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Abstract: Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-
protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted
imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is
often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to
analyze the current value of biparametric prostate MRI in combination with methods of machine-
learning and deep learning in the detection, grading, and characterization of prostate cancer; if
available a direct comparison with human radiologist performance was performed. PubMed was
systematically queried and 29 appropriate studies were identified and retrieved. The data show
that detection of clinically significant prostate cancer and differentiation of prostate cancer from
non-cancerous tissue using machine-learning and deep learning is feasible with promising results.
Some techniques of machine-learning and deep-learning currently seem to be equally good as human
radiologists in terms of classification of single lesion according to the PIRADS score.

Keywords: prostate cancer; multiparametric prostate MRI; biparametric prostate MRI; deep-learning;
radiomics; artificial intelligence; cancer detection; PIRADS

1. Introduction
1.1. Prostate Cancer

Prostate cancer (PCA) is the second most common cancer in men worldwide and
it accounts for up to 25% of all malignancies in Europe [1]. It is the third leading cause
of cancer-related death in the United States and Europe [2,3]. The incidence of prostate
cancer increases with rising age of patients, and prostate cancer and its management are
becoming a major public health challenge. PCA aggressiveness can be linked to specific
genes such as BRCA, and behavior such as smoking [4,5]. Accurate and early detection
of prostate cancer is therefore paramount to achieve good overall patient outcomes. The
tools available for assessing and detecting prostate cancer are digital rectal examination
(DRE), PSA screening, transrectal ultrasound, and MRI whereby the latter received the
highest amount of attention in the past decade due to its unprecedented capabilities in
accuracy [6–8].

In contrast to ultrasound and digital rectal examination, MRI offers an operator-
independent tool for objectively assessing the entire prostate gland from base to apex and
from the posterior peripheral zone (PZ) to the anterior fibromuscular stroma (AFMS) that
are barely assessable with DRE [6,9].

Magnetic resonance imaging of the prostate has a long history going back more than
20 years. In the initial phase, high resolution T2-weighted (T2w) imaging and spectroscopy
were mainly used as tools for detecting prostate cancer. Yet, spectroscopy is slow and
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susceptible to artefacts and was not well perceived. In the recent decade, further devel-
opments have taken over including diffusion weighted imaging (DWI), dynamic contrast
enhanced imaging (DCE). The entire prostate exam has been standardized worldwide and
its reporting has been harmonized by the PIRADS (Prostate Imaging Reporting and Data
System) system [10]. This classification system allows to objectively assess the prostate and
potential cancerous zones and standardizes reporting over separate sites so that the overall
performance of MRI is increased and is more reproducible compared to previous periods.
With this development MRI of the prostate follows the trend to standardize the entire radi-
ological procedure from image acquisition to data reporting to achieve a higher reliability,
enhanced reproducibility, and a direct implication for radiology-based treatments as it has
previously successfully demonstrated in breast imaging with BIRADS (Breast Imaging
Reporting and Data System) [11].

The report structuring provided by PIRADS is already a condensation of the imaging
information and standardizes reporting and its output. This is one major step toward a
more automated and operator-independent radiology. Moreover, the image acquisition
parameters, slice orientations, and sequences with its specific sequence characteristics are
governed by PIRADS [12]. This automatically sets the stage for a potential automated image
analysis. In the past decade, artificial intelligence (AI) with its subdivisions of machine
learning (ML), radiomics, and deep learning (DL) has become more prevalent. At this point
in time, ML and DL are still no clinical standards. Radiomics, for example, use quantitative
imaging features that are often unrecognizable to the human eye. Therefore, it is increasing
the number of potential parameters to the multi-parametric approach of prostate MRI and
with potential benefits for PCA detection and grading and beyond. DL techniques such as
convoluted neural networks (CNN) are currently considered gold standard in computer
vision and pattern recognition and hence have potential benefits for PCA detection and
grading. With larger data sets as basis, they have the potential to automatically learn and
deduct conclusions so that PCA recognition based on unperceivable features to the human
eye might be possible. Despite numerous experimental studies which will be discussed
further in this study, there is no standardized approach on how to use and implement DL
and ML for prostate imaging now.

The aim of this study is to elucidate the status of artificial intelligence in prostate
imaging with a focus on the so-called bi-parametric (bp) approach of prostate MRI (bpMRI).

1.2. Prostate Imaging Reporting and Data System

PIRADS was established by key global experts in the field of prostate imaging from
America and Europe (European Society of Urogenital Radiology (ESUR), American College
of Radiology (ACR)) to facilitate and standardize prostate MRI with the aim of assessing
the risk of clinically significant prostate cancer (csPCA). The first version of the PIRADS
recommendations was published in December 2011, the latest and current update was
published in 2019 (PIRADS v2.1) [10,12,13].

Various studies have compared the predictive performance of PI-RADS v1 for the
detection of csPCA compared to image-guided biopsy or radical prostatectomy (RP) speci-
mens as standard of reference. In a 2015 study, Thompson reported multi-parametric MRI
detection of csPCA had sensitivity of 96%, specificity of 36%, negative predictive value
and positive predictive values of 92% and 52%; when PI-RADS was incorporated into a
multivariate analysis (PSA, digital rectal exam, prostate volume, patient age) the area under
the curve (AUC) improved from 0.776 to 0.879, p < 0.001 [14]. A similar paper showed that
PI-RADS v2 correctly identified 94–95% of prostate cancer foci ≥ 0.5 mL but was limited
for the assessment of Gleason Score (GS) ≥ 4 + 3 csPCA ≤ 0.5 mL [15]. An experienced
radiologist using PIRADS v2 is reported to achieve an AUC of 0.83 with 77% sensitivity
and 81% specificity [16].
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1.3. Sequences for Prostate MRI

The initial protocol for MRI of the prostate as provided by PIRADS included high-
resolution multiplanar T2w-imaging, DWI, and DCE after the intravenous administration
of paramagnetic gadolinium chelate contrast agent. This so-called multi parametric prostate
MRI (mpMRI) is considered as the gold standard. T2w-imaging is used to demonstrate
zonal anatomy of the prostate. Tumors can be well delineated, and their relation to the
prostate capsule can be examined. Benign changes such as benign prostate hyperplasia,
post-prostatic changes of the peripheral zone or scars can be identified. T2w-imaging
is considered the gold standard for the transitional zone (TZ) of the prostate gland. In
addition, T2w-imaging can be used to measure the volume of the prostate. The high
anatomic information content of T2w-imaging makes this sequence the perfect roadmap
for image-guided biopsy [12,17].

DWI serves as an indirect measure of cellular density. In case of a malignant tumor
with high cellular density, the ability of water to freely move in the interstitial compartment
is decreased hence the diffusion is impaired. The images with high b-values and even
those with more and more common-interpolated calculated b-values allow quick and
easy depiction of these suspicious areas in the prostate. The calculated ADC maps give
a quantitative measure of cellular density and can be considered as a molecular imaging
tool for tumor aggressiveness. DWI imaging is considered as the reference sequence for the
peripheral zone (PZ) of the prostate [12,17].

Dynamic contrast enhancement (DCE) is considered as the weakest of the three used
approaches for prostate imaging. In contrast to T2w-imaging and DWI, DCE is not being
considered as a dominant sequence for any of the prostate zones. It only serves as a
tiebreaker in very specific questions in the PIRADS system. In addition, it requires the
intravenous administration of contrast agent with the risk of side-effects such as allergies,
nephrogenic systemic fibrosis, or Gadolinium deposition in the body [18–21]. While the
risk of nephrogenic systemic fibrosis is controllable by using little amounts of macrocyclic
Gd-chelates, no harmful consequence for Gd-chelate depositions in the body has been
found [22,23]. Nevertheless, patients often try to avoid contrast agent if feasible. Moreover,
physicians embrace the idea of non-enhanced exams equally, as it speeds up the acquisition
and reduces the number of potential complications. In addition, omitting contrast agent
permits to save money.

1.4. Multiparametric and Biparametric MRI of the Prostate

With this in mind and the knowledge that the performance of DCE often yielded
limited added value to T2w-imaging and DWI in mpMRI of the prostate bi-parametric MRI
(bpMRI) of the prostate is gaining considerable support [15]. Meanwhile, there are several
high-ranked studies such as the PROMIS trial and meta-analyses comparing mpMRI and
bpMRI of the prostate [24–26]. Current data underline the high negative value of bpMRI in
biopsy-naïve patients with a negative predictive value of up to 97% [27,28]. Whether bpMRI
might be slightly less accurate in less-experience readers is not yet clearly proven [29,30].
A currently accepted position is that bpMRI of the prostate seems to be equally good as
mpMRI of the prostate for patients with low and high risk for csPCA but DCE might be
of worth in patients with intermediate risk and PIRADS 3 lesions [25,26,31–35] (Figure 1).
bpMRI of the prostate is also commonly used for computer-based postprocessing using
artificial intelligence. This is due to the fact that DCE contains a fourth dimension (time)
which make those images harder to algin and match with two-dimensional anatomical im-
ages such as T2w-imaging and DWI. Another drawback of DCE is that image information
is not obvious. The image information on contrast media arrival and distribution which is
seen as a surrogate marker for microvascular density have to be extracted using semiquan-
titative or quantitative pharmacokinetic models which adds another layer of complexity on
postprocessing, along with the increase of time necessary to report the exams.
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Figure 1. Overview of the performance of mpMRI and bpMRI based on data from Woo et al. [33] and
Alabousi et al. [25] demonstrating the near equal performance of bpMRI to mpMRI (reprinted with
permission from [17], Copyright 2020 Gland Surgery).

1.5. Artificial Intelligence (AI) for Image Postprocessing

The availability of cheap and high computing power with the additional advent of
postprocessing technologies and artificial intelligence such as machine learning techniques
and deep neural networks has fostered the application of those techniques for radiology
tasks such as tumor detection. The current hierarchical concept of AI is depicted in Figure 2.

Machine-learning (ML) is a subfield of AI in which algorithms are trained to perform
tasks by learning rules from data rather than explicit programming. Radiomics is seen
as a method that extracts large numbers of features from radiological images using data
characterization algorithms such as first order statistics, shape-based, histogram-based
analyses, Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, Gray Level
Size Zone Matrix, Gray Level Dependence Matrix, Neighboring Gray Tone Difference
Matrix to name a few [36–39]. These features are said to have the potential to uncover
disease characteristics that are hard to be appreciated by the naked eye. The hypothesis
of radiomics is that distinctive imaging features between disease forms may be useful
for detecting changes and potentially predicting prognosis and therapeutic response for
various conditions such as e.g., detection of csPCA. These radiomic features are then
often further analyzed using ML-techniques. An example of a radiomics ML-workflow is
shown in Figure 3. An issue concerning ML-techniques is that it often requires the manual
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placement of a region of interest hence hereby introducing a potential source for errors
and biases.

Figure 2. Hierarchical structure of AI-techniques. Whereas ML requires human feature engineering
as guidance for learning, DL is based on self-learning algorithms that can detect and process simple
and complex image features.
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Figure 3. Sample radiomics workflow (reprinted with permission from [40], Copyright 2019
Springer Nature).

Deep learning (DL) is a subfield of AI in which algorithms are trained to perform
tasks by learning patterns from data rather than explicit programming. The key factors
for the increasing attention that DL attracted in the past years are the availability of large
quantities of labelled data, the inexpensive and powerful computing hardware particularly
graphic-processing units and improvements in training techniques and architectures. DL is
a type of representation learning in which the algorithms learn a composition of features
that reflect the hierarchy of structures in the data. Current state-of-the-art for medical image
recognition using DL techniques are so called convoluted neural networks (CNN). These
networks are characterized by an architecture of connected non-linear functions that learn
multiple levels of representations of the input data thereby extracting possibly millions of
features [41]. Especially CNNs in which a series of convolution of filter layers are exploited
are suitable for image processing [42]. Newer techniques such as transfer learning and
data augmentation, or the application of generative methods help in mitigating existing
limitations of CNN [43]. The entire process of data processing within the multiple layers
of a CNN with convolution filters, pooling, and maximum filtering is beyond the scope
of this study. Largely simplified, one might say that bottom layers of the CNN act as a
feature extractor while the top layers of the CNN act as a classifier. An overview is given in
Figure 4 in which the DL workflow is compared to radiomics or the standard radiology
reading process [44]. The reason that CNN-based approaches are considered superior to
radiomics is that radiomics depend on hand-crafted features which is limited, whereas
CNN can generate features that are most appropriate to the problem itself [45].
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Figure 4. Workflow of standard radiology reporting compared to AI-based methods of radiomic and
DL. The entire complexity of deep learning is only schematically shown. There is an abundance of
different network architectures or CNN which are beyond the scope of this study. This figure only
demonstrates a schematic CNN (reprinted under common creative license 4.0 from [44], Copyright
2021 Springer Nature).

2. Materials and Methods

Literature research for this study took place in August 2021. A PubMed query with
the search terms “prostate” and “magnetic” and “deep learning” or “machine learning”
or “radiomics” was performed. The aim was to retrieve those studies which made use of
ML or DL techniques to facilitate tumor detection and grading. To make sure that only
current techniques were included in the analysis only publications from the year 2019 to
2021 were included. Particularly in the field of CNN the technical improvement is rapidly
evolving so that elder publications might not represent the current state-of-the-art. Total of
95 publications were initially retrieved. Of these, 66 were omitted for several reasons so
that 29 publications were available for analysis (see Figure 5). Clinical data (question to
be answered, number of patients, age, AI-technique, lesion segmentation, MRI-technique,
sensitivity, specificity, accuracy, AUC) were then manually extracted and transferred to
a Microsoft Excel 365 spreadsheet (Microsoft, Redmond, WA, USA). PRISMA guidelines
were followed [46]. An overview of the study according to the PRISMA guidelines can be
found in the Appendix A.
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Figure 5. Literature selection work-flow. ML–machine-learning. DL–deep learning. up–uniarametric.
bp–biparametric. mp–multiparametric.

This paper focuses on bpMRI. The current PIRADS guidelines state: “Given the
limited role of DCE, there is growing interest in performing prostate MRI without DCE, a
procedure termed “biparametric MRI” (bpMRI). A number of studies have reported data
that supports the value of bpMRI for detection of csPCA in biopsy-naïve men and those
with a prior negative biopsy”. The potential benefits of bpMRI include: (1) elimination
of adverse events and gadolinium, (2) faster MRI-exam times, and (3) overall reduced
costs [47]. These factors will potentially make bpMRI easily accessible. Remaining concerns
are that the DCE sequence may serve as backup in case of image degradation of the DWI or
T2w sequence. It seems as if DCE may be of less value for assessment of treatment of naïve
prostate patients but remains essential in assessment for local recurrence following prior
treatment, which however is a setting in which current PI-RADS assessment criteria do not
apply. The conclusion of the PIRADS steering committee therefore advocates the use of
mpMRI particularly in (1) patients with prior negative biopsies with unexplained raised
PSA values, (2) those in active surveillance who are being evaluated for fast PSA doubling
times or changing clinical/pathologic status, (3) men who previously had undergone a
bpMRI exam that did not show findings suspicious for csPCA, and who remain at persistent
suspicion of harboring disease, (4) biopsy-naïve men with strong family history, known
genetic predispositions, elevated urinary genomic scores, and higher than average risk
calculator scores for csPCA, and (5) men with a hip implant or other consideration that will
likely degrade DWI [47].

For this paper bpMRI was selected as most studies dealing with ML or DL techniques
solely relay on T2w-imaging and DWI. DCE data were rarely included. In contrast to T2w-
imaging and DWI the DCE-data must be postprocessed first to generate parameter maps.
This process is not yet standardized as several pharmacokinetic models and hereof derived
software implementations for postprocessing exist. Without generation of parameter maps
a huge number of images would have to be fed into the ML/DL algorithms—a step that
most research groups obviously did not want to undertake.

3. Results

All included studies are listed with an abbreviated overview in Table 1.
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Table 1. List of include studies and relevant key information.

Reference Year ML DL Field
Strength Target Number of

Patients Age SS/SP/Accuracy AUC Sequences Used

Abdollahi H. et al. [40] 2019 1 0 1.5 T Gleason score prediction 33 73 (51–82) 0.739 T2, ADC

Wu M. et al. [48] 2019 1 0 3 T TZ PCA detection 44 68 ± 7 93.2%/98.4% 0.989 (LR) T2, ADC

Varghese B. et al. [49] 2019 1 0 3 T Grading prediction 68
53 86%/72% 0.71 T2, ADC,

Min X. et al. [50] 2019 1 0 3 T ci/csPCA discrimination
TZ and PZ 280 84.1%/72.7% 0.823 T2, ADC, b1500

Toivonen J. et al. [51] 2019 1 0 3 T Gleason prediction TZ
and PZ 62 65 (45–73) 0.88 T2, b0-b2000, T2mapping

Chen T. et al. [52] 2019 1 0 3 T
Tumor detection

aggressiveness prediction
TZ and PZ

182
199 73 (55–90) 98.6/99.2%/98.9% (noPCA vs. PCA)

100/98.25 8/99.1% (ci vs. csPCA)
0.999 (noPCA vs. PCA)

0.933 (ciPCA vs. csPCA) T2, ADC

Xu M. et al. [53] 2019 1 0 3 T Tumor detection 331 71 (46–94) 0.92 (Radiomics)
0.993 (R + clinical data) T2, ADC, DWI

Zhong X. et al. [54] 2019 0 1 3 T
ci/cs PCA discrimination

DL vs. PIRADS exp.
radiologists

140 63.6%/80.6%/72.3%
86.4%/48.0%/86.4%

0.726 (DL)
0.711 (PIRADS v2)

Yuan Y. et al. [55] 2019 0 1 3 T ci/cs PCS discrimination
(GS > 7)

132
112 –/–/86.9% T2 ax and sag, ADC

Xu H. et al. [56] 2019 0 1 3 T Detection of
PIRADS ≥ 3 lesions 346 –/–/93.0% 0.950 T2, ADC, high b-value

Schelb P. et al. [57] 2019 0 1 3 T

DL and radiologist for
lesion (PIRADS ≥ 3 and 4)

detection and
segmentation

250
62

64 (58–71)
64 (60–69)

98/17% Rad, PIRADS ≥ 3
84/48% Rad, PRIADS ≥ 4
99/25%, DL, PIRADS ≥ 3
83/55%, DL, PIRADS ≥ 4

T2, ADC, DWI

Montoya Perez I. et al. [58] 2020 1 0 3 T
Detection of csPCA with

bpMRI, RNA and
clinical data

80 65 ± 7.1 0.92 T2, DWI

Hou Y. et al. [59]. 2020 1 0 3 T
csPCA in PIRADS

3 identification in TZ
and PZ

263 66.8 ± 11.4 0.89 T2, ADC, b1500

Mehralivand S. et al. [60] 2020 1 0 3 T Detection csPCA in TZ
and PZ 236 50.8%/–/– (TZ, MRI)

61.8%/–/– (TZ, DL)
0.749 (MRI)
0.775 (DL) T2, b1500

Gong L et al. [61] 2020 1 0 3 T ci/cs PCA discrimination 326
163 73.8%/65.8%/69.9% 0.788 T2, ADC, b800

Bleker J. et al. [62] 2020 1 0 3 T ci/cs PCA discrimination
in PZ 206 66 (48–83) 0.870 (mpMRI)

0.816 (bpMRI) T2, ADC, DWI, (DCE)

Zong W. et al. [63] 2020 0 1 3 T CNN optimization 367 100/92% 0.840 T2, ADC, b0
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Table 1. Cont.

Reference Year ML DL Field
Strength Target Number of

Patients Age SS/SP/Accuracy AUC Sequences Used

Sanford T. et al. [64] 2020 0 1 3 T
Automated PIRADS

classification compared
to radiologist

687 67 (46–89) T2, ADC, high b-value

Brunese L. et al. [65] 2020 1 1 1.5 T Gleason score prediction 52 –/–/98% T2, DCE

Chen Y. et al. [66] 2020 0 1 3 T Prostate and
cancer segmentation 136 68 (49–62) 75.1/99.9% T2, ADC, b1200

Winkel D.J. et al. [67] 2020 0 1 3 T bpMRI PCA Screening 49 58 (45–75) 87/50% T2, ADC, b2000

Arif M. et al. [68] 2020 0 1 3 T Detection of csPCA in AS 292 68 (62–72) 92/76% 0.89 T2, ADC, b800

He D. et al. [69] 2021 1 0 3 T
Tumor detection
Prediction ECE
Prediction PSM

459 65 (30–89) 0.863
0.905 (integrated model) T2, ADC

Vente C. et al. [70] 2021 0 1 3 T csPCA detection and
grading

99
63 T2, ADC

Chen J. et al. [71] 2021 0 1 3 T csPCA detection
and grading 25 89.6/90.2%/92.1% 0.964 T2, T1

Cao R. et al. [72] 2021 0 1 3 T PCA detection and
grading

126
427

62.4 ± 6.4
61.1 ± 7.1

98/17% PIRADS, ≥3
85/58% PIRADS, ≥4
100/17% Unet ≥ 3
83/58% Unet ≥ 4

T2, ADC

Hou Y. et al. [73] 2021 0 1 3 T ECE prediction
590
150
103

69.2 (42–86)
69.2 (48–83)
70.2 (52–87)

0.857
0.728 T2, ADC, b1500

Yan Y. et al. [74] 2021 1 1 3 T BCR prediction 485 69.8 0.802 (C-index) T2

Schelb P. et al. [75] 2021 0 1 3 T csPCA detection
and grading 284 64 (IQR 61–72)

98/17% PIRADS, ≥3
85/55% PIRADS, ≥4

99/24% Unet ≥ 3
83/55% Unet ≥ 4

T2, ADC, b1500
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Total of 29 studies were included in this study. Thirteen of them used ML (44.8%),
14 of them used DL-techniques (48.2%), and 2 of them used a combination of ML and DL
(6.9%). The data for 27 of the studies were acquired at 3T (93.1%), 2 of them were acquired
at 1.5 T (6.9%). A total of 7466 patients were analyzed within this data set. Hereby, the
ProstatEx-data set from the Radbound University, The Netherlands was used seven times.
The smallest study had a sample size of 25 patients, the largest study had a sample size of
834 patients. The MRI-technique used for AI-postprocessing most often was T2w-imaging
in combination with ADC map and DWI (15 studies/53.6%). Runner-up were T2w-imaging
and ADC map (8 studies, 28.6%) and T2w-imaging and DWI (2 studies, 7.1%).

3.1. Tumor Detection and Grading

As seen in Table 1, the results (AUC, sensitivities and specificities) were comparable
and no trend clearly favoring ML or DL-approaches in terms of superiority could be
detected. Most studies required manual interaction in which a radiologist had to segment
the region of interest.

Overall, the rate of detection and correct tumor creating using AI-techniques was
comparable to the performance of trained radiologists in most studies. Studies were often
hard to compare as they differed in terms of standard of reference (e.g., Gleason score
(GS) vs. PIRADS vs. National Comprehensive Cancer Network Guidelines vs. ISUP
Guidelines) and different cut-off values within the same grading system (e.g., GS 7 was in
one study considered intermediate grade, in most studies considered high-grade tumor).
Some studies focused on the PZ only, while others accepted the entire gland as target tissue.

In a small study with 33 patients to predict IMRT response, GS prediction and PCA
stage, GS prediction using T2w-radiomic models was found more predictive (mean AUC
0.739) rather than ADC models (mean AUC 0.70), while for stage prediction, ADC models
had higher prediction performance (mean AUC 0.675). For T2w-radiomic models, mean
AUC was obtained as 0.625 [40].

Using T2w-imaging and 12 b-values from diffusion along with Kurtosis analysis and
T2 mapping for differentiation GS ≤ 3 + 3 vs. GS > 3 + 3 an AUC of 0.88 (95% CI 0.82–0.95)
could be reached. This study with 72 patients was the only one to employ T2 mapping
which, after all, was deemed as of little worth [51].

In a stringent ML-Radiomics study, an equally high AUC for tumor grading according
to National Comprehensive Cancer Network guidelines in low-risk vs. high-risk (i.e.,
GS ≥ 8) was found for the PIRADS assessment as well as for the ML-approach (0.73 vs. 0.71,
p > 0.05) [49]. Interestingly, the precision and recall were higher with the ML-approach
compared to the PIRADS assessment (0.57 and 0.86 vs. 0.45 and 0.61). Similar results
were found for the discrimination of ciPCA and csPCA of the PZA using a ML-Radiomics
approach with extreme gradient boosting [62]. In this study performed on the ProstatEx
dataset, an AUC of 0.816 for the detection of csPCA using bpMRI was found. Adding DCE
slightly increased AUC to 0.870, though this was not statistically significant. Based on the
same data set but using optimized CNNs Zong et al. [63] concluded that adding ktrans
from DCE deteriorated sensitivity and specificity when compared to bpMRI alone from
100%/83% to 71%/88%. The optimal reported AUC of this study was 0.84.

Extremely good ML-radiomics results for differentiation ciPCA vs. csPCA with an
AUC of 0.999 were found in a study by Chen et al. They could also show that ML-radiomics
exhibited a higher efficacy in differentiation ciPCA from csPCA than PIRADS. A potential
explanation for this, compared to the other studies, is that outstanding result might be the
study inclusion/exclusion criteria: small lesions <5 mm and lesion not well delineable on
MRI were excluded [52].

Somewhat poorer results were presented in a study by Gong et al. [61]. Their ML-
radiomics approach that was built on T2w-imaging and b800-DWI images yielded an
AUC of 0.787 and an accuracy of 69.9% for the discrimination between ciPCA and csPCA.
Adding clinical data to the MRI-based data slightly degraded the results with an AUC of
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0.780 and an accuracy of 68.1%. A potential reason for this poorer outcome might be a
different set of inclusion parameters.

Zhong et al. compared the performance of DL and Deep Transfer Learning (DTL)
with experienced radiologists. They found that DTL further improves DL. The DTL results
were comparable to radiologist’s performance using PIRADS v2. They concluded that
DTL might serve as an adjunct technique to support non-experienced radiologists [54].
Similar results found a study using a CNN-trained algorithm to automatically attribute
PIRADS scores to suspicions lesions. A performance comparable to a human radiologist
was described [64]. The lowest agreement was found with low PIRADS score, getting better
with higher PIRADS scores. There was no statistically significant difference between the
radiologist-assigned PIRADS score and the AI-assigned PIRADS score with regards to the
presence of csPCA for PIRADS 3–5.

In contrast, for Gleason score prediction one study found better results for AI-based
approaches than radiologists for PZ and TZ [76]. This could be particularly useful in the
context of active surveillance.

A different study looking into aggressiveness prediction (GS > 8) found equal AUCs
for AI and radiologists but higher precision and recall rates for AI than PIRADS mitigating
the problem of inter-reader variability [49].

An uncommon approach was presented in [65]. The authors hereby combined Ra-
diomics and DL-based on bpMRI with DCE and T2w-imaging. No ADC/DWI-images
were used. In few patients they included, promising results with an AUC of 0.96–0.98
for Gleason score prediction were found. No further study used this subset of DCE and
T2w-imaging.

The prospective IMPROD trial also examined if the addition of clinical data and RNA
expression profiles of genes associated with prostate cancer increased the accuracy for
detection of csPCA [58]. In this study the bpMRI based data yielded the highest AUC 0.92.
Adding RNA-based data or clinical data neither improved the results nor yielded better
results by itself.

Cao et al. developed an FocalNet to automatically detect and grade PCA (Figure 6) [72].
A similar work was presented by Schelb et al. [75] where a U-Net was trained to detect,
segment, and grade PCA. In comparison with radiologists’ PIRADS assessment, the U-Net
sensitivities and specificities for detection of PCA at different sensitivity levels (PIRADS ≥ 3
and PIRADS ≥ 4) were comparable.

Positive results for DL-based techniques with a larger number of patients (n = 312)
were found in a DL-Study by Schelb et al. using a U-Net [57]. They reported a sensitiv-
ity/specificity for radiologists using PIRADS for detection of PIRADS lesions ≥ 3 and 4
respectively of 96%/88% and 22%/50% while the U-Net approach yielded 96%/92% and
31%/47% (p > 0.05). In their study the U-Net also autocontoured the prostate and the lesion
with dice-coefficient of 0.89 (very good) and 0.35 (moderate) respectively.

A ML-approach to generate “attention boxes” for the detection of csPCA was pub-
lished by Mehralivand et al. [60]. Their multicentric approach with data from five in-
stitutions showed an AUC of 0.749 for PIRADS assessment of csPCA and a statistically
non-significant AUC of 0.775 for the ML-based approach. For the TZ only, the ML-approach
yielded a higher sensitivity for detection of csPCA than PIRADS (61.8% vs. 50.8%, p = 0.001).
Interestingly, the reading time for the ML-approach was on average 40s longer.

An uncommon approach for CNNs was published by Chen et al. [66]. They used U-
Net CNNs to segment the prostate and intraprostatic lesions hereby segmenting the PZ, TZ,
CZ, and AFMS. Their approach demonstrated impressive results: a Dice coefficient of 63%
and a sensitivity and specificity of 74.1% and 99.9% respectively for correctly segmenting
the prostatic zones and the suspicious lesion. Yet, in contrast to most other studies, no
grading or discrimination of the suspected PCA lesion was performed. As a segmentation
study this study was included in this review as it included segmentation of the prostate
and detection of the tumor within the prostate.
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Figure 6. “Examples of lesion detection. The left two columns show the input T2WI and ADC
map, respectively. The right two columns show the FocalNet-predicted lesion probability map
and detection points (green crosses) with reference lesion annotation (red contours), respectively.
(a) Patient at age 66, with a prostate cancer (PCa) lesion at left anterior peripheral zone with Gleason
Group 5 (Gleason Score 4 + 5). (b) Patient at age 68, with a PCa lesion at left posterolateral peripheral
zone with Gleason Group 2 (Gleason Score 3 + 4). (c) Patient at age 69, with a PCa lesion at right
posterolateral peripheral zone with Gleason Group 3 (Gleason Score 4 + 3). ADC = apparent diffusion
coefficient; T2WI = T2-weighted imaging“(reprinted with permission from [72], Copyright 2021 John
Wiley and Sons).

In a screening study with 3T-bpMRI, Winkel et al. [67] could include and analyze
48 patients, all above 45 years. In a biopsy-correlated reading two human readers and
a commercial prototype DL-algorithm were compared in terms of detection of tumor-
suspicious lesions and grading according to PIRADS. The DL-approach had a sensitivity
and specificity of 87% and 50%. Noteworthy, the DL-analysis required just 14 s.

Different ML-based models were tested and found to be highly accurate for the diagno-
sis of TZ PCA (sensitivity/specificity/AUC): 93.2%/98.4%/0.989) and their discrimination
from BPH-nodules. Reproducibility of segmentation was excellent (DSC 0.84 tumors and
0.87 BPH). Subgroup analyses of TZ PCA vs. stromal BPH (AUC = 0.976) and in <15 mm
lesions (AUC = 0.990) remained highly accurate [48].
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DL-approach for detection of csPCA in patients under active surveillance was brought
up by Arif et al. [68]. Initially 366 patients with low risk were included of which 292 were
included in the final study. Sensitivities and specificities for csPCA segmentation rose with
increasing tumor volume: tumor volumes > 0.03 cc sensitivity 82% 7 specificity of 43%,
AUC 0.65; tumor volume > 0.1 cc sensitivity 85%, specificity of 52%, AUC 0.73. Tumor
volumes > 0.5 sensitivity 94%, specificity 74%, AUC 0.89.

A total of six studies among the included studies compared DL/ML-approach to
human radiologists [52,57,60,64,72,75]. Overall, due to the small number of studies and
because of the different approaches the results cannot be analyzed together. What these
studies had in common however was the finding, that at this point AI-based methods
revealed a performance similar to that of the radiologists’. No study could either show an
advantage of AI-methods of the radiologists or vice versa. An overview about the results
can be seen in Table 2.

Table 2. Display of study results comparing human and AI-based performance.

Reference Year ML DL Metric Human Radiologist AI-Approach

Chen T. et al. [52] 2019 1 0 AUC 0.867 0.999

Schelb P. et al. [57] 2019 0 1 Sensitivity/Specificity 98/17% PIRADS ≥ 3
84/48% PRIADS ≥ 4

99/25% PIRADS ≥ 3
83/55% PIRADS ≥ 4

Mehralivand S. et al. [60] 2020 1 0 AUC
Sensitivity

0.816
89.6%

0.780
87.9%

Sanford T. et al. [64] 2020 0 1 Cancer detection
rates

53% PIRADS 3
61% PRIADS 4
92% PIRADS 5

57%, PIRADS 3
60%, PIRADS 4
89% PIRADS 5

Cao R. et al. [72] 2021 0 1 Sensitivity/Specificity 98/17% PIRADS, ≥3
85/58% PIRADS, ≥4

100/17% PIRADS, ≥3
83/58% PIRADS, ≥4

Schelb P. et al. [75] 2021 0 1 Sensitivity/Specificity 98/17% PIRADS, ≥3
85/55% PIRADS, ≥4

99/24% PIRADS, ≥3
83/55% PIRADS, ≥4

3.2. PIRADS 3 Lesions

Radiomics can detect with high accuracy csPCA in PI-RADS 3 lesions [59,77]. Hou
et al. examined in a ML-Radiomics approach the ability of bpMRI to identify csPCA in
PIRADS 3 lesions in a group of 253 patients with PIRADS 3 lesions in the TZ and PZ of
whom 59 (22.4%) had csPCA [59]. The ML-Radiomics approach including T2w imaging,
DWI and ADC had an AUC of 0.89 (95% CI 0.88–0.90) for predicting the presence of csPCA
in a PIRADS 3 lesion.

3.3. Extracapsular Extension and Biochemical Recurrence

He et al. set up a large study including 459 patients who underwent 3T bpMRI before
prostate biopsy and/or prostatectomy [69]. The aim of the study was first to differentiate
between benign and malignant tissue second to predict extracapsular extension (ECE)
of prostate tumor and third to predict positive surgical margins (PSM) after RP. Using
Radiomics they developed and tested an algorithm that was able to achieve an AUC of
0.905 for the determination of benign and malignant tissue, 0.728 for the prediction of ECE,
and a 0.766 for the prediction of PSM. Similarly, Hout et al. found an identical AUC of 0.728
for the prediction of ECE in a DL-based approach using different CNN-architectures [73].
Hence one can infer from the information derived from prostate imaging not only the
current situation in the gland but can also predict future developments that might take
place under therapy.

Biochemical recurrence (BCR) prediction based on radiomics features was examined in
T2w-images only with higher prediction of BCR (C-index 0.802) than conventional scores,
particularly also higher than the Gleason scoring system (C-index 0.583) [74]. This work
is of particular interest as it first, was one of the few multicentric studies (three centers)
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with a relatively large number of patients (485) and second, demonstrated the ability of
DL-based CNN to look beyond the prostate and infer predictions on the future course of
the disease/patient.

4. Discussion

Prostate cancer is a growing medical condition already now being the second most
common cancer in men in the western world. The detection and grading of prostate
cancer are shifting more toward MRI and is demanding a higher number of MRI-studies
to be performed and read. Currently, prostate MRI is considered a specialized exam and
requires a highly specific experience to be performed and reported with high quality. A
first step toward facilitation of mpMRI prostate acquisition, reading, and reporting was
PIRADS, but surely not the last step [10,12,13]. To put it in a nutshell: prostate MRI is
developing from the holy grail, and only a few radiologists were being able to read it
competently to a commodity in radiology. This is one of the key drivers behind the growing
demand for computer-assisted diagnostic tools, such as tumor detection and grading, to
facilitate the diagnostic interpretation of prostate MRI also for less-trained radiologists.
As the prostate is a densely packed organ with much more information for example as
the sparsely packed lung, simple machine learning tools based on e.g., density differences
cannot be successfully employed. To distinguish the different prostatic tissues, such as
normal transitional and peripheral zones and malignant tissue, higher-developed machine
learning tools are required, often based on radiomics or even deep learning techniques. In
the papers included in this review, most approaches using either ML or DL were similar to
radiologists in their performance [49,54,57,64,75]. For some specific applications, such as
tumor detection in the TZ or detection of clinically significant cancers in PIRADS 3 lesions,
AI-based methods might even be superior to radiologists’ performance [48,59].

These AI-based approaches should enable less well-trained radiologists to read and
report prostate-MRI reports with good quality [57,75]. The literature review showed that
different approaches to tumor grading and characterization either via ML or DL are capable
of differentiating between cancerous and non-cancerous tissue. New approaches are even
able to autonomously segment the prostate and the tumor within the gland overcoming
a limitation of the elder approaches, where radiologists often had to manually segment
the lesions, resulting in a highly time-consuming task [72,75]. Apart from many site-
specific implementations of radiomics, ML and DL, another sign of maturation of AI-based
approaches is that a first commercial tool was already presented [67]. Compared to the other
algorithms, this commercial tool was trained by big data sets for the initial training. This
development underlines again the trend in imaging toward commoditization of imaging
and democratization of information technology enabling every radiologist to perform on a
high-quality imaging.

Yet, there are some obstacles still to overcome. First, MRI is a tricky imaging tool. A
major drawback of MRI is the lack of standard quantification of image intensities. Within
the same image, the intensities for the same material vary as they are affected by bias field
distortions and imaging acquisition parameters, not always perfectly standardized. In ad-
dition, not only do MR images taken on different scanner vary in image intensities, but the
images for the same patient on the same scanner at different times may appear differently
from each other due to a variety of scanner- and patient-dependent variables [45]. There-
fore, the initial step in ML/DL image postprocessing is to normalize the MR intensity [45].
This process could induce errors, however. At last, also the reproducibility of CNNs varies
resulting in interscan differences, though with less impact [78]. Second, most studies rely
on single site source data. Multicentric studies are very rare hence making it harder to
compare results of AI-based algorithms across different vendors and sequence parameters.
Third, the choice of imaging sequences and their specific parameters is variable. This work
focused on bpMRI of the prostate. Even though for a radiologist imaging with T2w-imaging
and DWI imaging would be seen as biparametric, things look different in the world of
AI-based post-postprocessing: sometimes T2w and ADC, sometimes T2w and a single high
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b-value, T2w and multiple b-values or T2, ADC and b-values were used (hereby neglecting
uncommon outlier studies using DCE and T2 or T1 and T2). Even though DWI source date
and ADC are based on the same acquisition, their information content seems different. It
was observed in one study that the use of CHB-DWI led to higher specificity while the use
of ADC led to highest sensitivity, making the choice of sensing modality useful for different
clinical scenarios [79]. For example, maximizing specificity is important for surgery for
removal of prostate where minimizing false positive rates to avoid unnecessary surgeries is
required. On the other hand, for cancer screening, maximizing sensitivity may be useful to
avoid missing cancerous patients [79]. A clear definition what would be considered as truly
bpMRI or standards for AI-postprocessing has not been set up. Yet, there is a first European
initiative on the development and standardization of AI-based tools for prostate MRI [44].
Fourth, DL-based CNNs are notorious for being a “black box” in terms of the how the
decision was achieved. While this may not be entirely true—CNNs can be monitored at any
level at some expense—they might never be as transparent as ML-based approaches hence
scaring some physicians from using them on real patients outside studies. Moreover, here,
commercialization of the techniques might be helpful as larger companies have the means
and money to certify algorithms with the FDA or the EU and thus make them broadly
(commercially) available.

As seven studies made use of the ProstatEx data, it is worth looking at the overall
conclusions the creators of the dataset and initiators of the contest published [80]: the
majority of the 71 methods submitted to the challenge (classifying prostate lesions as
clinically significant or not) the majority of those methods outperformed random guessing.
They conclude that automated classification of clinically significant cancer seems feasible.
While in the second contest (computationally assigning lesions to a Gleason grade group)
only two out 43 methods did marginally better than random guessing. The creators
also conclude that more images and larger data sets with better annotations might be
necessary to draw significant conclusions, which brings up again the question of means
and money. Another conclusion that can be drawn when looking at the included studies
is that 3 T imaging seems to be the standard. This is partly because there is substantial
overlap in the source data (ProstatEx) and that, of course, studies are being conducted
at University Medical Centers which most often have state-of-the-art equipment. For
radiology departments in smaller hospitals or private practices having a 3 T system is
less likely. Regarding how far the results of 3T e.g., DWI can be transferred to 1.5 T and
how the technological improvement of 1.5 T in the field of signal reception and processing
is supportive remain unclear. One might speculate that a state-of-the-art 1.5 T will yield
comparable image quality to an elder 3 T system. Looking at the source data of the
different studies one can roughly estimate that 30% of these were acquired on elder (>14 a)
3 T systems.

There are some unexpected studies with novel approaches to patient care that should
be to highlighted. One was therapy assessment with pre- and post-IMRT T2w-imaging [40]
for “delta radiomics”, using radiomic features extracted from MR images for predicting re-
sponse in prostate cancer patients. While there was only one study with this specific design,
extrapolating ECE or BCR has roughly the same line of thought: could not it be possible
to predict for changes in the future with imaging features measured today [69,73,74]. The
AUC values of these studies were unexpectedly high (0.801–0.905) as well as the number of
included patients.

Limitations

This review has several limitations that need to be mentioned. First, ML and DL are
extremely fast evolving techniques. Data provided in this review simply display a snapshot
of the ongoing development. With the ever more powerful hardware and algorithms, future
improvements seem likely. Most results are based on small feasibility studies, and larger
applications of ML and DL in prostate imaging are not yet available. Whether their results
match the promising initial studies remains unclear. Second, the inclusion criteria were
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narrow so that only 29 studies could be included. With the small sample size, different
targets, and the different foci of the studies no wholistic analysis could be performed.
Opening up the time window for the included studies would have led to inclusion of elder
techniques potentially biasing the results.

5. Conclusions

In summary, this study investigated the current status of bpMRI of the prostate with
postprocessing using ML and DL with a focus and tumor detection and grading. The
presented results are very promising in terms of detection of csPCA and differentiation of
prostate cancer from non-cancerous tissue. ML and DL seem to be equally good in terms of
classification of single lesion according to the PIRADS score. Most approaches however
rely on human interference and contouring the lesions. Only a few newer approaches
automatically segment the entire gland and lesions, along with lesion grading according to
PIRADS. There still exist a large variability and methods and just a few multicentric studies.
No AI-postprocessing technique is considered gold standard at this time while there seems
to be a trend toward CNNs. Regarding the actual MRI-sequences, most studies used
T2w-imaging and either b-values from DWI or the ADC maps from DWI. The application
of ML and DL to bpMRI postprocessing and the assistance in the reading process surely
represent a step into the future of radiology. Currently however, these techniques remain at
an experimental level and are not yet ready or available for a broader clinical application.
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Abbreviations

ACR American College of Radiology
ADC Apparent Diffusion Coefficient
AFMS Anterior Fibromuscular Stroma (of the Prostate)
AI Artificial Intelligence
AS Anterior stroma (of the Prostate)
AUC Area under the Curve
BCR Biochemical Recurrence
bp bi-parametric
BPH Benign Prostate Hyperplasia
ciPCA Clinically Insignificant Prostate Cancer
CNN Convoluted Neural Network
csPCA Clinically Significant Prostate Cancer
CZ Central Zone (of the Prostate)
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DCE Dynamic Contrast-Enhanced Imaging
DL Deep-Learning
DRE Digital Rectal Examination
DWI Diffusion-Weighted Imaging
ECE Extracapsular Extension
ESUR European Society of Urologic Radiology
GS Gleason Score
HBV High b-Value (of DWI)
IMRT Intensity-Modulated Radiation Therapy
ML Machine-Learning
mp multi-parametric
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
nsPCA Non-Significant Prostate Cancer
PZ Peripheral Zone (of the Prostate)
PCA Prostate Cancer
PIRADS Prostate Imaging Reporting and Data System
PSM Positive Surgical Margins
RP Radical Prostatectomy
T2w T2-weighted Imaging
TSE TurboSpinEcho
TZ Transitional Zone (of the Prostate)
up uni-parametric

Appendix A

Table A1. Display of PRISMA items.

PRISMA Item Description

Title Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the
Detection, Grading and Characterization of Prostate Cancer: a systematic review.

Main objective Assessing the current value of deep-learning and machine-learning applied to biparametric MRI of
the prostate

Inclusion and
exclusion criteria

Inclusion criteria:

- Study listed in Pubmed
- Search terms: “prostate” and “magnetic” and either “deep learning” or “machine learning” or

“radiomics”
- Full text access available through University of Heidelberg
- Paper type: original investigation/research
- Focus: Detection or grading of prostate cancer with biparametric prostate MRI
- Language: English or German
- Year of publication 2019–2021

Exclusion criteria:

- No full text access
- Wrong paper type: reviews, meta-analysis
- Wrong focus (e.g., prostate segmentation, radiation therapy planning)
- Wrong technique (uniparametric or multiparametric prostate MRI)

Information source and
access time PubMed query in August 2021

Methods to assess risk of
bias in included studies

No structured program was used to assess bias in study selection. Internal review by the authors and
critical appraisal of the data was performed.

Methods to present and
synthesize results Descriptive statistics, listing in tabular form

Number of studies and
participants included

29 publications included
7466 participants included
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Main outcomes

Very heterogenous data did not allow for a general interpretation of all studies.
Tumor detection and grading with machine-learning and deep-learning techniques is feasible in trials
and shows promising results. Reported values for AUC ranging from 0.71 to 0.999. In studies
comparing human radiologists to deep-learning algorithms comparable, statistically not different
results for tumor detection were found.

Limitations

- No overall statistical analysis feasible due to the heterogeneity of methods and inclusion
criteria reported

- 7 out of 29 studies based on the same dataset (ProstatEx, Radbound Nijmwegen, The Netherlands)
- Heterogenous studies with different inclusion criteria and ground truth (i.e., if Gleason Grade

constitutes high-grade cancer or not)
- Often lacking demographic and statistical data

General interpretation

Detection of clinically significant prostate cancer and differentiation of prostate cancer from
non-cancerous tissue using machine-learning and deep learning is feasible with promising results.
Some techniques of machine-learning and deep-learning currently seem to be equally good as human
radiologists in terms of classification of single lesions according to the PIRADS score.

Primary source
for funding No general funding. Publication costs are covered by the Universtiy of Pisa, Pisa, Italy.

Register name and
registration number No registration
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