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Abstract: There is a gap in understanding the effect of the essentialω-3 andω-6 long-chain polyun-
saturated fatty acids (LCPUFA) on Phase I retinopathy of prematurity (ROP), which precipitates
proliferative ROP. Postnatal hyperglycemia contributes to Phase I ROP by delaying retinal vascular-
ization. In mouse neonates with hyperglycemia-associated Phase I retinopathy, dietaryω-3 (vs. ω-6
LCPUFA) supplementation promoted retinal vessel development. However, ω-6 (vs. ω-3 LCPUFA)
was also developmentally essential, promoting neuronal growth and metabolism as suggested by a
strong metabolic shift in almost all types of retinal neuronal and glial cells identified with single-cell
transcriptomics. Loss of adiponectin (APN) in mice (mimicking the low APN levels in Phase I
ROP) decreased LCPUFA levels (includingω-3 andω-6) in retinas under normoglycemic and hyper-
glycemic conditions. ω-3 (vs. ω-6) LCPUFA activated the APN pathway by increasing the circulating
APN levels and inducing expression of the retinal APN receptor. Our findings suggested that both
ω-3 andω-6 LCPUFA are crucial in protecting against retinal neurovascular dysfunction in a Phase I
ROP model; adequateω-6 LCPUFA levels must be maintained in addition toω-3 supplementation to
prevent retinopathy. Activation of the APN pathway may further enhance theω-3 andω-6 LCPUFA’s
protection against ROP.

Keywords: retinal vessel; retinal neuron; retinopathy of prematurity; LCPUFA; adiponectin; hyperglycemia

1. Introduction

Retinopathy of prematurity (ROP) is a common complication of premature birth and a
leading cause of blindness in children worldwide [1]. ROP, a two-phased disease, occurs in
premature infants born with an incompletely vascularized retina. In Phase I ROP, vessels do
not grow and the retina becomes hypoxic causing uncontrolled vascular growth (Phase II
ROP). Current treatments controlling oxygen-regulated factors such as vascular endothelial
cell growth factor (VEGF) focus on the late vision-threatening uncontrolled retinal vessel
growth (Phase II ROP) [2–4]. However, the underlying problem of delayed retinal vascular
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development, which initiates the disease, remains unaddressed. A major (understudied)
risk factor for ROP is perinatal hyperglycemia [5–12].

In the last two decades, clinical investigations have shown that postnatal hyper-
glycemia in the first few weeks of life, independent of oxygen, is strongly associated with
ROP. Hyperglycemia commonly occurs in ~80% of preterm infants with a birth weight
of less than 750 g and ~45% with a birth weight of less than 1000 g [13]. Infants with
hyperglycemia are also smaller and more immature than those with normoglycemia [13].
Low gestational age is associated with hyperglycemia in extremely low birth weight infants
in the first 2 weeks of life, and hyperglycemia increases the incidence of ROP [14]. Each
10 mg/dL increase of mean blood glucose correlates with an increased ROP risk [7]. Infants
with ROP also experience more days of hyperglycemia. A higher number of mean days of
hyperglycemia significantly associates with ROP [8]. Hyperglycemia in the first week of life
is independently associated with ROP after adjustment for gestational age, oxygen, respira-
tory support, and poor weight gain [10]. The frequency of hyperglycemia in infants with
ROP is six times higher than those without ROP [6]. Hyperglycemia during the first 10 and
30 days of life also predicts ROP severity [12]. However, experimental investigations of hy-
perglycemia on ROP progression are lacking, because the commonly used oxygen-induced
retinopathy model mimics the oxygen-regulated aspects of ROP but not the hyperglycemic
aspect. In order to better understand the role of hyperglycemia in retinal vascular de-
velopment, we recently established a mouse model of hyperglycemia-associated Phase I
retinopathy with suppression of normal vascular development. Neonatal hyperglycemia is
induced through daily administration of streptozotocin (STZ) from postnatal day 1 to 9 [15].
Induction of postnatal hyperglycemia delays retinal vascularization, modeling Phase I ROP.
There are limitations to this model. As hyperglycemia starts around P8 when the superficial
vascular net has almost completely formed. Thus we do not see delayed development in
the superficial network formation but only in the deep retinal vessel growth, which follows
the superficial vascular formation in mice (and also in human). We found that VEGF was
not the primary driver of the vessel growth delay in hyperglycemia-associated Phase I
retinopathy, suggesting additional evidence of other growth factors involved in ROP patho-
genesis. Another limitation is that our model only reflects hyperglycemia resulting from
insulin deficiency but not insulin resistance which is also found in premature infants [16].

In premature infants, there is a lack of bothω-3 andω-6 LCPUFA (docosahexaenoic
acid, DHA, and arachidonic acid, AA) normally transferred from the mother to the fetus
in utero during the third trimester [17,18]. Several clinical studies evaluated the effects of
supplementing DHA on the development of ROP and visual function in premature infants.
However, the results were inconsistent. In some ROP studies, supplementing premature
infants with a fish-oil containing lipid emulsion (rich inω-3 LCPUFAs) vs. soybean oil (rich
inω-6 linoleic acid) or olive oil-based lipid emulsion (rich in oleic acid) reduced the risk for
severe ROP [19–21]. Preterm infants receiving a mixed oil lipid emulsion with fish oil vs. an
olive oil emulsion had the same incidence of any ROP or severe ROP [22]. Hellström et al.
found that adequate AA levels are needed for DHA protection against severe ROP [23].

With respect to visual function, supplementing premature infants with formula at
0.32% DHA and 0.64% AA of total fatty acids improved visual acuity at 12 months of
age [24]. However, increasing DHA to 0.64% or 0.96% (with 0.64% AA supplementation)
was not associated with additional improvement of visual acuity [24]. Premature infants
receiving human milk from mothers ingesting tuna oil (rich in ω-3 DHA and eicosapen-
taenoic acid EPA) vs. soy oil (rich inω-6 linoleic acid), or receiving formula supplemented
with high DHA (1% DHA vs. ~0.3% DHA), had better visual acuity at 4 months corrected
age [25]. In another study, very preterm infants supplemented with human milk with 1%
DHA vs. 0.2–0.3% DHA in the first months of life did not have an improved visual function
at 7 years of age [26]. The reasons behind these inconsistent observations have yet to be
uncovered. A better understanding of the roleω-3/ω-6 LCPUFAs in retinal development
will help determine the most effective lipid intervention for protection against ROP in
premature infants.
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Our previous studies demonstrated that low APN levels in premature infants corre-
lated with delayed retinal vascularization in Phase I ROP [15]. APN mediates the protective
effects ofω-3 LCPUFA against retinal vascular pathology in mice modeling proliferative
retinopathy [27,28]. ω-3 LCPUFA also further increases APN levels [28,29]. Theω-3 LCP-
UFA DHA andω-6 LCPUFA AA are essential lipids and critical for the growth and function
of the brain, retina, and vascular system [30,31]. In this study, we evaluated the relationship
between APN and retinal lipid composition as well as the ω-3/ω-6 LCPUFA balance as
they relate to normal retinal vascularization in Phase I ROP.

In this study using the hyperglycemia-associated Phase I ROP model, we investigated
the role ofω-3 LCPUFA in retinal development with diets enriched with eitherω-3 or ω-6
LCPUFA lipids (ω-3 diet with 1% DHA plus 1% EPA and no AA, vs. ω-6 diet with 2% AA
and no DHA or EPA) to expand our current knowledge of retinal LCPUFA imbalance in
retinal neurovascular disorders. We also found a large change in retinal LCPUFA content
in APN-deficient mice with Phase I ROP.

2. Materials and Methods
2.1. Study Approval

All animal studies adhered to the Association for Research in Vision and Ophthal-
mology Statement for the Use of Animals in Ophthalmic and Vision Research and were
approved by the Institutional Animal Care and Use Committee at Boston Children’s Hospi-
tal (19-04-3913R).

2.2. Neonatal Mouse Model of Hyperglycemia-Associated Phase I ROP

In the mouse hyperglycemia-associated retinopathy model (referred as Phase I ROP
through the text) with delayed retinal vascularization, hyperglycemia was induced with
STZ (50 mg/kg) administered intraperitoneally daily from postnatal day P1 to P9 as
previously described [15]. STZ-treated mice vs. non-STZ-treated mice had lower body
weight which can affect retinal vascular development. Therefore, the litter size in the STZ-
treated group was limited to six pups vs. non-STZ-treated (eight to nine pups per litter)
mice to achieve equal weight gain [15]. Intravitreal injection of STZ has no direct impact
on retinal vessel growth [15]. In mouse retinas, the superficial layer forms from P1 to P10,
the deep layer from P8 to P12, and the intermediate layer from P14 to P20, each of which
grows from the central to the peripheral retina [32]. At P10, the mice were euthanized
with ketamine/xylazine and retinas were collected. Blood samples were collected for
serum. Body weight and blood glucose levels were recorded. Both female and male pups
were used.

For dietary LCPUFA supplementation, C57BL/6J nursing dams and pups (wild-type
(WT)) and APN-deficient (Apn−/−) mice (Jackson Laboratory, #008195, backcrossed to
C57BL/6J for 11 generations) were fed with completely defined isocaloric rodent feeds
with 10% (w/w) high oleic safflower oil containing either 2%ω-3 LCPUFAs (1% DHA and
1% EPA) or 2% ω-6 LCPUFAs (AA, control for ω-3) from birth or P6 [27,28,33–35]. The
DHA, EPA, and AA oils were from DSM (Heerlen, The Netherlands) and the customized
feed was produced at Research Diets, Inc. (New Brunswick, NJ, USA) The diet number and
the composition of the feed is shown in Table S1. The dietary fatty acid compositions were
quantified to confirm theω-3 andω-6 diet quality (data not shown) using the same methods
for retinal lipid composition analysis described below. ω-3- andω-6-enriched diets with
all other nutrients defined were compared. The retinalω-3 andω-6 lipid composition in
the pups reflects the mother’s dietary intake of lipids, as we have previously reported [33].

2.3. Quantification of Retinal Vasculature

The retinas were stained with fluorescent Griffonia/Bandeiraea simplicifolia Isolectin
B4 (10 µg/mL in 1 mM CaCl2 in phosphate buffered saline (PBS), Molecular Probes, I21413)
overnight at room temperature. To quantify the retinal vascular network, 4–5 images
between the optic nerve head and the leading edge of vessels in the deep and superficial
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vascular layers were taken at 200×magnification on a Zeiss AxioObserver Z1 microscope
as previously described [15]. The images were then analyzed in Image J. The background
staining was cleaned manually first and the image was converted to 8-bit. The retinal
vascular network was analyzed using the Angiogenesis analyzer plugin. The number of
meshes and total vessel length per field were compared between groups.

2.4. Single-Cell Transcriptomics

Retinas from Phase I ROP (n = 3 mice) vs. vehicle PBS- (n = 3 mice) treated, or
ω-3 (n = 2 mice) vs. ω-6 (n = 3 mice) diet-fed C57BL/6J mouse littermates from the
hyperglycemia-associated Phase I ROP model were carefully dissected with their anterior
segment and retinal pigment epithelium cells removed. Retinal single-cell suspensions were
prepared using the Worthington papain dissociation system following the manufacturer’s
protocol [36,37]. A retinal cell barcoded library was prepared at the Single Cell Core at
Harvard Medical School (HMS) [38,39], sequenced at the Biopolymer Facility at HMS, and
aligned to the mouse genome at the Harvard Chan Bioinformatics Core.

Sequencing of the libraries was conducted at the HMS Biopolymer Facility using
an Agilent 4200 Tapestation instrument as previously described [40]. A corresponding
Agilent High Sensitivity D1000 ScreenTape assay was used to visualize the libraries and
check that the size and concentrations of the libraries matched the expected product. The
functional concentration was confirmed with qPCR with the KAPA Library Quantification
kit, which uses primers complementary to the sequencing flowcell oligos. All samples
were normalized in equimolar ratio for one final pool, using molarity values from the
Agilent High Sensitivity D1000 ScreenTape assay. The pool was denatured and loaded
(at 2.5 pM) onto an Illumina NextSeq 500 instrument, with a High-Output 75-cycle kit to
obtain paired-end reads (read 1 = 61 cycles; Read 2 = 14 cycles). The basecall files were then
demultiplexed using the Harvard BPF Genomics Core’s pipeline as previously reported [41].
Reads were processed with the inDrop v3 pipeline implemented in bcbio-nextgen version
1.2.4-76d5c4b. Dual cellular barcodes, sample barcodes, and UMIs were identified using
umis [42]. Cells with fewer than 500 total reads assigned to them were excluded from
further analysis. Reads were assigned to Mus musculus transcripts (GRCm38 (mm10)
release M23) using Rapmap [43] and counts of reads per transcript per unique UMI were
generated for each cell. The generated gene count matrix was used for subsequent analysis.
Raw data were deposited at Gene Expression Omnibus (GEO) and can be accessed with
accession number GSE198785.

The downstream clustering analysis was performed using R package ‘Seurat’ (version
3.2.2) [44], genes and cells were filtered so only cells with more than 300 genes detected
or genes expressed in more than 10 cells were kept. The filtered gene count matrix was
log normalized with a scale factor of 10,000 to generate the gene expression matrix. The
top 2000 high variable genes (HVGs) were selected using the ‘vst’ method from the Seurat
function FindVariableFeatures. The gene expression matrix was scaled and principal com-
ponent analysis was performed on all the HVGs of the scaled data and the top 100 principal
components were computed. The first 75 principal components were used for clustering
and UMAP visualization. Computed cell clusters at a resolution of 0.2 were assigned into
major cell classes in the retina based on canonical markers [45]. Differentially expressed
genes were identified using ‘MAST’ methods (MASTClassic) [46].

The gene enrichment analysis was performed using the ‘enrichGO’ function from R
package ‘clusterProfiler’ and the mouse annotation database ‘EnsDb.Mmusculus.v79’. The
p-value was adjusted using the Benjamini—Hochberg method with a cutoff of 0.05 on the
enrichment tests.

2.5. Real-Time PCR

RNA was prepared from mouse retinas as we previously reported [15,27]. Retinas
were lysed with QIAzol lysis reagent and 20% chloroform was added to promote the separa-
tion of RNA from DNA and protein. RNA was extracted using a PureLink® RNA Mini Kit
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(#12183018A, Ambion). RNA was then reverse transcribed using iScriptTM cDNA synthesis
kit (#1708891, Bio-Rad, Hercules, CA, USA). qPCR was performed for insulin-like growth
factor 1 (Igf1): 5′-GGCTCCAGCATTCGGAGGGC-3′, 5′-CGCTGGGCACGGATAGAGCG-
3′; Igf1r: 5′-GTGGGGGCTCGTGTTTCTC-3′, 5′-GATCACCGTGCAGTTTCCCA-3′; Kdr:
5′-CAAACCTCAATGTGTCTCTTTGC-3′, 5′-AGAGTAAAGCCTATCTCGCTGT-3′; Vegfa:
5′-GGAGACTCTTCGAGGAGCACTT-3′, 5′-GCGATTTAGCAGCAGATATAAGAA-3′. Adi-
poR1: 5′-TCTTCGGGATGTTCTTCCTGG-3′, 5′-TTTGGAAAAAGTCCGAGAGACC-3′.
Quantitative real-time PCR was generated with the SYBR Green Master mix kit using
an Applied Biosystems 7300 Sequence Detection System. Gene expression was nor-
malized to the housekeeping gene CyclophilinA: 5′-CAGACGCCACTGTCGCTTT-3′; 5′-
TGTCTTTGGAACTTTGTCTGCA-3′ using the ∆∆Ct method. The relative mRNA levels
were calculated as the ratio of change versus control group.

2.6. Electroretinography (ERG)

Hyperglycemia was induced in C57BL/6J mice with intraperitoneal injection of
25 mg/kg STZ daily from P2 to P12. The nursing dams were fed a ω-3 or ω-6 LCP-
UFA diet after giving birth. Retinal neuronal function was examined with ERG using a
Colordome Ganzfeld stimulator and Epsion E2 amplifier (Diagnosys LLC, Lowell, MA,
USA) as we previously described [15,36,47]. At P30, mice were dark-adapted overnight.
On the second day, the mice were anesthetized with ketamine/xylazine, and their pupils
were dilated with Cyclomydril (Alcon, Fort Worth, TX, USA). The stimuli were “green”
light-emitting diode flashes of doubling intensity from ~0.0064 to ~2.05 cd·s·m−2 and then
“white” xenon-arc flashes from ~8.2 to ~1050 cd·s·m−2. The rod photoreceptor function was
quantified by fitting the free parameters in a model of the biochemical processes involved
in the activation of phototransduction to the electroretinographic a-waves [48–50]. The
postreceptor activity (e.g., bipolar cell function) was examined by fitting the Naka-Rushton
equation [51] to the response-vs-intensity relationship of the b-wave. Total retinal sensitivity
(Sm) was estimated as previously described [52]. The ERG data are presented as the log
change from theω-6 only diet-fed mice (∆LogControl).

2.7. Western Blot

A total of 1 µL mouse serum was incubated with Laemmli’s SDS sample buffer (BP-
110R; Boston BioProducts Inc., Milford, MA, USA) for one hour at room temperature to
maintain the secondary structure of APN as shown before [28]. The lysates were then
loaded onto an SDS-PAGE gel and transferred onto a nitrocellulose membrane. The
membrane was blocked with 5% BSA and incubated overnight with primary antibody
APN (1:1000, AF1119; R&D, Minneapolis, MN, USA). The protein bands were detected by
using corresponding horseradish peroxidase–conjugated secondary antibodies (1:5000) and
enhanced chemiluminescence (ECL, Pierce, Waltham, MA, USA). The digital images were
visualized with a Bio-Rad ChemiDoc Touch Imaging System and the band intensity was
quantified with Image J.

2.8. Lipidomic Fatty Acid Profiling of Mouse Retinas

P10 Apn−/− and C57BL/6J retinas under normoglycemic and hyperglycemic con-
ditions were collected for retinal lipid composition analysis. Six to eight retinas were
combined as n = 1 for lipid analysis. Total retinal lipids were extracted with chloroform,
methanol, and 0.88% KCl (2:1:0.75 by volume). Individual phospholipid pools were isolated
by thin-layer chromatography (TLC) using TLC H-plates (Analtech; Newark, DE, USA).
Choline glycerophospholipids (ChoGpl) and ethanolamine glycerophospholipids (EtnGpl)
were fractionated along with authentic standards (Avanti; Alabaster, AL, USA) using chlo-
roform, methanol, 2-propanol, 0.25% KCl (w/v), and triethylamine (30:9:25:6:18 by volume).
Fractionated bands were sprayed with 8-anilino-1-naphthalene sulfonic acid (0.1% w/v),
visualized under UV light, and collected in a test tube with a known quantity of heptade-
canoic acid (17:0) standard. Fatty acids from each phospholipid pool were converted into
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fatty acid methyl esters (FAME) with 14% boron trifluoride-methanol. ChoGpl and EtnGpl
were converted at 100 ◦C for 1 h. FAME were quantified by gas chromatography-flame
ionization detection (Agilent 7890A gas chromatograph coupled with fame ionization
detector; Agilent Technologies Inc.; Santa Clara, CA, USA). The concentration of each fatty
acid was quantified by peak comparison to 17:0 (heptadecanoic acid) standard. A heatmap
was generated using the ratio of change in percent mol with Morpheus, Broad Institute.

2.9. Statistical Methods

Researchers were blinded to the treatment conditions. Two-tailed unpaired t-test,
or ANOVA test was used for comparison of results as specified in the figure legends
(Prism v7.0; GraphPad Software, Inc., San Diego, CA, USA). p < 0.05 was considered as
statistically significant.

3. Results
3.1. Dietary ω-3 LCPUFA Promoted Retinal Vessel Growth in Phase I ROP

We have previously reported that hyperglycemia causes delayed development of the
deep retinal vasculature in the Phase I ROP mouse model [15]. To examine the impact
of ω-3 LCPUFA on retinal development, we fed the STZ-induced C57BL/6J (WT) with
defined diets enriched with either 2% ω-3 LCPUFA (1% DHA and 1% EPA, no AA) or
control 2% ω-6 LCPUFA (2% AA, no DHA or EPA, isocaloric control diet) from birth
to P10 (Figure 1A). In normoglycemic mice, dietary supplementation with ω-3 versus
ω-6 LCPUFA produced denser deep and superficial vascular networks (Figure S1). In
hyperglycemic mice (with onset of hyperglycemia after formation of the superficial vascular
network), dietary supplementation withω-3 versusω-6 LCPUFA resulted in denser deep
vascular patterning and no significant difference in the superficial vasculature (Figure 1B,C).
We found that supplementation withω-3 versusω-6 LCPUFA diet right before deep retinal
vessel growth starts [32] (P6 to P10) had a direct impact on promoting deep retinal vascular
patterning (Figure 2A–D). We also observed that the deep vascular network in Phase I ROP
mice fed aω-6 LCPUFA diet from P6 to 10 was denser than those fed from birth to P10. We
speculated that the earlier exposure of the nursing dam to the unbalanced LCPUFA diet
without ω-3 LCPUFA led to poorer retinal vasculature development in the Phase I ROP
model. Comparable body weight and blood glucose was observed inω-3 orω-6 LCPUFA
fed C57BL/6J mice, suggesting that the differences in retinal vascular development were
not due to overall body growth and modulation of hyperglycemia (Figures 1 and 2).

3.2. Dietary ω-6 LCPUFA Facilitated Retinal Neuronal Maturation

To further understand the impact of ω-3 versus ω-6 LCPUFA on retinal cellular
function in Phase I ROP, we examined differentially expressed genes in the major retinal
cells (rods, cones, Müller glia, bipolar cells, and amacrine cells) by comparingω-3 vs. ω-6
LCPUFA diets in Phase I ROP mice using single-cell transcriptomics data. Cells from
all groups at P10 were pooled, subjected to RNA sequencing, and then clustered and
assigned into major cell classes based on the expression of canonical markers. Differentially
expressed genes between the two conditions were therefore assessed in each cell class (See
Methods for details) (Figure 3A–C). The expression of Igf1 (logFC = 0.34834 in bipolar
cells, p < 0.01) and Igf1r (logFC = 0.34605, p < 0.001 in rods, logFC = 0.29324, p < 0.05 in
cones, logFC = 0.29486, p < 0.01 in bipolar cells, logFC = 0.28019, p < 0.05 in amacrine cells,
logFC = 0.27061, p < 0.05 in RGCs) was higher in ω-3 versus ω-6 LCPUFA-fed mice, in
line with increased total mRNA levels of Igf1 and Igf1r inω-3-fed mouse retinas validated
with qPCR (Figure 3D). There were no significant differences in Vegfa expression identified
both in single-cell analysis and qPCR, in line with our previous observations that dietary
supplementation ofω-3 vs. ω-6 LCPUFA does not change retinal Vegfa expression [27,33].
These finding suggested that single-cell analysis was a reliable approach for quantifying
gene expression levels in retinas of theω-3 versusω-6 LCPUFA-fed mice.
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Figure 1. Dietary ω-3 vs. ω-6 LCPUFA supplementation from birth promoted retinal vessel growth 
in Phase I ROP mice. (A) Schematics of hyperglycemic induction in C57BL/6J mice. An amount of 
50 mg/kg STZ was i.p. injected daily from P1 to P9. The mice were fed a ω-3 or ω-6 LCPUFA-
enriched diet from birth until P10 when the retinas were collected for analysis. (B) Representative 
images of retinal vessels in P10 C57BL/6J STZ-mice fed on ω-3 or ω-6 LCPUFA-enriched diet from 
birth. Retinal vessels were stained with isolectin. Scale bar, 50 μm. (C) ω-3 versus ω-6 LCPUFA-
enriched diet promoted retinal vascular network formation at P10 STZ. n = 9–11 eyes. Unpaired t-
test. ** p < 0.01, n.s., no significance. Data was represented as mean ± SEM. (D) Comparable body 
weight in ω-3 versus ω-6 LCPUFA-fed C57BL/6J mice. n = 9–11 mice. Unpaired t-test. n.s., no 
significance. Data are represented as mean ± SEM. 
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P10 when the retinas were collected for analysis. (B) Representative images of deep retinal vessels 
in P10 C57BL/6J STZ mice fed a ω-3 or ω-6 LCPUFA-enriched diet. Retinal vessels were stained with 
isolectin. Scale bar, 50 μm. (C) ω-3 versus ω-6 LCPUFA-enriched diet promoted retinal vascular 
network formation at P10. n = 17–21 eyes. Unpaired t-test. ** p < 0.01. Data are represented as mean 
± SEM. (D) Comparable body weight and blood glucose levels in ω-3 versus ω-6 LCPUFA-fed 
C57BL/6J mice. n = 13 mice. Unpaired t-test. n.s., no significance. Data are represented as mean ± 
SEM. 
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enriched diet from birth until P10 when the retinas were collected for analysis. (B) Representative
images of retinal vessels in P10 C57BL/6J STZ-mice fed onω-3 orω-6 LCPUFA-enriched diet from
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Figure 2. Dietary LCPUFA directly promoted deep retinal vessel growth in Phase I ROP. (A) Schemat-
ics of hyperglycemic induction in C57BL/6J mice. An amount of 50 mg/kg STZ was i.p. injected daily
from P1 to P9. The mice were fed aω-3 orω-6 LCPUFA-enriched diet from P6 until P10 when the
retinas were collected for analysis. (B) Representative images of deep retinal vessels in P10 C57BL/6J
STZ mice fed aω-3 or ω-6 LCPUFA-enriched diet. Retinal vessels were stained with isolectin. Scale
bar, 50 µm. (C)ω-3 versusω-6 LCPUFA-enriched diet promoted retinal vascular network formation
at P10. n = 17–21 eyes. Unpaired t-test. ** p < 0.01. Data are represented as mean ± SEM. (D) Compa-
rable body weight and blood glucose levels inω-3 versusω-6 LCPUFA-fed C57BL/6J mice. n = 13
mice. Unpaired t-test. n.s., no significance. Data are represented as mean ± SEM.
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Figure 3. Single-cell analysis of retinas from ω-3 and ω-6-enriched diet-fed Phase I ROP mice.
(A) UMAP visualization of the dataset, color represents cell classes. (B) Proportions of each cell
class captured in the dataset, the exact cell number of the top five classes are labeled in the pie chart.
(C) Visualization of canonical marker gene expressions in each cluster using violin plot. On the
x-axis is the expression level of the genes marked on top of each column, while on the y-axis is the
clusters computed using resolution of 0.2 (see Methods). (D) Aω-3 versusω-6 LCPUFA-enriched diet
increased gene expression of total retinal Igf1 and Igf1r, not Vegfa, identified with qPCR. n = 4–5 mice.
Unpaired t-test. * p < 0.05, n.s., no significance. Data are represented as mean ± SEM.
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We found a higher expression of genes involved in visual development, including
visual perception, eye development, axon development, and synapse organization related
gene ontology terms in rod, cone, bipolar, and amacrine cell clusters of Phase I ROP vs.
normal control retinas (Figure S2A,B). In mouse retinas, neurons complete proliferation and
differentiation around two weeks after birth [53]. The current data suggest a possible delay
in neural retinal development in Phase I ROP vs. control retinas at P10. We also observed
a significantly lower expression of genes involved in metabolic pathways in rod, cone,
bipolar, and amacrine cell clusters in Phase I ROP vs. control retinas (Figure S3A,B). Taken
together, the Phase I ROP vs. normal control retinas had a delay in neural proliferation and
differentiation, accompanied by a lower metabolism. Our findings were consistent with
our previously reported decreased retinal neuronal signals and reduced retinal thickness
as well as decreased metabolic gene expression in photoreceptors in Phase I ROP vs.
control retinas [15].

Interestingly, the ω-6 vs. ω-3 LCPUFA diet was associated with a lower expression of
visual signal transduction and visual development genes in rod, cone, bipolar, and amacrine
cell clusters (Figure 4), suggesting a faster completion of retinal neuronal proliferation and
differentiation inω-6 vs. ω-3-fed Phase I ROP mice. Gene ontology analysis showed that
ω-6 vs. ω-3 LCPUFA diet had a higher gene expression of metabolic pathways in rods,
cones, bipolar, and amacrine cell clusters (Figure 5), in line with a higher metabolic demand
in more mature neural retinas. Our observations suggested thatω-6 LCPUFA is essential
in neural retinal development. We therefore predicted that loss ofω-6 LCPUFA in the diet
may cause retinal dysfunction in the long term.
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higher expression of genes (top 20) in the rod and cone cluster ofω-6 vsω-3 diet-fed Phase I ROP
mice were associated with energy production related gene ontology terms. The higher expression of
genes in the bipolar cell cluster ofω-6 versusω-3 LCPUFA-fed Phase I ROP mice were associated
with purine ribonucleotide (components of DNA, RNA, adenosine triphosphate (ATP), guanosine
triphosphate (GTP), cyclic adenosine monophosphate (cAMP), nicotinamide adenine dinucleotide
(NADH), and coenzyme A) metabolic and biosynthetic process related gene ontology terms. The
higher expression of genes in the amacrine cell cluster ofω-6 versusω-3 LCPUFA-fed Phase I ROP
mice were associated with energy production related gene ontology terms. Adjusted p-values for
enriched gene ontology (GO) terms are shown in bar graphs (p < 0.05). Gene ratio for each pathway
is shown in heatmap.

3.3. Müller Glia Exerted Compensatory Response to Delayed Retinal Maturation

In the Müller glial cluster, there was an increased expression of genes involved in
gliogenesis, axon development, and angiogenesis in Phase I ROP vs. control retinas
(Figure S2C). Müller glial differentiation in mouse retinas starts after birth and peaks
at the first postnatal week [53]. The higher expression of genes involved in gliogenesis
suggested a delay in maturation in Müller glia in Phase I ROP retinas, in line with a
lower expression of genes involved in energy production-related pathways in Müller glia
(Figure S3C). We also recently reported that Müller glia modulate their gene profile in
response to photoreceptor stress. Müller glia respond to degenerating photoreceptors with
an increased expression of genes involved in axon development, synapse formation, and
angiogenesis [36] as compensatory effects. In addition, Müller glial cell-derived Vegfa is
a driving force of retinal angiogenesis [54]. Taken together, our findings suggested that
Müller glia experienced a developmental delay and exerted compensatory responses to
facilitate retinal neural and vascular growth in Phase I ROP.
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Theω-6 vs. ω-3 LCPUFA diet showed suppression of angiogenesis in the Müller glial
cluster in the Phase I ROP model (Figure 6). For example,ω-6 diet-fed mice had a higher
expression of antiangiogenic secreted protein acidic and rich in cysteine (Sparc) [55] in the
Müller glial cluster (logFC = 0.62687, p < 0.001). This observation corresponds to ω-6 vs.
ω-3 LCPUFA-inhibition of retinal vessel growth (Figures 1 and 2).
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Figure 6. ω-6 versusω-3 increased Müller glial angiogenic factor expression with single-cell analysis.
In the Müller glial cell of ω-6 vs. ω-3 LCPUFA-fed Phase I ROP mice, the lower expression of
genes was associated with post-transcriptional regulation, and the higher expression of genes was
associated with regulation of angiogenesis and vasculature development related gene ontology terms.
Adjusted p-values for enriched gene ontology (GO) terms are shown in bar graphs (p < 0.05). Gene
ratio for each pathway is shown in heatmap.

3.4. Dietary ω-6 LCPUFA Improved Retinal Neuronal Function

To gain further insight into the long-term impact ofω-6 andω-3 LCPUFA on retinal
development, we evaluated retinal neuronal function with ERG inω-3 vs. ω-6 LCPUFA-fed
C57BL/6J mice at P30 after inducing hyperglycemia with STZ (25mg/kg, daily i.p. from
P2 to 12, Figure 7A). We found that the mouse survival rate using higher doses of STZ
(50 mg/kg (i.p. from P1 to 9)) was low at P30. The a-wave is a measure of photoreceptor
function while the b-wave is a measure of mostly bipolar cell function (Figure 7B) [56].
We found that the ω-3 vs. the ω-6 LCPUFA diet decreased rod pathway responses in
Phase I ROP mice (Figure 7C). The cone pathway responses were less impacted (Figure 7D).
Furthermore, we observed a lower body weight in ω-3 vs. ω-6 LCPUFA diet at P30
(Figure 7E). These findings suggested that maintaining adequate ω-6 LCPUFA levels is
essential in retinal development and overall body growth, in line with our finding thatω-6
LCPUFA promoted neural retinal maturation and metabolism (Figure 4).

3.5. Dietary ω-3 LCPUFA Increased APN and APN Receptor Levels

Dietaryω-3 LCPUFA supplementation increased APN production and secretion from
white adipose tissue in mice modeling late phase ROP [28]. In this study, we examined
serum APN levels at P10 in the mouse Phase I ROP model. Circulating bioactive high-
molecular-weight (HMW) APN was increased in ω-3 vs. ω-6 LCPUFA-fed C57BL/6J
mice (Figure 8A). In addition, we also found that ω-3 vs. ω-6 LCPUFA supplementa-
tion increased retinal APN receptor AdipoR1 mRNA levels in Phase I ROP retinas at P10
(Figure 8B). These findings suggested thatω-3 LCPUFA might activate the APN pathway
in the Phase I ROP model. Loss of APN partially abolished the protective effects of ω-3
LCPUFA on retinal vascular patterning (Figure 8C). We also observed higher body weight
in ω-3 LCPUFA-fed Apn−/− mice, further suggesting that the delayed retinal vascular
patterning was not due to overall body growth. This finding suggested that APN is in-
volved in mediating ω-3 LCPUFA’s promotion of deep retinal vessel growth in the Phase I
ROP model.
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Figure 7. Shortage of dietary ω-6 LCPUFA delayed retinal functional development in Phase I ROP at
P30. All ERG data are presented as the log change from control (∆Log control) and normalized to
that fromω-6-diet-fed group. Data are presented as mean ± SEM. (A) Schematics of hyperglycemic
induction in C57BL/6J mice. An amount of 25 mg/kg STZ was i.p. injected daily from P2 to P12.
The mice were fed onω-3 orω-6 LCPUFA-enriched diet from P1 until P30. (B) Schematics of ERG
wave and corresponding retinal neurons: a-wave (photoreceptors), b-wave (bipolar cells). (C)ω-3
versusω-6 LCPUFA diet decreased rod pathway responses in Phase I ROP mice. Representative rod
ERG plots with ‘white’ (for maximal a-wave) and ‘green’ (for maximal b-wave) light stimulation
are shown. n = 13–14 eyes. Multiple t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, n.s., no significance.
(D) No significant changes in cone ERG amplitude and sensitivity of bipolar cells inω-3 versusω-6
LCPUFA fed mice. Representative cone ERG plots are shown. n = 13–14 eyes. Multiple t-test. n.s., no
significance. (E) Decreased body growth inω-3 versusω-6 LCPFA-fed mice. n = 8 mice per group.
Unpaired t-test, ** p < 0.01.

3.6. Loss of APN Decreased Retinal Lipid Composition

To further examine if low APN levels affect retinal lipid composition in Phase I ROP,
we performed lipidomics analysis. At P10, retinas were collected from normoglycemic
and hyperglycemic conditions. The retina lipid composition was examined for the major
phospholipid classes ChoGpl and EtnGpl, which make up 80% of total retinal lipids in
the rod outer segment [57–60]. Overall, total fatty acids in ChoGpl were decreased with
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the loss of APN with hypreglycemia and total fatty acids in EtnGpl were decreased with
the loss of APN under both normoglycemia and hyperglycemia (Figure 9A). Specifically,
loss of APN decreased very-long-chain polyunsaturated fatty acids (≥22C, VLCPUFA),
includingω-3 (docosapentaenoic acid DPA 22:5ω-3, DHA 22:6ω-3), andω-6 (adrenic acid
AdA 22:4ω-6, DPA 22:5ω-6) (Figure 9B). These results further confirmed that low APN
levels are associated with low retinalω-3/ω-6 LCPUFA.
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Figure 8. APN mediatedω-3-LCPUFA promotion on retinal vessel growth in Phase I ROP. (A)ω- 3
versus ω-6 LCPUFA-enriched diet increased serum HMW APN levels. A total of 1 µL serum was
used for Western Blot. n = 7–8 mice per group. Unpaired t-test. * p < 0.05, n.s., no significance.
Data are represented as mean ± SEM. (B)ω-3 versusω-6 LCPUFA-enriched diet increased retinal
AdipoR1 expression. n = 4–5 mice per group. Unpaired t-test. ** p < 0.01. Data are represented as
mean ± SEM. (C) APN deficiency partially abolished ω-3 vs. ω-6 LCPUFA promotion of retinal
vessel growth. Representative images of retinal vessels in P10 Apn−/− Phase I ROP mice fed aω-3 or
ω-6 LCPUFA-enriched diet from P6. Retinal vessels were stained with isolectin. Scale bar, 50 µm.
Loss of APN delayed vascular network formation in mice fed with either diet. n = 10–12 eyes per
group. Loss of APN also delayed body growth in ω-6 LCPUFA-fed mice. n = 9 mice per group.
Unpaired t-test. * p < 0.05, n.s., no significance. Data are represented as mean ± SEM.
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Figure 9. Loss of APN decreased unsaturated retinal lipid composition. Hyperglycemic induction in
C57BL/6J (WT) and Apn−/− mice. An amount of 50 mg/kg STZ was i.p. injected daily from P1 to
P9. At P10 the retinas were collected for lipidomic analysis. (A) Loss of APN caused reduced total
fatty acids in ChoGpl and EtnGpl. ChoGpl, phosphatidylcholine; EtnGpl, phosphatidylethanolamine.
6–8 retinas were pooled as n = 1. n = 6 per group. ANOVA with Tukey’s multiple comparison
test. * p < 0.05, ** p < 0.01. (B) In ChoGpl and EtnGpl, loss of APN decreased VLCPUFA (≥22C).
6–8 retinas were pooled as n = 1. n = 6 per group. Blue: minimum of levels; orange: maximum of
levels. Heatmap was generated using ratio of change in percent mol (Morpheus, Broad Institute).

4. Discussion

We found that dietaryω-3 LCPUFA (DHA and EPA) promoted early retinal vascular
development, while ω-6 LCPUFA (AA) was essential in maintaining retinal neuronal
development and metabolism. Loss of APN led to lessω-3 LCPUFA protection on retinal
vascularization and an unbalanced retinal unsaturated lipid composition in hyperglycemia-
associated Phase I ROP (delayed vascular development).

Some clinical trials showed that fish-oil (rich in ω-3 LCPUFA) supplementation re-
duces the risk for severe ROP in premature infants [19–21]. However, other studies found
no benefit of fish-oil supplementation on ROP outcome [22,26]. Furthermore, fish-oil sup-
plementation or dietary intake of food rich inω-3 LCPUFA decreases the risk for age-related
macular degeneration [61–64]. However, dietary supplementation of DHA (350 mg per
day) and EPA (650 mg per day) did not reduce the risk of progressing from moderate to
advanced age-related macular degeneration, beyond the effects of the original AREDS
formulation within the health conscious and well-nourished AREDS2 cohort [65]. Nonethe-
less, the companies that supplied the NEI AREDS2 project with the study supplements now
produce formulations combining DHA and EPA with the AREDS2 formulation endorsed
by the NEI. The reasons for the inconsistent observations of ω-3 LCPUFA supplementation
in preventing retinopathies are still unclear. It has been noted that fish-oil supplementation
(rich inω-3 LCPUFA) may lower circulating AA levels [66,67] and decrease the AA to DHA
ratio in premature infants [22]. Recent reports showed that low postnatal levels of serum
AA are strongly associated with ROP development [68], and maintaining adequate AA
levels is required for theω-3 LCPUFA to protect against ROP [23]. Oral supplementation
of DHA and AA at 1:2 ratio improves visual acuity at 12 months of age in premature
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infants, but a higher DHA/AA ratio does not show any additional improvement [24]. More
recently, it was shown that oral DHA and AA at 1:2 ratio reduces severe ROP by 50%
and increases the serum levels of both AA and DHA in extremely preterm infants [69].
Higher daily DHA ingestion may be associated with less severe ROP only in infants with
sufficiently high AA levels [23]. These observations suggest that maintaining DHA/AA
equilibrium is essential in protecting against retinal diseases.

Low levels of circulating DHA are associated with low APN levels in premature
infants [28]. Low APN levels are associated with delayed retinal vascularization in Phase
I ROP and increase the risk for vision-threatening Phase II ROP [15,28]. In mice, dietary
DHA and EPA promote normal retinal vascularization and inhibit pathologic retinal angio-
genesis in neonates modeling proliferative ROP [27,28,33,70]. Furthermore, loss of AdipoR1
attenuates retinal uptake, conservation and elongation of DHA, and causes photoreceptor
degeneration in mice [71]. These observations suggest that unbalanced retinal LCPUFA
levels cause retinal neurovascular dysfunction. We observed that a ω-3 LCPUFA (DHA
and EPA, no AA) diet better protected against hyperglycemia-associated retinal vascular
growth delay than aω-6 LCPUFA (AA, no DHA and EPA) diet at P10. This finding suggests
that increasingω-3 LCPUFA levels would benefit retinal vascularization in early ROP, to
prevent late severe ROP by increasing the vascularized retinal area thereby decreasing
stimuli for neovascularization. These protective effects are possibly due to increased circu-
lating APN levels and retinal production of AdipoR1, because the APN pathway regulates
platelet-derived growth factor B production in photoreceptors to control retinal vessel
growth in Phase I ROP mice [15]. In the current study, we additionally found that loss
of APN led to an unbalanced retinal lipid composition with a robust decrease ofω-3 and
ω-6 LCPUFA levels in ChoGpl and EtnGpl. Our finding suggested that mice with APN
deficiency have disrupted retinal lipid composition, contributing to disruptedω-3/ω-6
equilibrium and delayed retinal development.

In the current study, using single-cell transcriptomics, we found that the ω-6 (AA)
vs. ω-3 (DHA/EPA) diet had lower Igf1 and Igf1r levels in retinal neuronal cells, which
was validated in total retinas with qPCR. The Igf1 signaling is essential in preserving
retinal vascularization in Phase 1 ROP [72–77]. We also examined ifω-3 vs. ω-6 LCPUFA
modulates the expression of genes involved in cell death; we found very mild changes
in Bcl2, Bcl2l1, Bcl2l11 Casp, and Myc in the retinal clusters (data not shown). Overall, we
did not identify any significant pathways using the genes with p < 0.05 in the endothelial
cell cluster, possibly because the total cell number in this cluster was too small. We do
not exclude possible direct effects of DHA on retinal endothelial cell function. It was
reported that DHA increases antioxidant capacity of human umbilical vein endothelial
cells in vitro [78].

Interestingly, we observed that anω-6 (AA) vs. ω-3 (DHA/EPA) diet accelerates the
retinal neuronal maturing process along with inducing an increased metabolism to balance
the energy demand and supply in retinal neurons. Improving retinal metabolism protects
against retinal vascular and neuronal developmental dysfunction in the Phase I ROP
mouse model [15]. Therefore, we speculated that anω-3 LCPUFA diet with concomitant
low AA shortage might lead to long-term retinal abnormalities, although better retinal
vascular coverage was observed at P10. We found that at P30, Phase I ROP mice fed an
ω-3 LCPUFA diet with AA shortage exhibited worse rod photoreceptor and downstream
bipolar cell responses than those fed anω-6 LCPUFA diet withω-3 LCPUFA deficits. Taken
together, our findings suggested that AA is essential in maintaining retinal metabolism and
long-term retinal neuronal development.

5. Conclusions

In summary, we show that in mice modeling early Phase I ROP with delayed vascular
development and metabolic dysfunction, ω-3 LCPUFA (DHA and EPA) was important
in promoting normal retinal vascularization, while ω-6 LCPUFA (AA) was essential in
maintaining retinal metabolism and neuronal development. ω-3 LCPUFA’s promotion
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of retinal vessel growth was partially mediated by APN and loss of APN caused an
unbalanced retinal LCPUFA (ω-3 and ω-6) composition, which was associated with retinal
vascular and neuronal dysfunction. We did not observe significant differences in blood
glucose levels betweenω-3 andω-6 LCPUFA-fed mice, suggesting the impact of LCPUFA
might not through modulate circulating hyperglycemia. An increase in retinal Igf1, Igf1r,
and Adipor1 gene expression suggested a possible direct impact of ω-3 vs. ω-6 LCPUFA
on retinal health. Taken together, our current findings suggested that it is important to
maintain adequateω-6 LCPUFA (AA) levels while supplementing withω-3 LCPUFA to
prevent ROP.
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GTP Guanosine triphosphate
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