; for a meta-analysis, see
Luo et al., 2018), voluntarily donations (Moll et al., 2006; Harbaugh

et al., 2007), mutual cooperation (Rilling et al., 2002, 2004) and even
the punishment of others who have previously behaved unfairly
(de Quervain et al., 2004; Singer et al., 2006).

Previous research shows that the ventral striatum exhibits
more activity when players choose cooperation following a coop-
erative choice by their partners in the previous round of the
iterated Prisoner’s Dilemma (Rilling et al., 2002). Furthermore,
people with a higher desire for revenge against unfair partners
exhibited activation in the ventral striatum (Singer et al., 2006).
Participants who made more costly donations to real charitable
organizations also exhibited more activity in the striatum (Moll
et al., 2006). Overall, our results are consistent with the previ-
ous studies indicating the critical role of the ventral striatum in
cooperative behavior.

We develop a computational learning model that allows us
to suggest a neurocognitive explanation for CPR depletion. The
model uses a social RPE signal governing the learning updat-
ing process, which correlates with ventral striatum activity. This
might indicate that the striatum harbors the RPE signal where the
reward of an outcome is composed of the person’s own mone-
tary reward and a comparison of the person’s own outcome with
the outcomes of others. In contrast, in the nonsocial condition,
the classical RWmodel matched the sustainable nonsocial learn-
ing model, which does not bear out the existence of a specialized
learning mechanism in the nonsocial condition. The goodness of
fit of computational models (Figure 2) shows that the social con-
dition fits (as indexed by BIC scores, but also by log-likelihood)
have higher variance across subjects, with lowermeans andmedi-
ans, which suggests that on average participants learned less in
the nonsocial condition (at least in terms of incremental adaptive
learning). This is also in agreement with the stronger modulation
of ventral striatum activity in response to perceived decreases
of CPR, in the social condition than in the nonsocial condition.
The strong reactivity of the ventral striatum in the social con-
dition is to be expected in its role of integrating social values
because a scarce resource shared by people is much more likely
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Fig. 4. General effects of resource depletion: neural response to sharp
resource depletion (six fish taken out as a result of migration or
overharvesting by others) vs neural response to resource preservation
(2–4 fish removed). (A) Map of deactivations (red-yellow) induced by
resource depletion in both experimental conditions, and ventral
striatum ROI (translucent green). (B) Ventral striatal and ventromedial
prefrontal cortex activation evoked by overexploitation/preservation
(social condition, n=22) and by large/moderate migration (nonsocial
condition, n=24). Error bars denote s.e.m. Map thresholded at P<0.001
uncorrected.

Fig. 5. Neural activity involved in monitoring and managing CPR
exploitation. (A) The role of the ventral striatum in CPR exploitation
monitoring and learning. Left: neural deactivations associated with the
size of the remaining CPR, indicating that activity was parametrically
modulated by the change of the CPR size trial-by-trial in social (red) and
nonsocial (blue) groups. Right: activity associated with learning signals:
social (red) and nonsocial (blue) reward prediction errors; ventral
striatum ROI (translucent green) and vmPFC ROI (translucent light
blue). (B) Posterior predictive checks. Left: average probability of
choosing net size (1, 2 or 3) after sharp CPR depletion by others in the
previous trial (six fish taken out by others) matched the observed
frequency of the overharvesting (choosing the largest net size).
Right: the model predicted the tendency to preserve CPR after
conspecifics also chose to preserve in the previous trial (four fish or
fewer taken out). Model prediction refers to the probabilities estimated
with the fitted models, whereas Behavior indicates subjects’ choice
frequencies. Maps are thresholded at P<0.005, uncorrected.

to be depleted than in the nonsocial situation. Thus, the social
model predicts the enhanced selfish behavior of humans under a
scarcity of resources. Our fMRI results indicate that the dopamine
system is involved in social comparisons and generates a negative
prediction error when a person receives less than the competi-
tors and a positive prediction error when she receives more than
the competitors. Thus, ventral striatum activity not only moni-
tors outcomes (resource depletion) but also integrates outcomes
into the specific social context. Perhaps the dual nature of the
reward-monitoring activity explains our observation that behav-
ioral tendencies underlying competitive depletion of resources
are differentially encoded in the activity of the ventral striatum
in social and nonsocial contexts. To sum up, cognitive model-
ing demonstrated that the brain may resort to distinct strategies
depending on the social framing of the task and that this fram-
ing modulates neural activity accordingly. Overall, our results
are consistent with the hypothesis that social rewards and social
preferences are represented in the ventral striatum similarly to
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primary or monetary rewards (Montague and Berns, 2002; Fehr
and Camerer, 2007).

The conclusions of our study have some limitations. Simi-
lar to other standard behavioral games that allow unambiguous
inferences, participants in our study act fully anonymously and
independently of each other. They are given no opportunity to
discuss the situation or to change the institutional rules. How-
ever, these opportunities might exist in real-life situations and
could also provide a way of avoiding the depletion of the resource
(Ostrom, 1990). Although participants had reasons to believe
that they could interact with opponents in a temporally delayed
fashion, the ecological validity of this approach has not been thor-
oughly tested. More studies are needed to verify our neuroimaging
results using real interaction play and to investigate the strategic
aspects of CPR depletion.

Additionally, our model of social comparison assumes that
receiving more than the competitors is perceived as a positive
reward. Although on average this assumption leads to a good
description of the overall results, there might be an individual
difference in social preferences, which the model cannot account
for. Follow-up studies will help to examine alternative interpre-
tations of the activity of the ventral striatum observed in our
study, e.g. as a neural correlate of the perceived violation of warm
glow preferences (Andreoni, 1990; Harbaugh et al., 2007) or of the
altruistic norm by others.

Neuroimaging studies have demonstrated that cooperation
consistently activates not only reward systems such as the vmPFC
and ventral striatum, but also medial prefrontal cortex, tem-
poroparietal junction (TPJ), and superior temporal sulcus (McCabe
et al., 2001; Rilling et al., 2002; Decety et al., 2004; King-Casas
et al., 2005; Elliott et al., 2006). Furthermore, competition may also
activate inferior frontal gyrus and dorsolateral prefrontal cortex
(Decety et al., 2004; Lissek et al., 2008; Halko et al., 2009; Lee et al.,
2018a). Some of these regions are likely to subservementalization,
the ability to understand one’s own or others’ mental states as
causes of behavior. TPJ has been implicated in self-other distinc-
tion and theory of mind (Saxe and Kanwisher, 2003; Samson et al.,
2004; Frith and Frith, 2012), whereas dorsomedial PFC has been
similarly associated with mentalization (Hampton et al., 2008;
Coricelli and Nagel, 2009; Lee et al., 2011), altruism (Waytz et al.,
2012) and morality (Bzdok et al., 2012). The reason TPJ and dmPFC
were not considered is that our study focused on the modulatory
influences of social factors on behavior, through value learning.
In particular, because our study was designed to probe (i.e. max-
imize test sensitivity for) the modulation of learning processes
under different social contexts, we were not able to assess the
putative involvement of mentalizing areas. Studies of the the-
ory of mind typically investigate belief attribution by presenting
concocted scenarios evoking mentalization and querying partici-
pants about the beliefs of others (Saxe and Kanwisher, 2003; Lee
et al., 2011), or use a controlled design that allows specifying some
index of mentalization such as the depth of strategic reason-
ing (Coricelli and Nagel, 2009). Such schemes were troublesome
to incorporate simultaneously in our study because treatments
were between subjects, and participants’ responses were limited
to numerical choices. Further studies and different behavioral
paradigms will be needed to identify the role of these regions
in competitive overexploitation of common resources in different
social contexts.

For a long time, behavioral economics focused on examining
factors that favor CPR preservation, including the best possible
rules, institutions and communication (Ostrom, 1990). Social psy-
chologists searched for psychological determinants of individual

cooperative vs self-interested behavior in commons-dilemma sit-
uations (Messick et al., 1983). Our results show that the context
of a shared resource vs a private resource (with similar control
over the resources in both contexts) modulates the neural activ-
ity of the ventral striatum—a brain area strongly associated with
the valuation of outcomes. Overall, the notion of the neurobio-
logical underpinnings of resource overexploitation could help us
to develop efficient boundary rules and a better understanding of
global commons governance.
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