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Abstract

Background: Monocytes play a central role in HIV neuropathogenesis, but there are limited data on monocyte subsets
and markers of monocyte activation in perinatally HIV-infected children.

Objective: To determine the relationship between monocyte subsets, the sCD163 monocyte activation marker, and
neuropsychological performance among perinatally HIV-infected children initiating antiretroviral therapy (ART).

Methods: ART-naïve children from the PREDICT study were categorised into two groups: those on ART for ≥24 weeks
(ART group, n=201) and those untreated (no ART group, n=79). This analysis used data from the baseline and week 144
including sCD163 and frequencies of activated monocytes (CD14+/CD16+/HLA-DR+), perivascular monocytes
(CD14+/CD16+/CD163+ and CD14low/CD16+/CD163+), and neuropsychological testing scores: Verbal and Performance
Intelligence Quotient (VIQ and PIQ), Beery Visuomotor Integration (VMI) and Children’s Color Trails 2 (CT2).

Results: Baseline demographic and HIV disease parameters were similar between groups. The median age was 6 years,
CD4 was 20% (620 cells/mm3), and HIV RNA was 4.8 log10. By week 144, the ART vs the no ART group had significantly
higher CD4 (938 vs 552 cells/mm3) and lower HIV RNA (1.6 vs 4.38 log10copies/mL, P<0.05). sCD163 declined in the
ART vs no ART group (median changes –2533 vs –159 ng/mL, P<0.0001). Frequencies of all monocyte subsets declined
in the treated but not the untreated group (P<0.05). Higher CD14+/CD16+/HLA-DR+ percentage was associated with
higher VIQ, Beery VMI and CT2 scores. Higher percentages of CD14+/CD16+/CD163+ and CD14low/CD16+/CD163+
were associated with higher CT2 and VIQ, respectively.

Conclusion: ART significantly reduced sCD163 levels and frequencies of activated and perivascular monocytes. Higher
frequencies of these cells correlated with better neuropsychological performance suggesting a protective role of
monocyte-macrophage immune activation in perinatal HIV infection in terms of neuropsychological function.
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adults [8,9]. Several populations of blood monocytes are of
interest. The CD14+/16+ monocytes are highly infected by HIV,
with particular involvement of activated monocytes
(CD14+/CD16+/HLA-DR+) and non-classical monocytes
(CD14low/CD16+) [7,10,11]. Furthermore, CD14+/CD16+
monocytes that express CD163 are presumed to be precursors of
perivascular macrophages that are associated with brain
pathology in simian immunodeficiency virus (SIV) and HIV [12].
CD163 is a scavenger receptor for haemoglobin–haptoglobin
complexes, and following activation of monocytes and
macrophages, soluble CD163 (sCD163) is cleaved from the cell
surface into the circulation. Levels of sCD163 are associated with
cognitive impairment in HIV-positive adults, and seronegative
adults and children with liver injury, vascular inflammation, and
other inflammatory conditions [13—16].

There are limited data on the dynamic of monocyte subsets and
sCD163 in perinatally HIV-infected children on ART, and the
associations between these markers and neuropsychological
performance in children are unknown. Therefore, the objectives of
this analysis are to: (1) assess the effects of ART on
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Introduction
HIV exerts deleterious effects on the growing brains of children
infected perinatally as evidenced by lower neuropsychological
test scores compared to uninfected peers [1,2]. Cognition,
language, psychomotor function and attention deficits could
affect children’s learning ability with potential long-lasting
adverse neurobehaviour consequences as they age into
adolescence [3,4]. Antiretroviral therapy (ART) can prevent and
reverse some neurodevelopmental damage caused by HIV,
particularly when treatment is initiated early [1,5].

Several lines of evidence support the central role of monocytes in
trafficking HIV into the brain [6,7]. High turnover of monocytes
from the bone marrow and plasma biomarkers for monocyte
activation are correlated with HIV neuropathogenesis in
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sCD163 levels and frequencies of monocyte subsets
(CD14+/CD16+/HLA-DR+, CD14+/CD16+/CD163+, CD14low/
CD16+/CD163+); and (2) assess the relationship between
sCD163 and monocyte subsets with neuropsychological
performance.

Material and methods

Study design and population

This analysis utilised data from the Pediatric Randomized Early
versus Deferred Initiation in Cambodia and Thailand study (the
PREDICT study, clinicaltrials.gov identification number
NCT00234091) that randomised 300 ART-naïve HIV-infected
children in Thailand (n=180) and Cambodia (n=120) to early
(ART initiation at CD4 15–24%) vs deferred treatment (ART
initiation at CD4 <15%) for 144 weeks [17]. The study was
approved by the Thai and Cambodian National and local
institutional review boards. Caregivers gave consent, and children
gave assent according to local ethics requirements.

For this analysis, children were grouped by their ART status. The
ART group included children who had at least 24 weeks of ART
during the period of 144 weeks of follow-up. This group
combined children who initiated ART at baseline in the early ART
arm and those in the deferred arm who initiated ART after the
baseline visit when their CD4 declined below 15%. The no ART
group included children in the deferred arm who did not initiate
ART during the 144 weeks of the study because they were able
to maintained CD4 above 15%.

Monocytes phenotyping and soluble CD163

Soluble CD163 was assayed at baseline and week 144 by enzyme-
linked immunoassay using the Macro163 kit (IQ Products and
Trillium Diagnostics, Bangor, Maine, USA). The flow cytometry
was completed according to Pediatric AIDS Clinical Trials Group
procedures at US National Institute of Allergy and Infectious
Diseases certified laboratories with rigorous quality assurance
programs as published elsewhere [18]. Data from three monocyte
subsets from week 0 and week 144 were included in this analysis
including CD14+/CD16+/HLA-DR+ (activated monocytes),
CD14+/CD16+/CD163+ (perivascular monocytes believed to be
precursors of brain perivascular macrophages), and non-classical
monocytes that express CD163 (CD14low/CD16+/
CD163+) [7,11]. The Forward Scatter (FSC) and Side Scatter
(SSC) were gated to first select total monocyte population (R1
gate). The CD14low/CD16+ monocyte subset was then identified
(R2 gate) and CD14low/CD16+/CD163+ monocytes were
separated. Antibodies used for flow cytometry were all from
Becton Dickinson: anti-CD14 PerCP (clone 61D3), anti-CD16 PE
(clone CB16) and anti-CD163 FITC (clone GHI/61).

Neuropsychological testing

A brief battery of cognitive measures was administered based on
age of the participants and cultural application. Verbal and
Performance Intelligence Quotients (VIQ and PIQ) were derived
from the Thai versions of the Wechsler Intelligence Scale for
Children III for ages 6–17 (WISC III) and the Wechsler Preschool
and Primary Scale of Intelligence III (WIPSI III) for ages 2–7.25.
These two measures were only administered to children in
Thailand as versions were not available for Cambodia. Children
from both Thailand and Cambodia were administered the Beery
Visual Motor Integration (VMI) to assess visual-motor
coordination, and Color Trails 2 was administered to assess
psychomotor speed, executive function and visual scanning [2].
The neuropsychological testing was initiated as part of a substudy
after the main study commenced; therefore, the first assessment

was completed at a median of 36 (IQR 0–60) weeks after
enrolment. Subsequently children performed the
neuropsychological tests every 24 weeks until week 144.

Statistical analysis
Statistical analysis was conducted with Stata version 13
(Statacorp, College Station, TX, USA) and graphs were
constructed using GraphPad Prism version X (GraphPad Software
Inc, San Diego, CA, USA). Participants’ socio-demographic
characteristics were described as median [interquartile range
(IQR)] or n (%). Neuropsychological test scores that were
standardised according to US controls were described as mean
[standard deviation (SD)]. Changes in neuropsychological test
scores from baseline to week 144 between children who started
ART were calculated as the mean difference in change scores
(95% confidence interval) between ART and no ART groups [19].
Formal comparison of the change in monocyte percentages and
sCD163 concentrations from baseline to week 144 between the
ART and no ART groups, and children in the early and deferred
arms, were completed using the Wilcoxon rank sum test.
Spearman’s rank correlation coefficient was used to correlate
sCD163 concentration and monocyte percentages with
neurocognitive test scores at week 144.

Results

Cohort characteristics

All children had been infected with HIV perinatally and were
ART-naïve at baseline. The ART group included 201 children
treated with ART for at least 24 weeks. These children were either
randomised to the early ART arm and initiated ART at baseline
(n=142) or they were in the deferred arm and initiated ART when
CD4 declined below 15% (n=59). This latter group started ART
at a median (IQR) of 61 (29–76) weeks into the study.
Seventy-eight children in the deferred arm did not start ART
because they maintained their CD4 above 15% and are included
here as the ‘no ART’ group. The ART and no ART groups had
similar demographic and HIV disease characteristics at baseline
(Table 1). The median age of the cohort was 6 years. There were
slightly more males than females and more Thais than
Cambodians. Most had mild HIV symptoms with a median CD4 of
20% and HIV RNA of 4.8 log10 copies/mL. The majority came
from low-income families with caregivers who had less than
secondary school education. By week 144, the ART group had
significantly higher CD4% and count, and lower HIV RNA. Most
(92%) achieved HIV RNA below 50 copies/mL. Their median
duration of ART was 144 (IQR 119–144) weeks. The most
common regimen used (68%) was zidovudine (AZT)/lamivudine
(3TC)/nevirapine (NVP). The other regimens were
AZT/3TC/lopinavir/ritonavir(r) (LPV/r) in 12%, AZT/3TC/
efavirenz (EFV) in 6% and abacavir (ABC)/3TC/NVP in 6%.

Neuropsychological performances did not differ between the two
groups at the baseline assessment. Both groups exhibited VIQ
and PIQ scores approximately two standard deviations below US
norms with no significant differences by ART status. Similarly, the
groups did not differ significantly on the Beery VMI or the Color
Trails 2 test. By week 144, there were no differences in the mean
changes from first test to week 144 between the ART vs no ART
groups for all tests.

sCD163 and monocyte subsets

Figure 1 illustrates the sCD163 levels and frequencies of
monocyte subsets between week 0 and week 144 for the ART
and no ART groups. A significant decline in sCD163 at week 144
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Table 1. Characteristics of children, by ART status at week 144

Characteristic Total (n=279) ART (n=201) No ART (n=78)

Week 0

Age (years) 6 (3–8) 6 (3–8) 6 (4–8)

Male:Female 165(59):114(41) 109(54):92(46) 56(72):22(28)

Thai:Cambodian 167(60):112(40) 116(58):85(42) 51(65):27(34)

CDC

N 4 (1) 3 (1) 1 (1)

A 170 (61) 124 (62) 46 (59)

B 105 (38) 74 (37) 31 (40)

CD4% 20 (17–23) 19 (17–22) 21 (18–25)

CD4 cell count (cells/mm3) 620 (449–851) 610 (425–833) 694 (543–876)

HIV RNA log10 copies/mL 4.80 (4.35–5.00) 4.92 (4.70–5.00) 4.51 (4.01–4.89)

Income

Very low 26 (9) 19 (9) 7 (9)

Low 130 (47) 93 (46) 37 (47)

Average 72 (26) 51 (25) 21 (27)

Above average 4 (1) 2 (1) 2 (3)

Unknown 47 (17) 36 (18) 11 (14)

Primary caregiver

Parent 173 (62) 127 (63) 46 (59)

Other 98 (35) 69 (34) 29 (37)

Unknown 8 (3) 5 (3) 3 (4)

Education of primary caregiver

None 39 (14) 28 (14) 11 (14)

Elementary 122 (44) 83 (41) 39 (50)

Secondary/vocational school 92 (33) 68 (34) 23 (29)

Bachelor’s degree or higher 17 (6) 15 (7) 2 (3)

Unknown 9 (3) 6 (3) 3 (4)

VIQ* 72 (12.2) n=154 72 (12.0) n=106 74 (12.7) n=48

PIQ* 79 (12.6) n=156 78 (12.1) n=107 80 (13.6) n=49

Beery VMI* 85 (16.3) n=271 84 (15.9) n=196 88 (17.1) n=75

Color Trail 2 standard score* 78 (16.4) n=158 79 (16.6) n=107 77 (16.2) n=55

sCD163 (ng/mL) 3713 (2665–4650) n=237 3806 (2710–4900) n=174 3334 (2399–4555) n=63

%CD14+/CD16+/HLA-DR+ 10.3 (5.4–16.2) n=141 10.6 (6.9–16.2) n=105 6.7 (4.5–17.0) n=36

%CD14+/CD16+/CD163+ 4.8 (2.5–16.2) n=137 5.3 (2.9–9.3) n=101 3.75 (1.7–7.65) n=36

%CD14low/CD16+/CD163+ 18.7 (9.1–24.5) n=121 18.6 (8.3–25.1) n=90 20.2 (12.0–24.2) n=31

Week 144

Duration of ART N/A 144 (119–144) N/A

CD4% 30 (24–35) 32 (27–37) 21 (17–25)

CD4 cell count (cells/mm3) 833 (595–1103) 938 (749–1182) 552 (436–711)

HIV RNA log10 copies/mL 1.70 (1.60–3.53) 1.60 (1.60–1.70) 4.38 (3.85–4.72)

% with HIV RNA <50 copies/mL 184 (66) 184 (92) 0 (0)

VIQ 71 (11.9) n=113 70 (11.5) n=77 73 (12.5) n=36

PIQ 83 (14.5) n=114 83 (13.9) n=78 84 (16.0) n=36

Beery 86 (14.1) n=267 85 (14.6) n=192 88 (12.3) n=75

Color Trail 2 standard score 86 (14.9) n=156 85 (14.9) n=105 89 (14.8) n=51

sCD163 (ng/mL) 1468 (784–2792) n=181 1049 (648–1724) n=127 3348 (2269–4419) n=54

%CD14+/CD16+/HLA-DR+ 5.8 (3.0–10.0) n=277 4.8 (2.5–8.7) n=199 7.85 (5.2–12.8) n=78

%CD14+/CD16+/CD163+ 3.0 (1.3–5.1) n=277 2.9 (1.2–4.8) n=199 3.55 (1.4–7.1) n=78

%CD14low/CD16+/CD163+ 11.3 (5.31–19.9) n=181 10.95 (5.29–19.9) n=127 12.9 (5.6–18.8) n=54

Data presented as median (IQR) or n (%), except for neurocognitive test data which is standardised and presented as mean (SD)
* At time of the first neuropsychological testing: a median of 36 (IQR 0–60) weeks from enrolment
CDC: Center for Disease Control and Prevention clinical staging
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was evident in the ART group (median change –2533 mg/mL,
IQR –3774 to –1702 ng/mL) compared to the no ART group
(median change –159 ng/mL, IQR –971 to 711 ng/mL,
P<0.0001).

The frequency of the CD14+/CD16+/HLA-DR+ showed a greater
reduction after ART (median change –6.1%, IQR –9.6 to –2.1) vs
no ART (median change –1.7%, IQR –9.9 to 3.5, P<0.001) as did
the CD14+/CD16+/CD163+ cell subset (median changes of –
3.3%, IQR –5.6 to –0.4 for ART group vs –1.5%, IQR –4.4 to 1.6
for no ART group, P=0.03). In the CD14low/CD16+/CD163+
monocyte subset, the median change from baseline was negative
in the ART group (–3.4, IQR –10.7 to 5.31) and positive in the no
ART group (2.4, IQR –8.0 to 6.56), but the difference in change
between groups was not significant (P>0.05).

In the ART group, the changes in these markers in the subset of
children who initiated ART at a higher CD4 (early arm) vs those
who had CD4 decline prompting ART initiation (deferred arm)
were similar, and not significantly different between treatment
arms. Median change in sCD163 was –2521 (–3774 to –1729)
ng/mL in the early arm and –2787 (–4494 to –1050) ng/mL in
the deferred arm. Median change in CD14+/CD16+/HLA-DR+
monocyte frequency was –6.0% (IQR –9.6% to –1.7%) in the
early arm and –6.4% (–9.6% to –3.1%) in the deferred arm.
Median change in the frequency of CD14+/CD16+/CD163+
monocytes was –2.9% (IQR –5.8% to 0%) in the early arm vs –
3.6% (–5.1% to –0.8%) in the deferred arm, and the median
change in the frequency of CD14low/CD16+/CD163+ monocytes
was –2.0% (IQR –8.6% to 6.4%) in the early and –9.6% (–20.6%
to 2.5%) in the deferred arm.

Relationship between sCD163 and monocyte subsets with
neuropsychological performance

The relationships between sCD163 and monocyte subsets with
neuropsychological performance were examined at week 144
(Figure 2). Higher frequency of CD14+/CD16+/HLA-DR+ cells
was associated with higher VIQ (Spearman’s rho=0.41, P<0.001),
Beery VMI performance (Spearman’s rho=0.16, P=0.01), and
Color Trails 2 scores (Spearman’s rho=0.16, P=0.05). Higher
CD14+/CD16+/CD163+ percentages were also associated with
higher Color Trails 2 performance (Spearman’s rho=0.21,
P=0.01). Finally, higher percentage of CD14low/CD16+/CD163+
cells correlated with higher VIQ scores (Spearman’s rho=0.41,
P=0.002). For each of the neuropsychological tests, there was
no other statistically significant association with sCD163 level or
frequency of monocyte subsets.

Discussion
Our study observed significant reductions in markers of monocyte
activation after ART. The sCD163 level and frequencies of
CD14+/CD16+/HLA-DR+ and CD14+/CD16+/CD163+ cells were
significantly lower in the treated children compared to the
untreated group. The PREDICT trial provided a unique
opportunity to evaluate sCD163 longitudinally and monocyte
subsets before and after ART, as well as assess their relationships
to neuropsychological testing in well-characterised children who
had high CD4 cell counts and no advanced HIV disease [2,17].
Importantly, the untreated group were children ≥5 years old who
maintained a relatively high CD4 count (median 552 cells/mm3)
throughout the 3-year study, and many would not have been
eligible for ART under the current World Health Organization
guideline [20]. This suggests persistent monocyte activation in
untreated children who are long-term non-progressors.

sCD163 is a marker of monocyte activation and the levels are
reduced by ART. However, in one study, sCD163 levels only
returned to normal in adults treated in early infection and not in
‘late treaters’ [14]. Our children were on ART regimens considered
highly penetrable into the central nervous system (CNS)
compartment (CNS penetration effectiveness scores of 9 to 10)
[21]. Nevertheless, the levels of sCD163 in both the treated and

Figure 1. Soluble CD163 (sCD163) and monocyte subsets at baseline and week 144
in children who are on ART vs those not on ART.
(a) sCD163 levels; (b) Frequency of CD14+/CD16+/HLA-DR+ cells;
(c): Frequency of CD14+/CD16+/CD163+ cells: (d) Frequency of
CD14low/CD16+/CD163+ cells

Figure 1. NB: There were 201 children in the ART group (●) and 78 in the 
no ART group (▲)
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untreated groups in our study were higher than that previously
reported in a group of 144 US children with HIV (median 487
ng/mL). The reasons could be the longer period of viral
suppression of about 10 years or more in that study and the
differences in the manufactured test kits [22]. In a study of virally
suppressed adults, a median sCD163 level of 1401 ng/mL was
observed amongst those with HIV-associated neurocognitive

disease (HAND) [13]. Our untreated children had levels that were
3-times higher whereas the treated children had similar levels to
the adults with HAND. Long-term follow-up will be required to
understand the effects of persistent monocyte activation on
health outcomes in the children in our study.

The study by Burdo et al. identified significant associations
between sCD163 levels and impaired performances in the
cognitive domains of learning and executive function [13]. We
did not see a correlation between sCD163 and any of the
neuropsychological testing, which could be due to several
reasons. First, our neuropsychological battery did not test
specifically for learning abilities and executive function was
measured in only one test. Secondly, we used continuous
neuropsychological testing scores instead of impairment
classifications because normative reference samples do not exist
for Thai and Cambodian children.

Presence of CD163-expressing macrophages has been
documented in the perivascular lesions of encephalitic brains from
SIV-infected macaques, implicating them in SIV
neuropathogenesis [23]. Studies of autopsied brain tissues from
HIV-infected adults have illustrated the role of CNS inflammation
in HIV neuropathogenesis [24,25]. CD163 and HLA
DR-expressing macrophages and microglial infiltration were
observed in well controlled HIV, and to a larger extent, in those
with encephalitis, suggesting that CNS inflammation occurs
throughout the spectrum of HIV disease severity [25]. High
frequencies of circulating monocytes are associated with HIV
brain complications in children and adults [9,26]. Studies in adults
showed infection of CD14+/CD16+ monocytes correlates with
HAND [27]. Brain NAA/Cr, an imaging marker for neuronal injury,
also inversely correlated with circulating CD14low/CD16+
monocytes [28]. The frequency of CD14+/CD16+/HLA-DR+ cells
declines after successful ART in adults but data in children are
lacking [14]. There are also very few data on the effects of ART
on frequencies of CD14+/CD16+/CD163+ and
CD14low/CD16+/CD163+ cells [14]. In our study we observed
reductions in all three monocyte populations in the ART group
but not in the untreated group. Unexpectedly, we observed an
association between higher frequencies of the activated
monocytes and better performance on several neuropsychological
measures (VIQ, Beery and Color Trails 2). Similarly, we observed
positive associations between CD14low/CD16+/CD163+ with
VIQ and CD14+/CD16+/CD163+ with Color Trails 2. Higher
frequency of activated CD8+ T cells (CD8+/CD38+/HLA-DR+)
has been shown to correlate with better Full Scale IQ scores in
extensively treated perinatally HIV-infected children [29]. In
contrast to the poor prognostic implication of activation in adults
[30,31], it is conceivable that children living with HIV since birth
have adapted to a state of immune activation. Some have
postulated that an activation-dependent mechanism could help
children cope with high viral turnover, and better survival was
observed in children with high frequency of activated CD8+
T cells [19,32]. It is also possible that the associations, although
statistically significant, could have limited clinical relevance.

In summary, in two groups of children with relatively high CD4
cell counts, we observed the benefit of ART in lowering sCD163,
a marker of monocyte activation. sCD163 levels were not
predictive of neuropsychological testing scores. The activated and
perivascular monocyte populations also declined in frequency
after ART. Higher frequencies of these cells were associated with
better performance on several neuropsychological measures,
suggesting a possible protective role of monocyte activation in
perinatal HIV infection.

Figure 2. The associations between verbal intelligence quotient (VIQ) scores and
sCD163 and monocyte subsets at week 144
(a) VIQ vs sCD163 levels; (b) VIQ vs frequency of CD14+/CD16+/HLA-
DR+ cells; (c) VIQ vs frequency of CD14+/CD16+/CD163+ cells; 
(d) VIQ vs. frequency of CD14low/CD16+/CD163+ cells.

Figure 2. NB: There were 201 children in the ART group (●) and 78 in the 
no ART group (▲)
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