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Angiotensin II type 1 receptor (AT1R)–associated protein

(ATRAP) promotes AT1R internalization along with

suppression of pathological activation of tissue AT1R

signaling. However, the functional significance of ATRAP in

renal sodium handling and blood pressure regulation under

pathological stimuli is not fully resolved. Here we show the

blood pressure of mice with a gene-targeted disruption of

ATRAP was comparable to that of wild-type mice at baseline.

However, in ATRAP-knockout mice, angiotensin II–induced

hypertension was exacerbated and the extent of positive

sodium balance was increased by angiotensin II. Renal

expression of the sodium-proton antiporter 3, a major

sodium transporter in the proximal tubules, urinary pH, renal

angiotensinogen production, and angiotensin II content was

unaffected. Stimulation of the renal expression and activity of

the epithelial sodium channel (ENaC), a major sodium

transporter in the distal tubules, was significantly enhanced

by chronic angiotensin II infusion. The circulating and urinary

aldosterone levels were comparable. The blood pressure

response and renal ENaC expression by aldosterone were not

affected. Thus, ATRAP deficiency exacerbated angiotensin

II–mediated hypertension by pathological activation of renal

tubular AT1R by angiotensin II. This directly stimulates ENaC

in the distal tubules and enhances sodium retention in

an aldosterone-independent manner.
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Hypertension is the most common chronic disease worldwide.
It has a complex etiology in which genetic and environmental
factors are intricately intertwined. Although the mechanisms
underlying hypertension are difficult to fully elucidate, the
renin–angiotensin system (RAS) has a pivotal role in it.
Among tissue RAS forms, activation of angiotensin II type 1
receptor (AT1R) signaling in the renal tubules is suggested to
have a key role in altered renal sodium handling that occurs in
hypertension. According to Guyton’s hypothesis, it is main-
tained that hypertension is caused by a disproportionate
suppression of sodium excretion from kidney due to arterial
pressure.1 Therefore, pathological activation of renal tubule
AT1R signaling provokes defective renal sodium handling,
with a consequent dysregulation of body fluid volume that, in
turn, leads to development of hypertension.

The AT1R-associated protein (ATRAP/Agtrap) has been
identified as a specific AT1R-binding protein.2,3 Previous
studies have shown that ATRAP selectively suppresses angio-
tensin II (Ang II)–mediated pathological activation of AT1R
in cardiovascular cells, and that cardiac ATRAP enhancement
ameliorates cardiac hypertrophy in Ang II–infused mice
without any effect on baseline cardiovascular functions,
including blood pressure (BP).4–8 Based on these observa-
tions, we hypothesized that a downregulation of tissue
ATRAP enhances pathological activation of tissue AT1R in
response to certain stimuli without any evident effect on
baseline physiological AT1R signaling. ATRAP is abundantly
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distributed along the renal tubules.9,10 Therefore, we
investigated the effects of chronic Ang II infusion on BP
and renal sodium handling in the context of gene-specific
disruption of ATRAP (ATRAP-knockout (KO) mice).

RESULTS
ATRAP deficiency exerts no evident effect on renal
morphology and function or AT1R expression

The ATRAP mRNA was widely distributed in the tissues of
littermate wild-type control mice (WT mice) with the highest
expression in kidney (Figure 1a). In contrast, no ATRAP
expression was detected in any tissues, including the kidney,

in ATRAP-KO mice (Figure 1a and b). On immunohisto-
chemical analysis with consecutive sections using markers
specific to the tubular segments, such as megalin (proximal
convoluted tubules), calbindin-D (distal convoluted tubules
and connecting tubules), and aquaporin 2 (collecting ducts),
ATRAP immunostaining was broadly detected in nephron
segments from proximal convoluted tubules to collecting
ducts of WT mice (Figure 1c). In contrast, there was no
ATRAP immunostaining in nephron segments of ATRAP-KO
mice (Figure 1d). Although genetic inactivation of other RAS
components, such as angiotensinogen (AGT), renin, and
AT1R, has been reported to result in renal morphological
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Figure 1 | Angiotensin II type 1 receptor (AT1R)–associated protein (ATRAP) deficiency exerts no evident effect on renal morphology or
AT1R gene expression. (a) ATRAP mRNA is widely distributed in many different tissues and abundantly expressed in the kidney of
wild-type (WT) mice. Values are calculated relative to those achieved with extracts from the liver of WT mice and are expressed as mean±s.e.
(n¼ 2 in each group). ND, not detected. (b) ATRAP protein is abundantly expressed in the kidney of WT mice on immunohistochemistry. The
positive areas for ATRAP immunostaining are evident as brown dots in the sections. Scale bar¼ 1.5 mm. Original magnification �40. (c) In WT
mice, the ATRAP protein is expressed along the nephron segments from the proximal to distal tubules in consecutive renal cortical sections, as
shown by immunohistochemistry. AQP2, aquaporin-2, a specific marker of the collecting ducts; Calbindin-D, a specific marker of distal
convoluted tubules (DCTs) and connecting tubules (CNTs); Megalin, a specific marker of the proximal tubules. Original magnification �200.
(d) In ATRAP-knockout (KO) mice, there is no ATRAP immunostaining in the renal tubules. Original magnification �200. (e) There is no
anatomical difference between the kidneys of the WT and ATRAP-KO mice on representative hematoxylin/eosin staining of kidney sections.
Scale bar¼ 1.5 mm. Original magnification �40. (f) ATRAP deficiency does not affect the creatinine clearance. Values are expressed as
mean±s.e. (n¼ 4 in each group). (g) ATRAP deficiency does not affect the tissue distribution or expression levels of AT1R mRNA. The values
were calculated relative to those achieved with extracts from the muscles of WT mice and are expressed as mean±s.e. (n¼ 4–6 in each group).
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alteration even under baseline conditions,11–15 ATRAP-KO
mice at baseline exhibited no apparent alterations in renal
morphology (Figure 1e) or creatinine clearance (Figure 1f,
260.8±21.7 in WT vs. 277.6±13.2 in ATRAP-KO, ml/min,
P¼ 0.918; unpaired t-test). Furthermore, there was no
significant difference in AT1R mRNA expression between
WT and ATRAP-KO mice (Figure 1g).

ATRAP deficiency exerts no apparent effect on baseline BP or
urinary pH

Genetic deficiency of the RAS components (that is, AGT, renin,
and AT1R) has also been reported to result in significant
decreases in baseline BP.11–15 However, baseline 24-h mean
systolic BP, diastolic BP, and heart rate, measured by radio-
telemetric method, were similar in WT and ATRAP-KO mice
(Figure 2a, systolic BP 120±2 vs. 123±4, mm Hg, P¼ 0.545;
Figure 2b, diastolic BP 92±5 vs. 95±4, mm Hg, P¼ 0.793;
Figure 2c, HR 541±18 vs. 547±10 beat/min, P¼ 0.598;
unpaired t-test). Urinary pH, which reflects the activity of
sodium-proton antiporter 3 (NHE3), was also similar in WT
and ATRAP-KO mice (Figure 2d).

ATRAP deficiency exacerbates Ang II–induced hypertension

As ATRAP-KO mice did not display any alternation in
baseline BP, we next examined the effects of ATRAP defi-
ciency on BP response to chronic Ang II infusion (500 or

2000 ng/kg/min). Whereas systolic BP was increased during
the period of chronic Ang II infusion in WT mice, Ang
II–induced elevation of systolic BP was significantly exacer-
bated in ATRAP-KO mice compared with WT mice, irrespec-
tive of dose (Figure 3a; Ang II, 500 ng/kg/min, F¼ 6.117,
P¼ 0.048; Figure 3b, Ang II, 2000 ng/kg/min, F¼ 86.758,
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Figure 2 | Angiotensin II type 1 receptor (AT1R)–associated
protein (ATRAP) deficiency exerts no apparent effect on baseline
blood pressure (BP) or urinary pH. (a) Systolic BP, (b) diastolic BP,
and (c) heart rate measured by a radiotelemetric method were similar
in the wild-type (WT) and ATRAP-knockout (KO) mice. (d) Urinary pH
was also comparable in the WT and ATRAP-KO mice. Values are
expressed as mean±s.e. (n¼ 5–6 in each group).
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Figure 3 | Angiotensin II type 1 receptor (AT1R)–associated
protein (ATRAP) deficiency exacerbates angiotensin II (Ang
II)–mediated hypertension. The Ang II–induced elevation of systolic
blood pressure (BP) was significantly exacerbated in ATRAP-knockout
(KO) mice as compared with wild-type (WT) mice irrespective of the
Ang II dose (a, 500 ng/kg/min; b, 2000 ng/kg/min). Values are
expressed as mean±s.e. (n¼ 4 in each group). wPo0.05 versus WT
mice, wwPo0.01 versus WT mice. (c) ATRAP-KO mice exhibited a
significantly increased ratio of heart weight/body weight compared
with WT mice after Ang II (2000 ng/kg/min) infusion. Values are
expressed as mean±s.e. (n¼ 7–9 in each group). **Po0.01 versus
vehicle, wPo0.05 versus WT mice. (d) Urinary albumin excretion was
further elevated in ATRAP-KO mice compared with WT mice after Ang
II (2000 ng/kg/min) infusion. Values are expressed as mean±s.e.
(n¼ 6–8 in each group). **Po0.01 versus vehicle, wwPo0.01 versus WT
mice.
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Po0.001, two-way repeated measures analysis of variance
(ANOVA)). We employed a higher dose of Ang II (2000 ng/
kg/min) for further experiments to characterize ATRAP-KO
mice in comparison with WT mice.

The ATRAP-KO mice also exhibited a significantly
increased ratio of heart weight/body weight compared with
WT mice by Ang II (Figure 3c, P¼ 0.040; analysis of variance
(ANOVA). Similarly, urinary albumin excretion was elevated
in ATRAP-KO mice compared with WT mice (Figure 3d;
Po0.001. ANOVA). The mortality rate was comparable in
WT and ATRAP-KO mice during Ang II infusion (2000 ng/
kg/min) for 14 days (5.7 vs. 7.3%, P¼ 0.576, w2-test).

ATRAP deficiency inhibits urinary sodium excretion during
Ang II infusion

As the highest ATRAP expression was observed in renal
tubules among analyzed tissues, we hypothesized that ATRAP
deficiency might enhance Ang II–mediated hypertension
by affecting renal sodium handling. To examine this, we
performed metabolic cage analysis (Figure 4a–d). Day-by-day
sodium intake was similar in WT and ATRAP-KO mice
(Figure 4a, F¼ 0.559, P¼ 0.469, two-way repeated measures
ANOVA), and urinary sodium excretion was comparable in
WT and ATRAP-KO mice (Figure 4b, F¼ 1.690, P¼ 0.218,
two-way repeated measures ANOVA). However, day-by-day
sodium balance was significantly increased in ATRAP-KO
mice compared with WT mice over the entire Ang II infusion
period (Figure 4c, F¼ 4.892, P¼ 0.047, two-way repeated
measures ANOVA). Furthermore, the extent of cumulative
sodium balance during 14 days of Ang II infusion was
significantly increased in ATRAP-KO mice as compared with
WT mice (Figure 4d, P¼ 0.047, unpaired t-test), consistent
with blunted natriuresis as a mechanism for the exacerbation
of Ang II-induced hypertension.

ATRAP deficiency enhances renal expression of a-subunit of
the epithelial sodium channel (aENaC) by chronic Ang II
infusion

To investigate the mechanisms involved in the suppression of
urinary sodium excretion in response to Ang II in ATRAP-
KO mice, we compared renal expression of major sodium
transporters (NHE3, sodium–potassium–two chloride co-
transporter (NKCC2), Naþ–Cl� cotransporter (NCC), and
ENaC subunits). Age-matched WT and ATRAP-KO mice
were divided into four groups: (1) vehicle-infused WT mice,
(2) Ang II–infused WT mice, (3) vehicle-infused ATRAP-KO
mice, and (4) Ang II–infused ATRAP-KO mice. There were no
differences in the expression levels of NHE3 or NKCC mRNA
and protein between WT and ATRAP-KO mice with or
without Ang II infusion for 14 days (Figures 5a and b and 6a
and b). On the other hand, although Ang II–mediated
increase in NCC mRNA was significant only in ATRAP-KO
mice (Figure 5c), renal expression of phosphorylated NCC,
which is the activated NCC protein, was similarly increased
by Ang II infusion in both groups (Figure 6c).

However, Ang II–mediated upregulation of aENaC, but
not of bENaC or gENaC mRNA, was significantly enhanced
in ATRAP-KO mice compared with WT mice (Figure 5d–f).
Furthermore, although aENaC protein expression did not
differ between WT and ATRAP-KO mice with vehicle, there
was a significant Ang II–mediated increase in renal aENaC
protein expression in ATRAP-KO mice (P¼ 0.007 relative to
vehicle-infused ATRAP-KO mice, P¼ 0.042 relative to Ang
II–infused WT mice, ANOVA; Figure 6d). Protein levels of
bENaC and gENaC were similar in WT and ATRAP-KO mice
(Figure 6e and f).
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Figure 4 | Angiotensin II type 1 receptor (AT1R)–associated
protein (ATRAP) deficiency exacerbates sodium retention during
angiotensin II (Ang II) infusion. (a) Day-by-day sodium intake was
comparable in the wild-type (WT) and ATRAP-knockout (KO) mice
during the entire period of Ang II (2000 ng/kg/min) infusion
(F¼ 0.559, P¼ 0.469, two-way repeated measures analysis of variance
(ANOVA)). (b) Day-by-day urinary sodium excretion was comparable
in the WT and ATRAP-KO mice during the entire period of Ang II
infusion (F¼ 1.690, P¼ 0.218, two-way repeated measures ANOVA).
(c) Day-by-day sodium balance was significantly increased in the
ATRAP-KO mice compared with the WT mice for the whole period of
Ang II infusion (F¼ 4.892, P¼ 0.047, two-way repeated measures
ANOVA). (d) The extent of the cumulative positive sodium balance
during the Ang II (2000 ng/kg/min) infusion period was significantly
increased in the ATRAP-KO mice compared with the WT mice on
metabolic cage analysis. Values are expressed as mean±s.e. (n¼ 7–8
in each group). wPo0.05 versus WT mice.
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ATRAP deficiency–mediated enhancement of renal aENaC
expression by chronic Ang II infusion is aldosterone
independent

The promoting effect of Ang II infusion on expression of
renal RAS components including AGT in proximal tubules
has been reported.16,17 Thus, to investigate the mechanisms
involved in Ang II–induced renal aENaC expression in
ATRAP-KO mice, renal AGT mRNA expression, urinary AGT
excretion, and renal Ang II levels were analyzed. However,
renal AGT mRNA expression and urinary AGT excretion were
similar in WT and ATRAP-KO mice with vehicle, and
exhibited no apparent changes by Ang II (Figure 7a and b). In
addition, renal Ang II level was comparable in WT and
ATRAP-KO mice with vehicle, and was significantly and
similarly increased by Ang II in both WT and ATRAP-KO
mice (Figure 7c). These results indicate that ATRAP defi-
ciency exerts no apparent effect on proximal tubule AGT
production or the renal Ang II levels.

We next examined the plasma aldosterone concentration
and urinary aldosterone excretion to investigate a possible
role of aldosterone in the enhanced aENaC expression in
response to Ang II. Under vehicle infusion, plasma aldo-
sterone concentration (Figure 8a, 208.7±38.1 vs. 197.5±
29.3 pg/ml, P¼ 1.000, ANOVA) and urinary aldosterone
excretion (Figure 8b, 5.2±0.6 vs. 4.6±0.8 ng/day, P¼ 0.974,
ANOVA) were comparable in WT and ATRAP-KO mice.
Furthermore, Ang II infusion significantly and similarly

increased plasma aldosterone concentration (Figure 8a,
1154.0±170.5 vs. 1464.5± 267.9 pg/ml, P¼ 0.401, ANOVA)
and urinary aldosterone excretion (Figure 8b, 19.2±0.5 vs.
15.9±2.1 ng/day, P¼ 0126, ANOVA) in both WT and
ATRAP-KO mice.

We also administered exogenous aldosterone subcuta-
neously to WT and ATRAP-KO mice. Systolic BP measured
by the tail-cuff method was similar in WT and ATRAP-KO
mice by vehicle administration, and was similarly increased
by chronic aldosterone infusion in both groups (Figure 9a).
Furthermore, renal aENaC protein levels did not exhibit any
significant difference between WT and ATRAP-KO mice with
or without aldosterone (Figure 9b). These results would
support the notion that ATRAP deficiency enhances renal
aENaC expression in an aldosterone-independent manner.

ENaC is functionally activated in response to chronic Ang II
simulation and promotes renal sodium retention in ATRAP
deficiency

To examine whether ENaC activity was affected by the
enhancement of renal aENaC expression in ATRAP-KO mice,
diuretic test using a potent and specific ENaC inhibitor
amiloride was performed, and the effects of ATRAP
deficiency on the functional transport activity of ENaC were
examined. Urinary sodium excretion and urinary volume
after intraperitoneal injection of amiloride were significantly
increased in the Ang II–infused ATRAP-KO as mice
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Figure 5 | Angiotensin II type 1 receptor (AT1R)–associated protein (ATRAP) deficiency enhances the upregulation of renal a-subunit
of the epithelial sodium channel (aENaC) mRNA expression by chronic angiotensin II (Ang II) infusion. Effects of Ang II
(2000 ng/kg/min) infusion for 14 days on the mRNA expression of the major sodium transporters (a, sodium-proton antiporter 3 (NHE3);
b, sodium–potassium–two chloride cotransporter (NKCC2); c, Naþ–Cl� cotransporter (NCC); d, aENaC; e, bENaC; and f, gENaC) in the kidneys of
wild-type (WT) and ATRAP-knockout (KO) mice. Values are expressed as mean±s.e. (n¼ 6–8 in each group). *Po0.05 versus vehicle,
**Po0.01 versus vehicle, wPo0.05 versus WT mice.
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compared with the Ang II–infused WT mice (Figure 10a and
b). This finding indicated that the ENaC is functionally
activated in response to chronic Ang II simulation so as to
increase renal sodium retention in ATRAP-KO mice.

ATRAP deficiency enhances Ang II–induced vasoconstriction

Although the renal aENaC protein expression in ATRAP-KO
mice was significantly increased as compared with WT mice
by chronic Ang II infusion for 14 days (Figure 6d), the
aENaC protein expression levels just after the start of Ang II
infusion (on day 1) did not differ significantly between
WT and ATRAP-KO mice (Figure 11). On the other hand,
telemetric BP showed a trend toward enhanced Ang
II–induced BP elevation in ATRAP-KO mice, concomitant
with a tendency of increase in day-by-day sodium balance in
ATRAP-KO mice as compared with WT mice already during
the early period of Ang II infusion (Figures 3 and 4).

Based on the above observations, we examined the
vasoconstrictor response of artery rings to Ang II to

investigate whether there would be an enhancement of
vascular response to Ang II as one of the contributing factors
to the exaggerated BP elevation in the initial phase of Ang II
infusion in ATRAP-KO mice. Histological analysis of aortic
sections revealed a normal vascular structure in ATRAP-KO
mice, in spite of no vascular ATRAP immunostaining, without
any alteration in aortic medial thickness in ATRAP-KO mice
(Figure 12a and b). However, Ang II provoked an exaggerated
vasoconstrictor response of vascular rings of ATRAP-KO
mice compared with WT mice upon vessel wire myograph
analysis (Figure 12c, F¼ 8.583, P¼ 0.015, two-way repeated
measures ANOVA). This suggests a possible involvement
of increased vasoconstriction in the initial stage of the
exacerbation of Ang II–mediated hypertension in ATRAP-KO
mice.

DISCUSSION

In this study it was demonstrated that systemic ATRAP
deficiency does not exert any evident influence on baseline
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Figure 6 | Angiotensin II type 1 receptor (AT1R)–associated protein (ATRAP) deficiency enhances upregulation of renal a-subunit of the
epithelial sodium channel (aENaC) protein expression by chronic angiotensin II (Ang II) infusion. Effects of Ang II (2000 ng/kg/min)
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BP upon radiotelemetry or on renal structure and function.
This is in sharp contrast to the reported phenotypic
changes in the genetic deletion of other RAS components
(that is, AGT, renin, and AT1R). These RAS-inactivated mice
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displayed significant decreases in baseline BP as well as
pathological alterations in renal structure and function
compared with the control mice.11–15

With respect to a possible effect of genetic alteration in
ATRAP on BP regulation, a previous study examined pheno-
typic changes in systemic ATRAP gene-trap mice.18 These
mice have a gene-trap cassette with splicing acceptor in
ATRAP intron 4 and exhibit fusion of ATRAP exons 1 to 4
with b-galactosidase/neomycin resistance gene, with an
elevated baseline BP concomitant with an increased plasma
volume and lowered urinary pH.18 This previous study
suggested an augmented baseline NHE3-dependent sodium
reabsorption in proximal tubules of these mice, and the
authors proposed a regulatory role for proximal tubule ATRAP
in modulation of renal sodium handling and baseline BP.18

However, the phenotypic difference in these ATRAP gene-trap
mice might be because of aberrant ATRAP-gal/neo protein
production. In addition, the strain of ATRAP gene-trap and
control mice used for comparison were not reported,18 thereby
making it difficult to properly interpret their BP data.
Furthermore, the previously reported systemic ATRAP trans-
genic mice (TGM) produced separately in both our laboratory
and a distinct laboratory exhibited no baseline BP changes.19,20

These findings support the results of the present study, show-
ing an absence of BP change at baseline in ATRAP-KO mice.

In contrast to the lack of any evident change in baseline BP
in ATRAP-KO mice, Ang II–mediated hypertension was
significantly exacerbated in ATRAP-KO mice concomitant
with an increased sodium balance compared with WT mice.
With respect to the mechanisms involved in Ang II–induced
hypertension, previous studies using a series of kidney
cross-transplant experiments showed that activation of the

intrarenal Ang II–AT1R axis is critically important for both
Ang II–dependent hypertension and end-organ damage.21–23

Sodium reabsorption through renal proximal and distal
tubules is reportedly regulated by the activity of the intrarenal
Ang II–AT1R axis.24 The proximal tubule AT1R directly
affects BP regulation because a major portion of the
glomerular filtrate is reabsorbed in proximal tubules, and
proximal tubule sodium transport is considered a major
determinant of the pressure natriuresis response.25 The
proximal tubule–specific AT1R-deficient mice exhibited a
partial suppression of Ang II–induced BP elevation as well as
a decrease in baseline BP compared with control mice,
concomitant with Ang II–induced reduction in NHE3
expression.26 On the other hand, another type of proximal
tubule–specific AT1R-deficient mouse exhibited a significant
reduction in baseline BP, but without any evident inhibition
of Ang II–induced hypertension in comparison with control
mice.27 These results indicate that activation of AT1R
signaling in renal proximal tubules is unable to fully
account for the positive effect of Ang II on BP increase.
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Regarding the role of distal tubules in renal sodium
handling by the Ang II–AT1R axis, previous studies showed
that distal nephron segments also have a crucial role in the
regulation of sodium reabsorption via intrarenal RAS.28,29

The modulation of sodium reabsorption in response to Ang
II is mediated by NCC and ENaC in the distal nephron.30–35

These findings support the notion that the renal distal
tubules also have a role in sodium reabsorption that takes
place in response to Ang II. Recently, we generated renal
distal tubule–dominant ATRAP TGM (renal distal convoluted
tubule-ATRAP TGM).8 The renal distal convoluted tubule-
ATRAP TGM exhibited a significant amelioration of Ang
II–induced hypertension, in spite of no change in baseline BP,
at least partly via a suppression of the upregulation of renal
aENaC expression by Ang II stimulation,8 thereby suggesting
a regulatory role of distal tubule ATRAP in the regulation of
renal sodium handling. With respect to the intrarenal
distribution of ATRAP, its protein was found to be widely
and abundantly expressed along both the proximal and distal
tubules. Thus, it is important to determine which of the func-
tional effects of renal tubule ATRAP (that is, proximal tubule
ATRAP or distal tubule ATRAP) is more relevant to the
regulation of renal sodium handling that modulates BP resp-
onse under pathological conditions such as Ang II infusion.

In this study, the renal expression of NHE3, a major
sodium transporter in proximal tubules, as well as of urinary
pH, which reflects proximal tubule NHE3 activity, and renal
AGT production (both mRNA expression and urinary
excretion) were similar in WT and ATRAP-KO mice. These
results suggest that sodium reabsorption by NHE3 in
proximal tubules was not affected by ATRAP deficiency and
an increase in sodium reabsorption in proximal tubules by
Ang II–AT1R axis is not likely to play a major role in the
exacerbation of Ang II–induced hypertension that occurs in
ATRAP-KO mice. In addition, renal AGT production and
renal Ang II content were similar with or without Ang II. The
positive feedback loop of Ang II to its substrate AGT has been
demonstrated in various tissues, including liver,36,37

heart,38,39 and adipose tissue.40,41 However, in the kidney,
the feedback loop of Ang II to AGT is regulated in a dose-
dependent manner.16,17,42,43 Although a low dose of Ang II
infusion reportedly increases AGT levels in the kidney,16 a
high dose did not change them.17 Accordingly, these results
suggest that systemic ATRAP deficiency did not affect renal
AGT production, resulting in an unaltered renal Ang II level.

On the other hand, the Ang II–induced stimulation of
renal expression and activity of ENaC, a major sodium
transporter in distal tubules, was significantly enhanced in
ATRAP-KO mice compared with WT mice. Although
aldosterone is one of the major positive regulators of ENaC,
both the circulating and urinary aldosterone levels were
comparable in the two groups, and the BP response and
renal ENaC expression by chronic aldosterone infusion
were not affected in ATRAP-KO mice, thereby excluding
aldosterone as a major contributor to the enhancement of the
Ang II–induced activation of ENaC.

ENaC is formed by three homologous subunits (a, b, and g)
and coexpression of all three subunits is needed to induce
maximal channel activity, and aENaC has a critical role in the
formation of a functional ion channel.44,45 With respect to
the possible direct effects of Ang II on ENaC, Ang II
reportedly stimulates distal sodium transport activity via an
upregulation of aENaC expression and an enhancement of
ENaC activity by modulation of the probability of the
channel being open.35,46–49 A recent study has also shown that
Ang II directly promotes translocation of aENaC to the
apical plasma membrane and increases the number of
functionally active channels in vivo.50 Considering these
reports, posttranslational modifications that alter trafficking
or function of the channel, as well as an increase in aENaC
expression, may contribute to the enhanced ENaC function
that occurs in ATRAP-KO mice. Further studies are needed to
investigate these possible mechanisms.

Finally, with respect to the mechanisms of the initiation
process of exacerbation of Ang II–mediated hypertension in
ATRAP-KO mice, although Ang II–induced sodium retention
and BP elevation tended to be different between ATRAP-KO
and WT mice even during the early phase of Ang II infusion,
the renal aENaC protein expression level was comparable on
day 1 of Ang II infusion. These findings suggest that changes
in glomerular hemodynamics, glomerular filtration rate, and
vasoconstriction may be involved in the differences in
sodium balance and BP elevation that occur during the early
phase of Ang II infusion. Indeed, Ang II induced greater
vasoconstrictor responses in the vascular ring of ATRAP-KO
mice than WT mice. Enhancement of Ang II–induced
vasoconstriction because of ATRAP deficiency may be one
of the mechanisms underlying the exacerbation of Ang
II–mediated hypertension, particularly in the early initiation
period.

In summary, these results indicate that the pathological
activation of renal tubular AT1R in response to chronic Ang
II infusion, which is enhanced by ATRAP deficiency, directly
provokes ENaC activation in distal tubules, so as to promote
sodium retention in an aldosterone-independent manner and
to contribute to the exacerbation of Ang II–mediated
hypertension. As we employed systemic ATRAP-KO mice in
this study, it is not practical to examine the nephron
segment–specific effect of ATRAP. Further investigation is
needed to elucidate the in vivo functional roles of ATRAP in a
nephron segment–specific manner, including its possible
interaction with sodium transporters other than ENaC. Such
investigation, including the use of conditional gene KO mice,
will be taken up in due course.

MATERIALS AND METHODS
Targeted disruption of the gene encoding ATRAP/Agtrap in
C57BL/6 mice
We employed a targeted gene disruption strategy to produce ATRAP-
KO mice (C57BL/6) as described previously.51 All experiments were
performed with ATRAP-KO mice and their WT littermates. This
study was performed in accordance with the National Institutes of
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Health guidelines for the use of experimental animals. All animal
studies were reviewed and approved by the Animal Studies
Committee of Yokohama City University.

Quantitative real-time reverse transcriptase–PCR analysis
Quantitative real-time reverse transcriptase–PCR was performed
using designed TaqMan probes (Agtrap, Mm00507771_m1; AT1R,
Mm01957722_s1; NHE3, Mm01352473_m1; NKCC2, Mm01275821_m1;
NCC, Mm00490213_m1; aENaC, Mm00803386_m1; bENaC,
Mm00441215_m1; gENaC, Mm00441228_m1; and AGT,
Mm00599662_m1; Applied Biosystems, Carlsbad, CA), as described
previously.8 The mRNA levels were normalized to those of the 18S
rRNA control.

Histological and immunohistochemical analysis
Immunohistochemistry was performed as described previously.10,20,52,53

The sections were incubated with one of the following: (1) anti-
ATRAP antibody diluted to 1:100, (2) anti-aquaporin 2 antibody
(1:200; 254-271, CALBIOCHEM, Darmstadt, Germany), (3) anti-
calbindin D-28K antibody (1:3000; C9848, Sigma-Aldrich, St Louis,
MO), or (4) anti-megalin antibody (1:1000; NB110-96417, Novus
Biologicals, Littleton, CO).

Ang II infusion and BP measurement by radiotelemetric
method
Direct BP measurement was performed by radiotelemetric method
using a BP transducer (Model TA11PA-C10; Data Science Inter-
national, New Brighton, MN) as described previously.6,8,54 Ang II
(500 or 2000 ng/kg/min) was infused subcutaneously into the mice
via an osmotic minipump (Model 2002, ALZET, Palo Alto, CA) and
hemodynamic measurements were recorded every 5 min using the
software Dataquest A.R.T. 4.1 (Data Science International). Baseline
BP values were the average of three consecutive days.

Metabolic cage analysis
All mice (male, 11 weeks of age) were fed a normal diet (0.3% NaCl)
throughout this. Mice were acclimated for a week to metabolic cages
(Techniplast, Buguggiate, Italy) before Ang II (2000 ng/kg/min)
infusion. Body weight, food intake, and water intake were measured
daily, and urine was collected.

Diuretic test
The diuretic test using a 0.3 mg/ml amiloride solution in 10%
dimethyl sulfoxide was performed essentially as described pre-
viously.55 After Ang II infusion (2000 ng/kg/min) for 14 days, mice
were subsequently injected intraperitoneally with 40 ml/g saline
to facilitate spontaneous voiding. At 1 h after saline injection,
amiloride (3 mg/kg) was intraperitoneally injected. The dose of
amiloride was determined based on a previous study.56 Urine was
collected every hour by spontaneous voiding or bladder massage,
and urine volume and sodium excretion were measured.

Aldosterone infusion and BP measurement by tail-cuff
method
Mice (male, 11 weeks of age), fed a normal diet (0.3% NaCl) with
1% NaCl in the drinking water, were subcutaneously infused with
aldosterone (50mg/kg/day) via an osmotic minipump for 14 days.57,58

Measurement of systolic BP by the tail-cuff method (BP monitor
MK-2000; Muromachi Kikai, Tokyo, Japan) was performed.20,59

Membranous protein extraction and immunoblot analysis for
epithelial sodium transporters
Membranous proteins were extracted from kidneys using the
Plasma Membrane Extraction Kit (K268-50; Biovision, Milpitas,
CA), and immunoblot analysis was performed as described
previously.6,8,10,20 Antibodies against NHE3 (NHE31-A, Alpha
Diagnostic International, San Antonio, TX), phospho-NKCC2 on
Thr96 (kindly provided by Dr Shih-Hua Lin, Tri-Service General
Hospital, Taipei, Taiwan),60 phospho-NCC on Ser71,61 aENaC
(PA1-920A, Affinity Bioreagents, Golden, CO), bENaC (ENACb21-A,
Alpha Diagnostic), and gENaC (ab3468, Abcam, Cambridge, UK)
were used.

Biochemical assay
Plasma and urinary aldosterone concentrations were determined
using the radioimmunoassay (RIA) kit (SPAC-S Aldosterone Kit; TFB,
Tokyo, Japan). Urinary AGT level was determined using the sandwich
enzyme-linked immunosorbent assay, as described previously.62

Urinary creatinine, sodium, albumin, and serum creatinine were
assessed using an autoanalyzer (Hitachi 7180; Hitachi, Tokyo,
Japan). Urinary pH was determined with a pH glass electrode
(TwinPH B-212; Horiba, Kyoto, Japan). Renal Ang II level was
measured by RIA as described previously.63

Vessel wire myograph study
Isometric tension of aortic vascular rings from ATRAP-KO and WT
mice was measured using a two-channel myograph (Dual Wire
myograph system 410A; Unique Medical, Tokyo, Japan), as
described previously.64,65 The vascular rings were treated with Ang
II (10� 12 to 10� 7 mol/l) and potassium-enriched solutions to
stimulate vasoconstriction.

Statistical analysis
All data are shown as mean±s.e. Differences were analyzed by
Student’s unpaired t-test or ANOVA for multiple comparisons.
Differences between groups for categorical variables were analyzed
using the w2-test. The P-values of o0.05 were considered statistically
significant.
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