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Abstract

Objective: Postoperative complications adversely affected the prognosis in patients with gastric cancer. This

study intends to investigate the feasibility of using machine-learning model to predict surgical outcomes in patients

undergoing gastrectomy.

Methods: In this study, cancer patients who underwent gastrectomy at Shanghai Rui Jin Hospital in 2017 were

randomly assigned to a development or validation cohort in a 9:1 ratio. A support vector classification (SVC) model

to predict surgical outcomes in patients undergoing gastrectomy was developed and further validated.

Results:  A total  of  321  patients  with  32  features  were  collected.  The  positive  and  negative  outcomes  of

postoperative complication after gastrectomy appeared in 100 (31.2%) and 221 (68.8%) patients, respectively. The

SVC model was constructed to predict surgical outcomes in patients undergoing gastrectomy. The accuracy of 10-

fold cross validation and external verification was 78.17% and 78.12%, respectively. Further, an online web server

has been developed to share the SVC model for machine-learning-assisted prediction of surgical outcomes in

patients  undergoing  gastrectomy  in  the  future  procedures,  which  is  accessible  at  the  web  address:

http://47.100.47.97:5005/r_model_prediction.

Conclusions: The SVC model was a useful predictor for measuring the risk of postoperative complications after

gastrectomy, which may help stratify patients with different overall status for choice of surgical procedure or other

treatments. It can be expected that machine-learning models in cancer informatics research are possibly shareable

and accessible via web address all over the world.
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Introduction

Gastric cancer is one of the most common malignancies
and the second leading cause of cancer death in the world.
In China, more than 679,100 new diagnoses are made every
year.  An  estimated  498,000  patients  died  from  gastric
cancer in 2015 (1).  Surgery is the only possible curative
treatment,  and  results  of  gastrectomy  have  improved
throughout the years with respect to survival, morbidity

and postoperative mortality (2).
Concerning  the  risk  of  postoperative  complications,

researchers would generally perform a Student’s t test or
Chi square test to discover the risk factors. Other methods
include prognostic nutritional index (PNI) (3), modified
Glasgow prognostic score (mGPS) (4), the Estimation of
Physiological Ability and Surgical Stress (E-PASS) scoring
system (5), etc. However, the reliability and practicability
of  the  previous  criteria  were  indeterminate,  and  the
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previous methods could not account for the influence of
each factor adopted in the equation.

In recent years, cancer informatics and machine-learning
models have been successfully applied in cancer research
(6,7). In this work, the support vector classification (SVC)
model  was  constructed  to  predict  surgical  outcomes  in
patients  undergoing  gastrectomy.  Furthermore,  we
provided  the  web-server  for  researchers  to  utilize  the
model available in this work. Below, we are to describe how
to develop a machine-learning model in detail, making the
following  six  steps  very  clear:  1)  how to  collect  a  valid
benchmark dataset to train and test the model; 2) how to
check  basic  statistics  of  features  available;  3)  how  to
construct the optimal model based on data pretreatment,
feature  reduct ion,  model  se lect ion,  and  model
optimization; 4) how to evaluate the anticipated accuracy of
the model; 5) how to establish an user-friendly web-server
for the model that are accessible to the public; and 6) how
to apply the model in diagnosing and taking care of patients
after gastrectomy.

Materials and methods

Data collection of patients and variables

This study enrolled 321 patients who were diagnosed with
gastric cancer and underwent gastrectomy with lymph node
dissection in 2017 at Rui Jin Hospital affiliated to Shanghai
Jiao Tong University. Patients who received chemotherapy
and who underwent emergency surgery were excluded from
the study. Ninety percent of the patients were randomly
selected as training set, while the other 10 percent were
used  as  testing  set.  In  this  work,  we  retrospectively
reviewed  clinical  data  only  in  past  one  year,  because

surgical and nursing technique has been developed rapidly
in recent years. In our center, the number of patients who
underwent laparoscopic  surgery and enhanced recovery
after surgery (ERAS) was increasing in the past few years.
Thus, we decided to collect data from the most recent year
to construct the model for predicting surgical outcomes in
patients undergoing gastrectomy.

We retrospectively reviewed medical history, laboratory
findings,  operative  findings,  and  surgical  outcomes  in
patients undergoing gastrectomy. Variables included in this
study were listed in Table 1. Age was defined at the time of
surgery.  Body  height  and  weight  were  measured  on
admission day.

In this work, patients with postoperative complications
were categorized into “positive” group, while the others
were categorized into “negative” group. The only endpoint
of  this  study  was  analysis  of  in-patients’  morbidity.
Postoperative complications were defined as either life-
threatening  or  requiring  significant  deviation  from
standard  management.  These  correlate  to  the  Clavien-
Dindo classification of Grade II and above complications (8).

Machine-learning  methods  for  classification  and
prediction

In  this  work,  supervised  machine-learning  methods
including  SVC,  k-Nearest  Neighbor  (k-NN),  linear
discriminant analysis (LDA), general linear model (GLM)
were  used  to  construct  classification  models  predicting
postoperative complications. The data sets were randomly
partitioned into 90% training set and 10% independent
test set. Models were built using training set and validated
using independent test set. The classification tasks were
designed  to  evaluate  the  performances  of  different
machine-learning  models.  For  each  classification  task,

Table 1 Variables included in this study

Category Variables

Baseline information Gender, age, weight, height, BMI, length of preoperative stay, number of
comorbidities, tumor size

Routine blood test WBC counts, lymphocyte counts, RBC counts, HBG, PLT counts

Chemistry profile Blood GLU, ALT, AST, TBIL, direct bilirubin DBIL, TP, ALB, CREA, BUN

Surgical procedure Surgery mode (open or laparoscopic), range of resection (total or subtotal
gastrectomy), type of anastomosis (Billroth I or other methods), combined
resection, length of anesthesia, length of surgery, blood transfusion, blood loss,
urine volume, fluid intake

BMI, body mass index; WBC, while blood cell; RBC, red blood cell; HBG, hemoglobin; PLT, platelet counts; GLU, glucose; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL, direct bilirubin; TP, total protein; ALB, albumin;
CREA, creatinine; BUN, blood urea nitrogen.
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feature reduction using principle component analysis was
employed to select the most informative features among
latent  variables  from  the  training  set  and  to  avoid
overfitting.  The  optimal  model  was  determined  by  the
performances  of  the  receiver  operating  characteristic
(ROC) curves for different models on the training set. We
built the models and selected the features using data only
from the training set, in order to rigorously evaluate the
performance of our finalized models with the independent
test set. The inputs to the classification algorithms were the
principle components, which were linear combination of
quantitative features available as described in the previous
section, and the surgical outcomes in patients undergoing
gastrectomy were the predicted results of either positive
group with postoperative complications or negative group.
Considering the unbalanced data set consisting of positive
and negative samples, Random Over-Sampling Examples
(ROSE)  (9-11)  was  carried  out  to  deal  with  the  class
imbalance  problems  before  modelling.  Caret’s  varImp
function  was  used  to  assess  feature  importance,  which
calculates the area under the ROC curve. Introduction of
mentioned  machine-learning  methods  was  provided  in
Supplementary materials.

Statistics and implementation

Statistical analyses and machine-learning algorithms were
performed using R software (Version 3.5.0; R Foundation
for Statistical Computing, Vienna, Austria) installed with
caret and ROSE packages. Clinicopathological variables
were  analyzed  using  Chi-squared  tests  for  discrete
variables, and t-test for continuous variables. P values less
than 0.05 were considered significant. The performance of
model  was evaluated by the area under the ROC curve,
specificity and sensitivity, respectively. The ROC curve was
created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. TPR
is also known as sensitivity, and FPR can be calculated as
(1-specificity), which were given as follows:

Specif icity =
TN

TN + FP
£ 100

Sensitivity =
TP

TP + FN
£ 100

where TP  is true positive, FP  is false positive, TN  is true
negative, and FN is false negative in the prediction results.
All  computations  were  carried  out  on  an  Intel  Core  i7
computer with a 4-core 2.7 GHz processor.

Results

Workflow of machine-learning process

In  this  work,  the  machine-learning  process  can  be
illustrated in Figure 1. The workflow of modelling mainly
consists of procedures for basic statistics after collection of
original  data,  data  pretreatment such as  deletion of  co-
related variables and resampling of data set, reduction of
features via principal component analysis, model selection
based on machine-learning approaches, model optimization
via adjusting hyper-parameters, model validation, model
accessibility, and model application.

Baseline information

Clinical  characteristics  and corresponding complication
rates were presented in Table 2. Out of 321 patients, 100
(31.2%) were diagnosed with postoperative complications.
Age (P<0.001), number of comorbidities (P=0.001), surgical
mode (P=0.036), length of surgery (P=0.016) and tumor
size (P=0.001) were significantly related to postoperative
complications among the elderly patients.

Data pretreatment

After splitting the data into training set (n=289) and testing
set (n=32), one of data pretreatments is to check the co-
linearity of  the features in training set,  since the model
would  be  unsteady  if  there  exist  two  features  with  co-
linearity. After the computation of correlation coefficients
between pairs of features (Figure 2),  it  was found that 9
correlation coefficients of feature pairs were more than 0.5.
Therefore,  9 variables including weight,  height,  type of
anastomosis, length of anesthesia, fluid intake, red blood
cell  (RBC),  albumin  (ALB),  glutamic  oxaloacetic
transaminase  (AST),  and  total  bilirubin  (TBIL)  were
deleted.

Another data pretreatment is  to resample data set for
imbalanced distribution of different classes. In classification
problems, a disparity in the frequencies of the observed
classes  can have a  significant  negative impact  on model
fitting.  In  this  study,  the  number  of  patients  with
postoperative  complications  was  less  than  half  of  that
without  complications  (positive  samples  vs.  negative
samples: 31.2% vs. 68.8%). Thus, the ROSE method was
executed  to  resample  the  unbalanced  data  set.  After
resampling, the seriousness of the effects of an imbalanced
distribution was considerably relieved (positive samples vs.
negative samples: 47.1% vs. 52.9%).
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Feature reduction

Since overmuch variables would reduce the stability and

reliability  of  the  constructed  models,  the  principal

component analysis (PCA) method was used in this study to
decrease the number of  variables.  It  was found that  the
predictive models would be feasible by using the top 10
PCs as inputs of features (explained 67.6% of all variables).

Table 2 Baseline information of clinical features for all patients

Variables
Complication [n (%)]

Total [n (%)] P
Yes No

Age (year) ( ) 66.20±11.10 60.66±11.23 62.38±11.46 <0.001
Gender 0.058

　Male 72 (34.8) 135 (65.2) 207 (64.5)

　Female 28 (24.6) 86 (75.4) 114 (35.5)

BMI (kg/m2) ( ) 23.75±3.62 23.15±3.02 23.34±3.22 0.147

Number of comorbidities ( ) 1.82±1.67 1.19±1.27 1.38±1.44 0.001
Surgical mode 0.036

　Open 87 (33.9) 170 (66.1) 257 (80.1)

　Laparoscopic 13 (20.3) 51 (79.7) 64 (19.9)

Surgical procedure 0.896

　Total gastrectomy 21 (31.8) 45 (68.2) 66 (20.6)

　Subtotal gastrectomy 79 (31.0) 176 (69.0) 255 (79.4)

Length of surgery (min) ( ) 192.6±57.4 177.5±49.6 182.2±52.5 0.016

Tumor size (cm) ( ) 3.90±2.30 3.07±2.02 3.33±2.14 0.001

BMI, body mass index.

 

Figure 1 Workflow of machine-learning process. PC, principal component.
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Model selection

To concisely summarize the prediction performance of the
models, we constructed ROC curves, which evaluate the
performance of a model in a way that takes the uncertainty
of  each prediction into account.  Figure 3  illustrates  the
ROC distributions constructed by SVC with RBF kernel
function, k-NN, linear discriminant analysis (LDA), and
general linear model (GLM) using the top 10 PCs as inputs
of features, respectively. The ROC results indicated that
the performance of SVC was better than those of the other
methods. Thus, the SVC method with RBF kernel function
was selected to construct the optimal model.

It was found that the classification performance of SVC
model is strong because the area under the ROC curve was
0.8033,  suggesting  that  this  model  would  be  useful  in
predicting postoperative complication after gastrectomy.

Model optimization

The optimal  SVC model  with  RBF kernel  function for
discriminating different samples could be determined by
two  parameters,  a  capacity  parameter  C  and  a  kernel
function parameter σ. Figure 4 shows a ROC heatmap for
tuning  parameters  of  the  optimal  model.  It  could  be
concluded that the SVC model with capacity parameter

 

Figure 2 Co-linearity of features in training set. BMI, body mass index; WBC, while blood cell; RBC, red blood cell; PLT, platelet; HBG,
hemoglobin; LYM, lymphocyte absolute value; ALT, glutamic-pyruvic transaminase; AST, glutamic oxalacetic transaminase; TP, total
protein; ALB, albumin; TBIL, total bilirubin; DBIL, direct bilirubin; CREA, creatinine; BUN, blood urea nitrogen; GLU, glucose.
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C=8, using RBF kernel function with parameter σ=0.08786
could provide the best performance for predicting surgical
outcomes  in  patients  undergoing  gastrectomy with  the
sensitivity of 81.73% and specificity of 72.55%. Based on
the  optimized  parameters,  the  accuracy  of  training  set
would  reach  94.81%,  and  the  result  of  10-fold  cross
validation showed that the accuracy was 78.17%, while the
area under the ROC curve was 0.8275.

Model validation

The effect of prediction verified by external dataset was
78.12%,  with  sensitivity  of  90.91%  and  specificity  of
50.00%. The result indicated that the SVC model available
was efficient in predicting surgical outcomes in patients
undergoing gastrectomy.

Model accessibility

In  order  to  help  surgeons  to  utilize  the  SVC  model
constructed in this work, an online web server was further
developed  for  predicting  surgical  outcomes  in  patients
undergoing gastrectomy. The online web server to share
the  model  available  for  machine-learning-assisted
prediction of  surgical  outcomes  in  patients  undergoing
gastrectomy  can  be  accessible  at  the  web  address:
http://47.100.47.97:5005/r_model_prediction.

Model application

The  model  available  can  be  used  not  only  to  predict
surgical  outcomes  of  new  patients  with  gastric  cancer
undergoing  gastrectomy  but  also  to  evaluate  the
importance of clinical features based on the Caret’s varImp
function, and the rank was demonstrated in Figure 5.

In the process of applying the model available via the
web server, the surgeons need input the original data of
clinical features. After receiving all of clinical features, the
web  server  can  provide  online  prediction  of  surgical
outcomes in patients undergoing gastrectomy. Therefore,
surgeons  can  obtain  the  predicted  results  and  prepare
further  therapies  for  patients  with  postoperative
complications after gastrectomy in advance. In particular,
patients  predicted  negative  outcomes  exhibited  a
considerably reduced risk of postoperative complications,
indicating that  the SVC model  is  a  helpful  predictor of
surgical outcomes in patients undergoing gastrectomy.

Discussion

To our knowledge, there are few studies applying machine-
learning-assisted model  to predict  surgical  outcomes in
patients  undergoing  gastrectomy.  In  this  study,  we
designed  a  workflow  of  machine-learning  approach  by
using  top  10  PCs  as  inputs  coming  from  23  clinical

 

Figure 3 Comparison of receiver operating characteristic (ROC) for different methods.
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features.  The machine-learning classifiers was built  and
evaluated for prediction of surgical outcomes in patients
undergoing  gastrectomy.  We  also  validated  our
methodology using an independent test set and provided
the online web server to share the model.

Our SVC model demonstrated that chronologic age was
the most important variable concerning on postoperative
complications after gastrectomy, followed by tumor size,
number of comorbidities, etc. (Figure 5). These variables
reflect  both  immunonutritional  status  and  clinico-
pathological characteristics of surgical patients. Variables
with higher rank may relate more closely to postoperative
complications.  For instance,  elderly patients  often have
age-associated  physiologic  problems  such  as  decreased
organ  reserve,  concomitant  comorbidities,  and  mental
imbalance,  leading  to  a  higher  risk  for  complications.
Several articles also showed that age was an independent
risk factor of postoperative complications, which indicated
the relevance between machine-learning results and clinical
facts (12,13). The SVC model also indicated that tumor
size  was  the  major  variable  related  to  postoperative
complications after  gastrectomy,  in agreement with the
report that the mean tumor size in the reoperation group
was greater than that in the non-reoperation group (14).
Besides the chronologic age and tumor size, our model also
revealed that the number of comorbidities is among the top
three  important  factors  influencing  postoperative

complications, agreeing with the fact reported (15,16). In
concordance with previous studies, basic statistics of this
study  confirmed that  chronologic  age  was  significantly
correlated  with  postoperative  complications  (17,18).
Univariate  analysis  also  showed  that  number  of
comorbidities,  tumor size,  surgical  mode, and length of
surgery were significantly associated with postoperative
complications,  indicating  that  the  risk  of  postoperative
complication  was  related  to  multiple  factors,  including
preoperative  performance  status,  clinicopathological
features, surgical stress, etc.

As  the  population  ages,  the  number  of  surgical
interventions in gastric cancer patients has been rapidly
increasing  in  China.  Overall,  about  31%  of  patients
occurred  postoperative  complications  according  to  our
data. Some researchers have pointed out that postoperative
complications would adversely affect the overall survival in
patients with cancer of digestive system (19,20). Mantovani
et  al.  suggested  that  poor  outcome  might  result  from
invisible  residual  tumor  cells,  the  proliferation  and
metastasis of which could be promoted by inflammatory
responses because of severe postoperative complications
(21). Moreover, severe postoperative complications could
also delay chemotherapy that was necessary to prolong the
survival of patients with gastric cancer. Therefore, it is of
importance  to  set  up  an  informative  model  for  the
evaluation  of  performance  status  and  the  prediction  of
surgical  outcome  of  elderly  patients,  considering  the
organic function and surgical invasion. A valid predictive
model can be utilized to identify the appropriate treatment
modality.  There’s  a  very  high  probability  that  patients
predicted negative outcomes may minimize cancer-related
death and prolong disease-specific survival by allowing the
recommended  lymph  node  resection  regardless  of
chronologic  age  or  other  factors.  However,  large
prospective  analyses  are  necessary  to  validate  this
recommendation.

Although this study has a number of strengths, it also has
several limitations. Despite the successful application of
machine-learning technology, which offers good sensitivity
in postoperative complication identification, the specificity
of external dataset was not high, which means the high-risk
patients distinguished by prediction model might be not
truly  concurrent  the  postoperative  complications.  The
possible implication of our model is to help doctors find
patients  who  are  more  likely  to  suffer  postoperative
complications. Another limitation of this study is that the
intraoperative features were essential for a better predictor,

 

Figure 4  Receiver operating characteristic (ROC) heatmap for
tuning parameters. Resampling: 10-fold cross-validation, repeated
3 times.
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although the machine-learning model revealed the critical
role  of  preoperative  features.  Further  validation  in
additional cohorts of patients undergoing gastrectomy is
necessary  to  confirm  these  conclusions  in  prospective
research.  We  hope  that  the  presented  work  provides
readers  with  machine-learning  tools  that  they  can
incorporate into their work.

Conclusions

To  improve  the  long-term  prognosis  of  patients  with
gastric  cancer  who  have  undergone  gastrectomy,
preventing  postoperative  complications  is  of  critical
importance. The SVC model available is a useful predictor
for measuring the risk of  postoperative morbidities  and
may help stratify patients with different overall status for
choice of surgical procedures or other treatments.
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 Supplementary materials

Machine-learning methods for classification and prediction

k-nearest neighbor (k-NN) classification

k-NN algorithm is one of the simplest machine-learning algorithms. In k-NN classification, an object is classified by a
majority vote of its neighbors, with the object being assigned to the class most common among its k-NNs. The detailed
algorithm can be found in Cover’s paper (1).

Linear discriminant analysis (LDA)

LDA is a generalization of Fisher’s linear discriminant, a method to find a linear combination of features that separates two
or more classes of objects or events. LDA is closely related to logistic regression which also attempt to express one dependent
variable as a linear combination of other features. The detailed algorithm can be found in Rao’s paper (2).

Support vector classification (SVC)

SVC is a very effective method for solving pattern recognition problems, and it is a learning machine method based on
statistical learning theory proposed by Vapnik (3). The basic idea of applying SVC to pattern classification can be described
as follows: suppose we are given a set of samples, that is, a series of input vectors xi∈Rm with corresponding labels (y1, x1), …,
(yn, xn), y∈{−1, +1}; where −1 and +1 are used to stand, respectively, for the 2 classes. The goal here is to construct a binary
classifier  or  derive  a  decision function from the available  samples.  The geometrical  interpretation of  SVC is  that  it
determines the optimal  separating surface,  i.e.  a  hyperplane,  which is  equidistant  from two sets  of  data  points.  This
hyperplane has some statistical properties as discussed by Vapnik (4). Consider the problem of separating the set of training
(input) vectors with a hyperplane:

T + b= 0
If the training data are linearly separable, then there exists a pair of parameter set (w, b), for which we can write:

yi
¡ T

i + b
¢
¡ 1 ¸ 0; i = 1; 2; ¢ ¢ ¢ ; l

T + b¸ +1; f or all 2
T + b· ¡1; f or all 2

The decision rule is:
f ;b ( ) = sgn

¡ T + b
¢

where w and b are the weight vector and bias, respectively. Without loss of generality, the pair (w, b) can be rescaled:

Minimum
i=1;2;¢¢¢;l

¯̄ T
i + b

¯̄
= 1

k k2The learning problem is  hence reformulated as  follows.  Let  us  minimize  subject  to  the constraints  of  linear
separability. This is equivalent to maximizing the distance, normal to the hyperplane, between the convex hulls of two classes
and the optimization becomes a quadratic programming (QP) problem:

Minimize
;b

Á ( ) =
1
2
k k2

yi
¡
wTx i + b

¢
¸ 1; i = 1; 2; ¢ ¢ ¢ ; lsubject to . This problem has global optimum, the Lagrangian is written as follows:

L (w ; b;¤) =
1
2
k k2 ¡

lX
i=1

¸i
£
yi
¡ T

i + b
¢
¡ 1
¤

¤ = f¸1; ¢ ¢ ¢ ; ¸lgwhere  are the Lagrange multipliers, one for each data point. Hence we can write:
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F (¤) =
1X

i=1
¸i ¡

1
2
k k2 =

1X
i=1

¸i ¡
1
2

lX
i=1

lX
j=1

¸i¸jyiyj
T
i j

yi
¡ T

i + b
¢
= 1note that the Lagrange multipliers are only non-zero when . Vectors fulfilling this requirement are called

support vectors since they lie closest to the separating hyperplane. Then, the optimal separating hyperplane is given as
follows:

¤ =

lX
i=1

¸¤i iyi

and the bias is given by:

b¤ = ¡ 1
2
( ¤)T ( s + r)

where xr and xs are any support vectors from each class satisfying the following equation:

yr = 1; ys = ¡1
The classifier is then:

f (x ) = sgn
h
( ¤)T + b¤

i
In the case where a linear boundary is inappropriate, the SVC can map the input vector x into a higher dimensional feature

space  F.  By  choosing a  non-linear  mapping Φ,  the  SVC constructs  an  optimal  separating hyperplane  in  this  higher
dimensional space, which is performed by a kernel function:

K ( i; j) = h© ( i) ¢ © ( j)i

Thus, the decision function implemented by SVC can be written as:

f (x ) = sgn

0@ lX
i=1

¸iyiK ( i; ) + b

1A
where xi is the set of support vectors, and λi are obtained by solving the following convex quadratic programming problem:

Maximum
¸

lX
i=1

¸i ¡
1
2

lX
i=1

lX
j=1

¸i¸jyiyj h© ( i) ¢ © ( j)i

subject to: 8>><>>:
0 · ¸i · C; i = 1; 2; ¢ ¢ ¢ ; l

lX
i=1

¸iyi = 0

where C is a capacity parameter which controls the trade-off between the margin and misclassification error.

Acceptable kernel functions include polynomials, radial basis functions and certain sigmoid function. In this study, we
choose radial basis functions (RBF) as the kernel function, which can be written as:

K ( i; j) = ex p

Ã
¡ k i ¡ jk2

2¾2

!
The detailed theory and algorithm can be found in Vapnik’s papers (3,4).

10-fold cross-validation

During the process of 10-fold cross validation, the origin training sample is randomly partitioned into 10 equal sized
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subsamples. Each single subsample is in turn picked out as the validation data for testing the model, and the rest subsamples
are used as training data. The procedure repeated 10 times, with each of the subsamples used exactly once as the validation
data. In this research, the 10-fold cross validation was repeated 3 times to evaluate the generalization and reliability of the
models built by machine-learning methods.

Principal component analysis (PCA)

PCA was used to transform the data to a smaller sub-space where new variables were uncorrelated with one another. PCA is a
statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called principal components. This transformation is defined in such a
way that the first principal component has the largest possible variance, and each succeeding component in turn has the
highest variance possible under the constraint that it is orthogonal to the preceding components. The detailed algorithm can
be found in Hotelling’s paper (5).

Random Over-Sampling Examples (ROSE) strategy to deal with class imbalance

ROSE provides a unified framework to deal with the class imbalance problems. It builds on the generation of new artificial
examples from the classes, according to a smoothed bootstrap approach.

( i; yi) ; i = 1; ¢ ¢ ¢ ; nConsider a training set Tn, of size n, whose generic row is the pair . The class labels yi belong to the set
{y0, yi}, and xi are some related attributes supposed to be realizations of a random vector x defined on Rd, with an unknown
probability density function f(x). Let the number of units in class yj,j=0,1, be denoted by nj<n. The ROSE procedure for
generating one new artificial example consists of the following steps:

1. Select y*=yj with probability πj.

( i; yi) 2 n
1
nj

2. Select , such that yi=y*, with probability .

K j (¢; i) K j3. Sample x* from , with  a probability distribution centered at xi and covariance matrix Hj

The detailed algorithm can be found in Nicola’s paper (6).
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