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Abstract
Emerging data point to important contributions of both autoimmune
inflammation and progressive degeneration in the pathophysiology of
multiple sclerosis (MS). Unfortunately, after decades of intensive
investigation, the fundamental cause remains unknown. A large body of
research on the immunobiology of MS has resulted in a variety of
anti-inflammatory therapies that are highly effective at reducing brain
inflammation and clinical/radiological relapses. However, despite potent
suppression of inflammation, benefit in the more important and disabling
progressive phase is extremely limited; thus, progressive MS has emerged
as the greatest challenge for the MS research and clinical communities.
Data obtained over the years point to a complex interplay between
environment (e.g., the near-absolute requirement of Epstein–Barr virus
exposure), immunogenetics (strong associations with a large number of
immune genes), and an ever more convincing role of an underlying
degenerative process resulting in demyelination (in both white and grey
matter regions), axonal and neuro-synaptic injury, and a persistent innate
inflammatory response with a seemingly diminishing role of T cell–mediated
autoimmunity as the disease progresses. Together, these observations
point toward a primary degenerative process, one whose cause remains
unknown but one that entrains a nearly ubiquitous secondary autoimmune
response, as a likely sequence of events underpinning this disease. Here,
we briefly review what is known about the potential pathophysiological
mechanisms, focus on progressive MS, and discuss the two main
hypotheses of MS pathogenesis that are the topic of vigorous debate in the
field: whether primary autoimmunity or degeneration lies at the foundation.
Unravelling this controversy will be critically important for developing
effective new therapies for the most disabling later phases of this disease.
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Introduction
Multiple sclerosis (MS) is one of the most common causes of  
neurological disability in young adults. The etiology of MS has  
been intensively investigated for over a century, and although  
much has been discovered about the immunobiology, genetics, 
and epidemiology of this disease, the fundamental cause remains  
a mystery. MS is distinguishable from most other chronic  
neurological disorders by its unique fluctuating course; the 
majority of patients with MS present with early relapsing and  
remitting episodes of neurological and radiological worsening 
followed by varying degrees of recovery (relapsing-remitting  
MS, or RRMS)1. In most patients, this initial relapsing remit-
ting phase is followed years later by a more chronic progressive  
phase (secondary progressive MS, or SPMS), whereas a minor-
ity (≈15%) of patients begin with a progressive course from onset  
(primary progressive MS, or PPMS) for unknown reasons.

Traditionally, the etiology of MS was based on an “outside-in” 
autoimmune hypothesis whereby dysregulated auto-reactive 
T cells in the periphery cross into the central nervous system  
(CNS) parenchyma and, together with macrophages and B cells, 
proceed to attack various CNS elements, where myelin is a  
prominent target. These inflammatory events, resulting in a  
relapsing-remitting clinical course, likely contribute independ-
ently to accumulating CNS injury. As a result, most work in the  
field has been directed at the autoimmune inflammatory nature 
of the disease, resulting in over a dozen US Food and Drug  
Administration/European Medicines Agency–approved treat-
ments to date2. This traditional model is being challenged 
by a competing theory proposing that the initial malfunction 
occurs within the CNS, as suspected for other neurodegenera-
tive disorders such as Alzheimer’s and Parkinson’s diseases3–7.  
This alternative “inside-out” hypothesis argues that MS is a  
primary degenerative disease and is accompanied by varying 
degrees of inflammation, leading to the release of antigenic cell  
components such as myelin oligodendrocyte glycoprotein,  
myelin basic protein, and proteolipid protein8,9. This chronic 
shedding of auto-antigens secondarily promotes an autoimmune  
inflammatory response in the predisposed host, in turn driv-
ing additional degeneration in a vicious cycle. The extent of  
inflammatory activity, which varies by patient and over time 
within the same individual, determines the spectrum of MS  
phenotypes. Importantly, the “inside-out” hypothesis maintains 
that primary degeneration is present from the start (probably 
years before the first overt clinical symptoms) and continues  
throughout the entire course of the disease. Given that CNS 
inflammation in MS can be well controlled with modern  
therapies, the current challenge is progressive disease, during  
which most irreversible disability occurs10,11. At present, we 
neither understand the mechanisms driving this phase of MS 
nor have very effective treatment options for patients in whom 
degeneration predominates in the absence of overt inflamma-
tion. The goal of this commentary is to touch on some recent 
findings and discuss recent advances regarding progressive MS  
pathogenesis.

MS stages and clinical progression
Much effort has been expended in an attempt to accurately  
classify the various stages of MS. Clinical relapses at a younger 
age, coupled with radiological evidence of CNS inflammation, 

provide good support for the earlier relapsing-remitting phase 
of MS. This may be important from a practical point of view to 
guide clinical therapeutic decisions given the many options for 
effective anti-inflammatory agents that are currently available.  
But with time, identifying the transition from relapsing to sec-
ondary progressive disease often becomes problematic; absence 
of clinical relapses does not imply absence of inflammatory  
activity on magnetic resonance imaging, and absence of inflam-
matory radiological lesions does not imply lack of inflamma-
tion at the tissue level. Indeed, it has been proposed that MS is a  
condition in which disability progression is driven in two 
stages, and early relapsing inflammatory activity has little influ-
ence on the second, later stage of progressive deterioration12.  
Therefore, identifying the transition to secondary progression 
has important practical implications because it appears that our  
current anti-inflammatory drugs offer little benefit in the absence 
of ongoing inflammatory activity; continuing treatment entails 
expense and potential risk from potent immunosuppressants 
with potentially little benefit in return. This is not to say that  
inflammation disappears at later stages. Indeed, recent studies 
show that substantial inflammatory lesion activity persists well 
into the progressive phase and, perhaps counterintuitively, that  
SPMS and PPMS samples exhibit a higher lesion load compared 
with relapsing subjects13. Moreover, there are few differences in 
lesion morphology or immunopathology in SPMS versus PPMS 
brain14, even though decades of recurrent inflammatory attack 
preceded the former. Instead, the quality of ongoing inflamma-
tion seems to shift in favor of activated macrophages/microglia. 
The MS brain in progressive stages shows ongoing cortical 
demyelination and slowly expanding demyelinating lesions in 
the white matter with such lesions recently shown to be impor-
tant predictors of future disability15. Interestingly, there is scant 
lymphocytic activity (B cells are a peculiar exception; see  
below); instead, microglial activation is seen at the borders of 
expanding lesions16. This suggests that adaptive autoimmunity 
plays a lesser role at this stage and that innate responses  
predominate. A key question is whether innate immune cells  
are somehow dysregulated and become primary drivers of  
degeneration, or simply react as they are expected to, against an 
unidentified primary injury that itself is the underlying cause of 
tissue destruction. Taken together, recent data seem to support 
the idea that all types of MS might be variations of a similar  
underlying pathophysiological theme and that degeneration and 
concomitant inflammation begin early and proceed inexorably, 
regardless of whether relapse activity is a prominent feature17. 
If so, why some patients assume a more relapsing inflamma-
tory pattern at first whereas others begin later with a progressive  
course is unclear. Here, the genetic background and environ-
ment likely play major roles in programming the various clinical 
phenotypes without the need to invoke fundamentally different  
disease mechanisms.

The genetics of MS
In MS, as in most other neurodegenerative diseases, genetic 
influences play an important role as well. However, unlike in a  
number of other neurodegenerative disorders, where specific  
mutations have been identified as causes for at least a subset 
of these, such mutations have yet to be identified in MS18–20. 
Instead, a large number of susceptibility loci, the vast majority of 
which are related to immune function, have been found through  
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genome-wide association studies (GWASs)20–27. Together, these 
studies unequivocally confirm the importance of immune-related 
genes, and genetic maps from a very recent GWAS further  
implicate both the adaptive and innate immune systems28. 
Examples include the human leukocyte antigen (HLA) class II  
(DP, DQ, and DR) haplotypes which demonstrate an associa-
tion with MS29, although contradictory results were shown in 
various studies among different races30,31. The HLA-DRB1*15:01 
allele is one of the most intensively studied31,32, exhibiting a  
consistent association with a lower age of onset, greater white 
matter lesion volume, and faster brain atrophy in RRMS33. In  
addition, a recent report suggested that the high-risk HLA geno-
type (two predisposing haplotypes) associates with significant 
reduction in whole brain and grey matter volumes compared 
with medium- or low-risk genotypes (one or no predisposing  
haplotypes)34. Many loci outside the major histocompatibil-
ity complex (MHC) have also been correlated with MS risk and  
involve other immune pathways, including B-cell activation, 
cytokine release, and activation of immune cells both in the  
periphery and within the CNS27. This study identified addi-
tional novel candidates associating with regulators of CD4+ Th1  
and Th17 induction and apoptosis27. Genes involved in neuro-
degeneration, such as mitochondrial genes CRYAB, CB1 and  
Prnp, have been studied, but associations with PPMS risk seem 
to involve mainly variants of immune-related genes, similar to 
what was found with relapse-onset MS32. However, none of these 
has a strong association with progressive MS, suggesting that 
these immune-related factors are unlikely to be causative but  
instead might determine the intensity of autoimmune reactivity 
to a degenerating brain. Genetic studies on patients with PPMS 
are less comprehensive because of the much lower incidence of 
this MS phenotype. However, despite the striking difference in  
clinical phenotypes between relapse-onset MS and PPMS, clear 
genetic differences have not emerged32. Interestingly, however, 
MS patients exhibiting a higher degree of neurodegeneration had 
variants in genes related to glutamate signaling35,36, supporting the 
concept of a neurodegenerative underlay driven at least in part by 
“chronic excitotoxicity”. Moreover, such chronic excitotoxicity 
is likely further exacerbated by glutamate released by immune  
cells37. Finally, we recently showed that primary myelin damage 
is a strong trigger for a secondary immune reaction driven in  
large part by biochemically altered myelin proteins38; it is quite 
likely that chronic excitotoxicity, originating from both the  
as-yet-unknown underlying degenerative process(es) and gluta-
mate release from infiltrating immune cells, promotes a persistent  
source of pathological myelin products resulting in a vicious 
cycle of degeneration–inflammation–more degeneration39. Taken  
together, data so far unequivocally support the contribution of 
multiple immune-related genetic loci to relapsing-remitting  
inflammatory MS, but a direct causal relationship remains elusive. 
A thought-provoking parallel can be drawn with genetic studies 
of human susceptibility to tuberculosis (TB), for instance. The  
genetics of TB, like those of MS, are complex, but there are 
interesting similarities, including the greater susceptibility of  
mono- versus dizygotic twins and association with HLA class I 
and II40. Because we now know the underlying cause of TB, 
these genetic studies instead provide important insight into host  
susceptibility and response to an external pathogen. One could  
similarly argue that studies of MS genetics also provide infor-
mation on host susceptibility and response to some causative  

factor that nonetheless remains unknown. By extension,  
elucidating multiple immune-related genetic loci associated with 
MS may not bring us any closer to identifying the root cause any 
more than such studies would have helped in isolating the TB  
bacillus.

Environmental factors
In addition to immunogenetics, MS risk is strongly associ-
ated with environmental factors, in particular infection with 
Epstein–Barr virus (EBV), sun exposure/vitamin D deficiency, and 
smoking41,42. Past EBV exposure as evidenced by seropositivity 
to the virus is virtually a prerequisite for developing MS43,44. 
However, given the very high global prevalence of EBV expo-
sure, clearly the converse is not true; that is, only a small minority 
of exposed individuals will develop MS, indicating that EBV 
may be necessary but not sufficient to trigger the disease.  
Epidemiological evidence supporting the important role of 
this virus includes observations that patients with a history of  
symptomatic EBV infection carry a higher risk of developing 
MS45, and the risk of MS dramatically increases in seronegative  
individuals after seroconversion46. These strong associations 
lead to the hypothesis that B-lymphotropic EBV infection of  
CNS-infiltrating B cells may somehow drive MS pathology47, 
although such a direct causative role of EBV remains contro-
versial as some groups report absence of EBV infection in MS 
brain48,49. A possible explanation for this discrepancy is that 
EBV is one of many possible triggers of secondary autoimmune 
response or that EBV alone is not sufficient50. Although 
there is no consensus regarding a direct role of EBV-infected  
B cells as a primary cause of MS, increasing evidence, including  
therapeutic strategies, indicates a potentially important role in 
MS pathogenesis. For instance, recently, a preliminary clinical 
trial of autologous EBV-specific T-cell therapy showed clinical 
improvement in patients with progressive MS51. Although only  
10 subjects underwent treatment, this small study provides some 
of the most direct evidence to date of a potentially central role  
of EBV-infected B cells in MS. Moreover, the fact that patients 
in the progressive phase, a phase largely resistant to current  
therapies, experienced improvement is equally noteworthy.  
Whether the beneficial effects of T cell–mediated killing of 
EBV-infected B cells were due to a reduction of disease-causing  
immunoglobulin production, or of other toxic soluble factors  
produced by B cells52, remains to be seen.

MS Pathology
Although an inflammation-mediated demyelination of white 
matter tracts with partial preservation of axons is a hallmark of  
MS, recent advances in histopathological/imaging techniques 
have emphasized the prevalence of cortical demyelination,  
where lymphocyte or macrophage infiltrates are limited53–57.  
Cortical demyelination and grey matter demyelination in  
cerebellar cortex, hippocampus, and deep grey matter nuclei are 
major histological features of progressive MS58–61. Evidence 
suggesting that grey matter involvement is related to disease  
activity and more aggressive forms is growing. Recent studies have 
shown that cortical and deep grey matter lesions in the thalamus, 
caudate, putamen, and cerebellar cortex during the early stage 
of disease are independent of white matter pathology62,63. These  
recent findings strongly support the hypothesis proposed a 
decade ago that neurodegeneration becomes independent of  
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inflammation during progressive MS4 and that MS could be 
a primary degenerative disease. In support of these findings,  
inflammatory relapses were recently reported to be associated 
with transient short-term disability, but long-term worsening was  
largely independent of relapses17. The authors proposed the  
concept of “silent progression” that is consistent with an 
underlying degenerative process, which proceeds largely  
independently of autoimmune inflammation17. The age and gen-
der differences between relapse-onset MS (younger age at onset 
and greater prevalence in women) and PPMS (later age at onset 
and equal prevalence among the sexes) do not necessarily imply 
a fundamentally different etiology. Just as with TB susceptibil-
ity discussed above, such differences can be readily explained 
by the known difference in autoimmune predilection which is 
greater in women64; a subject afflicted with the same underlying  
cytodegeneration, but more prone to react with an inflamma-
tory lesion, would naturally present earlier (inflammatory lesions 
in eloquent regions of the CNS will result in more obvious  
clinical disability). As age and accompanying immune senes-
cence progress, MS at later ages would be expected to exhibit less  
inflammation.

In contrast to RRMS, which has major involvement of periph-
eral immune cell infiltration in actively demyelinating plaques, 
progressive MS may involve the development of compartmen-
talized pathological processes within the resident CNS cells.  
Microglia are the most abundant resident macrophage-like cells 
in the CNS and constitute one of the key cell types that could 
trigger neurotoxic pathways leading to progressive neurodegen-
eration or, in contrast, could exert important roles in promoting  
neuroprotection, downregulation of inflammation, and stimula-
tion of repair. Activated microglia exhibit cytoplasmic hypertro-
phy, retraction of processes, and upregulation of MHC class II 
molecules and pro-inflammatory cytokines65. Microglial activa-
tion not only is observed in early active lesions but also accom-
panies diffuse axonal injury in normal-appearing white and grey 
matter of progressive MS lesions66. In addition, microglial nodules  
(a clustering of activated microglia) are abundant in the areas adja-
cent to plaques, particularly in patients with progressive MS67. 
In an attempt to understand the neuropathological processes 
occurring in progressive MS, a positron emission tomography  
(PET) imaging method with radioligands binding to the 18-kDa 
translocator protein (TSPO) molecule on activated microglia 
was developed for monitoring these cells in living patients with  
MS68. This revealed that TSPO binding was significantly increased 
in the normal-appearing white matter (NAWM) of patients with 
SPMS69–71 but only modestly in the NAWM of RRMS brain70. 
In PPMS, such studies are still limited72. Most recently, TSPO-
PET studies showed significantly increased signals in subcortical 
grey matter regions, especially in thalamus in SPMS, and this 
was associated with accelerated brain atrophy73. Thus, activated  
microglia are observed in progressive MS; however, what is not 
yet known is whether they contribute to ongoing degeneration or  
reflect a normal reaction to injury and serve a protective role.

Mitochondrial dysfunction in MS
Mitochondria play a central role in the supply of energy to 
electrically active axons and neurons. Dysfunction of this  

organelle likely contributes to “virtual hypoxia”74 and may be 
especially relevant for chronically demyelinated axons where an  
action potential may exact a higher toll on energy supply. This 
imbalance of supply versus demand could further exacerbate 
degeneration of vital tracts through energy failure, induction of 
apoptosis, and enhanced production of reactive oxygen species75. 
Therefore, this topic has been gaining interest as an impor-
tant mechanism of neuronal death. Oxidative burst in activated 
microglia produces reactive oxygen and nitrogen species which  
contribute to mitochondrial dysfunction76. Therefore, the acti-
vated microgliosis described above could exacerbate axo-glial 
injury in white matter that does not exhibit overt pathological 
changes (NAWM). A marker of mitochondrial dysfunction,  
cerebrospinal fluid (CSF) lactate showed a positive correlation 
with disease onset, severity, and progression77–79, suggesting that 
this organelle might be under stress from the earliest stages of the  
disease. A recent study reported that ceramides in CSF from  
patients with progressive MS induced mitochondrial elonga-
tion and reduced respiratory chain complex activity in cultured 
neurons, providing evidence of a specific factor contributing to  
mitochondrial injury80. This supports previous findings that 
decreased functional activity of mitochondrial respiratory 
chain complexes in progressive MS motor cortex neurons may  
contribute to accumulating neurological disability in patients 
with MS81. In addition, respiratory chain complex IV–deficient  
neurons and choroid plexus (CP) epithelial cells are more  
abundant in MS brain and this respiratory enzyme deficiency 
is caused by a high level of mitochondrial DNA (mtDNA)  
deletions82,83 (reviewed in 84). Interestingly, no significant change 
in the extent of respiratory-deficient skeletal muscle fibers was 
found in patients with progressive MS compared with age-
matched controls85, indicating that such mitochondrial changes 
are induced within the CNS. The cause of this mitochondrial  
damage, which likely plays an important role in further com-
promising the health and function of brain neurons and axons,  
is not completely understood.

Conclusions
It is very clear that both degenerative and immune processes are 
involved in the pathophysiology of MS. Unfortunately for the 
MS researcher, the closely intertwined relationship between  
these two processes, continuing throughout all phases of the 
disease, makes it extremely difficult to definitively resolve the  
“outside-in” versus “inside-out” controversy. In our opinion, 
emerging evidence, as summarized in this commentary, is pro-
viding increasing support in favor of a primary degenerative  
etiology. However, as with most other neurodegenerative  
disorders, the proximal trigger is unknown. Regardless, what is 
clear is that understanding the mechanisms of chronic progression 
in MS is currently the major challenge because this is the phase 
that contributes most to irreversible disability. The lack of insight 
into mechanisms of progression is largely responsible for the  
extremely limited treatment options currently available to patients 
with progressive MS. A shift in thinking about this disease, with 
greater consideration given to a potential underlying degenera-
tive etiology, will spur new and original research directions that 
will eventually unravel the mystery and provide more effective  
therapeutics to mitigate the disabling progressive phase of MS.
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