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Despite the advancement in research methodologies and technologies for cancer
research, there is a high rate of anti-cancer drug attrition. In this review, we discuss
different conventional and modern approaches in cancer research and how human-
centric models can improve on the voids conferred by more traditional animal-centric
models, thereby offering a more reliable platform for drug discovery. Advanced three-
dimensional cell culture methodologies, along with in silico computational analysis form
the core of human-centric cancer research. This can provide a holistic understanding of
the research problems and help design specific and accurate experiments that could lead
to the development of better cancer therapeutics. Here, we propose a new human-centric
research roadmap that promises to provide a better platform for cancer research and
drug discovery.
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1 INTRODUCTION

Cancer arises when tumor cells start invading nearby tissues, leading to the disruption of tissue
homeostasis. Common treatment strategies against cancer include surgery, chemotherapy,
radiotherapy, and immunotherapy, depending upon the stage and the nature of cancer.
Currently, every sixth person in the world dies of cancer, which is second only to the
cardiovascular diseases (1). Despite advancements in early detection and novel therapeutics,
cancer is still the second largest cause of human death (1). Globally, around 19.3 million new
cancer cases were estimated, and 10 million deaths for the year 2020 (2). This is primarily attributed
to our lack of understanding of the complexity of the disease. Some of the common complexities
arise from heterogeneity within the cancer tissues and the development of therapeutic resistance
during and after the treatment (3–6). Cancer is a genetically heterogeneous disease; i.e. cellular
heterogeneity exists within a tumor population. Tumor heterogeneity suggests that it contains more
than one cell types, which exhibit differential ability to proliferate, migrate, maintain stemness, and
response to therapy (4). The stem cell-like population within the tumor are inherently more
resistant to therapy [due to over-expression of specific drug neutralizing/exporting proteins, and
anti-death proteins (7, 8)] and less accessible to drug molecules, whereas simultaneously also
contributing to tumor heterogeneity. Therapy resistance is the result of either over-proliferation of
cell types that are inherently resistant or may be acquired progressively during treatment. The sub-
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population of cancer cells generally coexist with immune and
other non-cancerous cells in a complex ecosystem called tumor
microenvironment. In addition to the intra-tumor cellular
heterogeneity, the cancer cells co-exist with different non-
cancerous cells like the Cancer associated fibroblasts (CAFs),
endothelial cells, and immune cells (like macrophages, microglia,
and lymphocytes); and the non-cellular components like
extracellular matrix components (ECM) (fibronectin, laminin,
collagen, hyaluronan, integrin etc.) to form a complex three
dimensional (9) ecosystem called tumor microenvironment
(TME) (5, 10). Different cells in the TME can cross-talk and
release factors which can modify ECM. The chemical and
physical signals triggered by ECM have been shown to regulate
the tumor progression and therapeutic resistance by modulating
cancer heterogeneity, clonal evolution, epithelial-mesenchymal
transition, invasion, migration, neovascularization, and
metastasis (9, 11, 12). Remodelling of endothelial cells, cross-
talk between CAFs and tumor cells, and paracrine signalling by
Tumor associated macrophages, all as a part of TME have been
shown to promote cancer progression (13). Furthermore, intra-
tumoral mechanisms of metabolite communications between
different cell types act in a symbiotic way to promote tumor
metabolism, maintenance and growth (14). In the last few years,
researchers have discovered that TME mediate therapeutic
resistance by regulating drug availability (13) and interstitial
fluid pressure (15). Because of the complexities, even
combinational therapy is unable to kill all the cancer cells,
leading to disease relapse. Together, these factors play a pivotal
role in tumor progression and therapy resistance (4–6, 16, 17),
thus making it challenging to design targeted therapy. However,
recent developments of the three dimensional (3D) in vitro cell
culture methodologies and platforms provide immense scope to
exploit the biology of tumor through better mimic of the TME
(18, 19).

Despite substantial funding in research and development
globally, less than 85% of the drugs showing encouraging signs
in the pre-clinical cancer models succeed in the early clinical
trials. and less than half of those passing through Phase 3 clinical
trials make it for licencing (20). In fact, roughly 1 in 10,000 pre-
clinical compounds reaches the market (21). Because of such a
low success rate, prices of anti-cancer drugs touch an
unaffordable range. There are many anticancer drugs at
present which cost more than $10,000 (per year per patient)
and the supporting claim pharma companies make to justify
these costs is the high drug attrition rates at phase 2 and phase 3
of clinical trials (21–23). One of the main reasons for high cancer
drug attrition is their reduced efficacy in humans compared to
animal models (21, 23). This points out our lack of
understanding of the complexity of the disease, which may be
due to the way chemotherapeutic drugs are tested preclinically
before being brought in the purview of the clinical trial. Heavy
dependence on animal models for pre-clinical studies is perhaps
one of the important reasons for the current setback. A better
understanding of drug dynamics inside the human body and
their interaction with different cell types will help decrease the
intensity of the problem in hand. Thus, it becomes essential not
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to consider cancer from only tumor cell-centric perspective but
rather as an ecosystem containing a plethora of cells, acting as a
protective shelter for tumor cells. The use of human-centric
models may help in mitigating the limitations posed by animal-
centric research models. Its cumulative understanding will be
useful to go beyond our current limitations and prepare new
generation drugs with better efficacy. Traditional ways of
performing preclinical research primarily depend on human
cell lines (2D in vitro), and non-human animals, such as
rodents and primates (in vivo). Historically, animal-centric
research has been heavily relied on for understanding cancer
and testing new anti-cancer drugs because of the conservation of
basic biological principles and the evolution of modern genetic
tools. Unfortunately, the traditional animal-based strategies for
cancer research have not been able to deliver as per the
expectations. Animal research has its own limitations and has
not been the best of the approaches to depend upon as it fails to
reliably mimic human cancer models, leading to high drug
attrition rates (21, 24). In recent years, there has been an
increased focus on developing more human-centric methods
for enhancing drug predictivity and ensuring human-predictive
drug efficacy. Due to the known limitations of the existing
systems of drug-testing, it becomes essential to explore
varieties of model systems relevant to humans, including
human-specific models for improving drug efficacy, reducing
drug costs, and enhancing quicker market reach.

In this review, we summarize the current and traditional ways
of cancer research, including 2D cell culture and the use of
various animal models. Thereafter, we look upon the avenues
and opportunities which are presented by the advanced human-
based cancer models such as modern 3D (three-dimensional)
culture, organ-on-a-chip, systems biology approaches, and in
silico models, which promise to go past the limitations posed by
the animal-centric research models. We further discuss a future
roadmap of cancer research, which focuses on the application of
different advanced human-centric models and explores their
scope to replace animal models.
2 EVOLUTION OF CANCER RESEARCH
MODELS

2.1 In Vitro Models
The traditional in vitro cell culture models use two dimensional
(2D) techniques, employing isolated immortal cell lines
originally obtained from people with cancer (25) and now
banked and commercially available. The first cell line to be
established was the HeLa cell line, which was obtained in 1951
from Henrietta Lacks, a 31yr old cervical cancer patient (26). 2D
models are still largely used for many experiments that involve
deciphering molecular mechanisms and drug discovery.
However, there are limitations with these models, leading to
partly accurate results and predictions. Although the 2D cell
culture model does not resemble the actual tumor and overlooks
the complex cellular architecture of cancer cells and tumor
microenvironment, it is still the easiest and most economical
July 2022 | Volume 12 | Article 896633
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way to perform large scale screening and pilot studies. In real
world. cell division, maintenance of cellular homeostasis, and cell
death all occur in a three-dimensional environment within the
complex tissue architecture in higher organisms. Experiments
with cells growing on a two-dimensional plastic surface cannot
mimic the inherent intricacies of cell-cell interactions, cell-
matrix interactions, and biomolecule availability and drug dose
response (hormesis) (27). This led to the development of
different techniques, trying to mimic the 3D tissue
microenvironment, and these 3D approaches are being actively
used to study diseases like diabetes (28, 29), cardiomyopathy
(30), and cancer (31). Culture of cells in 3D, both with and
without scaffolds, is revolutionizing biological research (32). The
first research with cells in 3D dates to more than a century back
when bacteria were clamped in a hanging drop (33). Later, this
technique was employed to grow the first tissue in a scaffold-free
manner (34). 3D cell culture models relevant to human disease
started coming to the limelight since the 1980s and have been
advancing since then. 3D cancer models resemble the tumor
architecture more closely (35) and can mimic the cellular
crosstalk in the different co-culture systems (36). Different
cancer and non-cancer cell lines are grown in 3D scaffolds to
resemble tumor microenvironment. Cytotoxicity testing,
modelling of cancer stem cells, and epithelial to mesenchymal
transition is better represented in the 3D culture system when
compared to conventional 2D culture (31, 37). However, the
major limiting factors of scaffold-dependent 3D cell culture
models are its inability to mimic the biomolecular circulation
and the controlled availability (which is physiologically aided by
vasculature). Further, these scaffold-dependent models fail to
mimic the appropriate biophysical extracellular structures/cues
as necessary to tissues. To date, conventional 2D and 3D in vitro
models fail to fully replicate the complex dynamic system
operating within a tumor (38).

Other notable advancements in cancer research are the
organoid and spheroid 3D cell culture systems. Both Spheroid
and organoid models are 3D cell-culture models but with marked
differences. A spheroid model is the simpler of the two, formed
by of simple 3D aggregation of cells and does not contain any
extracellular matrix or hydrogel scaffold and thus cultured as free
floating aggregates. It can be developed from any cancerous or
non-cancerous cell line or primary cells (by using a non-adherent
plate). On the other hand, an organoid is a complex 3D structure
of cells which is often supported by extracellular matrix or
hydrogel scaffold and specific growth factors (32, 39) and is
developed using stem cells primarily derived from the human
healthy to tumor tissues. The cells in the spheroid predominantly
has stem cell like property but, an organoid contains more
differentiated cells (aided by scaffold and growth factors) and
closely resembles the tissue architecture and function (40), which
can be cryopreserved (41). Organoids grown with this method
acquire a micro-anatomy, which is similar to the native tissue by
self-organization and spatial orientation (42) and helps retain
heterogeneity of the original tumor (19). Patient-derived
organoid models have been generated with liver, colorectal,
pancreatic, and prostate cancer (19). Gene-editing to introduce
mutation and co-culture techniques to mimic different cellular
Frontiers in Oncology | www.frontiersin.org 3
interactions have also been recently possible using organoid
models in cancer (43). The organoid models have advantages
over the regular 3D model in simulating tumor-specific
differential growth patterns like quiescence. On the other hand,
the spheroid culture presents another 3D model, which
resembles the 3D structure of a tumor and is established with
low technical difficulty and cost. These spheroids loosely
resemble the architecture of the native tumor and can also be
co-cultured with other cells to mimic the exact tumor
microenvironment (44). They have been shown to be more
reliable for in vitro drug screening (45) and for modelling
drug-resistance (46) than conventional 2D culture.

Features like hypoxic gradient and nutrition gradient can be
mimicked more realistically in these advanced 3D models in
comparison to the native tumor (47). Over the years, with the
advancement in the knowledge of stem cells and the usage of
patient-derived tumor organoid models, these advanced 3D
models hold key promise in the field of personalized medicine
(48–50). These characteristics make them more relevant
compared to in vivo animal models, being not only cheaper
but also lacking the ethical conflicts of the latter (51). Recently,
there has been significant progress in the application of
microfluidic-based devices to create models of human organs,
specifically for drug development and bio-modelling. This is
called the organ-on-a-chip/organ chip model, which accounts for
the constant circulation of media, mimicking the human vascular
system. Scientists have been successful in developing organ-chip
models of intestines, blood-brain barrier, bone marrow, lungs,
liver, kidney, and skin and using them as effective preclinical
models in cancer, and other diseases (52). The organ chip model
recapitulates tissue-tissue interface, and multicellular
architecture very closely and helps modulate local molecular,
chemical, and biophysical parameters in a precisely controlled
manner (53). Tumor-chip models have been shown to closely
resemble tumor stroma and are beneficial for modelling multi-
organ metastasis (19). The organ-on-a-chip model has been used
to study important cancer hallmarks like angiogenesis,
migration, and invasion in a precise manner (53). Further, 3D
based microfluidic research shows applications in the study
involving drug testing, metastasis, and drug resistance (54).
Although organ-chips are by far the most advanced of the in
vitro technology systems, and successfully mimic organ-level
physiology, this technology is still in its infancy and is likely to
require more validation in different contexts with in vivo human
system before we move to a paradigm shift in our methodologies
for basic and translational cancer research.

2.2 In Vivo Models
Rodents are the main animal used as in vivo models to test drug
efficacy. The xenograft mouse model is one of the most
prominently used mouse models to model cancer and test
drugs in which in most cases commercial human cancer cell
lines are inserted within the immunocompromised mice (55).
This strategy has been perceived as the gold standard for the
preclinical drug testing and elucidating molecular mechanisms in
cancer. However, these animal models have significant
limitations. Since the model organisms are not genetically
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identical to humans, the tumors do not reflect the exact human
condition and thus makes it difficult to predict drug efficacy and
behavior. Furthermore, because the immune system is
compromised, complex cellular interactions between the
immune cells and the cancerous cells cannot be studied.
Considering that we now know the role of immune cells in
cancer cell survival and progression (56), these might not be the
appropriate way to model human cancers (55). Furthermore,
these cells which have been grown for many generations in
plastic, may not be very ideal to recapitulate tumor close to being
original. More recently, animal models have been used for
patient-derived xenograft models (PDX) and genetically
engineered models (GEM). In the PDX models, the primary
tumor cells are taken directly from patients to develop a tumor in
immunocompromised mice. It has added advantages of
mimicking the heterogeneity of parental cancer. However, it
also has the disadvantage of using immunocompromised
animals (57) and that patient-derived cells have been shown to
undergo animal-specific modifications (58), besides being
expensive and time consuming. There have been several
attempts to develop GEM to mimic the original human tumors
(59). The mutations are either made in somatic or germline cells
to model the tumor. Recent progress in gene editing tools has
advanced this field considerably. These models are supposed to
be superior to conventional models (59). However, the major
problem of these models is that they do not incorporate human
cells, and they are not cost-effective. An alternative to rodents,
invertebrate (Drosophila) and fishes (zebrafish) have been used
less prominently as a model for therapeutic research because of
their lesser resemblance to the human genome. Naturally
occurring tumors in canines and felines, are also used in
cancer research. Although they have the advantage of naturally
occurring tumors (60) and longer life span when compared to
rodents, they have their own limitations. They do not exactly
mimic human physiology. Additionally, because of the lack of
scope of genetic modifications and the extra demand for time
and efforts, lack of sufficient numbers, these models do not
promise to be the most ideal for cancer research (61).
3 EMERGING HUMAN-CENTRIC
RESEARCH MODELS

3.1 Human Cell-Based Models
Besides the widely used traditional cell culture and animal
models, human-specific models for cancer research offer
exciting avenues for preclinical testing. Human tissues have
been used in oncology research for a long time (62). The
ongoing advancement in tissue and cell culture reveal their
promise for overcoming the common problems of animal-
based research. One promising aspect is the primary cell
culture from patient samples, where tumors from the patients
are directly used and cultured on a dish, maintaining the
inherent cellular heterogeneity. This technique is more suitable
for drug testing and modelling chemoresistance (63). In
comparison to conventional scaffold-based 3D cell culture
Frontiers in Oncology | www.frontiersin.org 4
models, the spheroid and organoid models of the primary
tumor are far better representative of the original human
tumor and can be used for better cancer modelling. A more
recent trend is to utilize the tumor cells in a co-culture system
with other cells of the tumor stroma, such as fibroblast and
immune cells. These models can be used for high throughput
drug-screening assays and have been successfully tried in a 96-
well culture system (45, 64, 65). Alongside, organ chip model has
been successful in taking care of fluid circulation and
biomechanics of the tissues very closely. These microfluidic
devices perhaps provide the best platforms along with the
advanced 3D models to build a better and more complete
cancer model which can closely resemble the parental tumors
(53, 66). The most advanced form of human tissue
reconstruction is 3D bioprinting which is now applied to
model different types of cancer. This field combines the
principles of biomaterials and tissue engineering with the
delicacy of cell biology to provide a printable tissue that can be
used for organ transplantation, drug discovery, and personalized
medicine (67). These models have shown promising results in
mimicking native tissue microenvironment and complexities
(68–70). 3D bio-printed cancer models showed greater cell
survival, protein expression patterns that resemble host cancer,
and higher chemoresistance to anticancer drugs similar to host.
They can also retain features that closely resembled host tumor
characteristics like tumor heterogeneity, necrotic cores, and
microenvironment. These methods have helped to better
understand cancer formation, progression, and response to
anticancer therapies. Since animal models differ physiologically
from human cancer, a bio-printed cancer model with human
cells can be a better representative. These models are also able to
mimic the effects of metastasis which is a significant
advancement in the fields of in vitro cancer modelling.
Bioprinted cancer models have been shown to provide effective
reconstructions of host cell and cell-matrix interaction patterns.
These models were not only able to simulate metastasis, but the
local chemical signalling profile was also found to be similar to
the host. The current limitation of this technique is that the cells
can only be cultured for a limited period. The expansion of
human cell biobanks will help in the supply of a variety of
patient’s cancer cells (of different grades and types) to research
institutes, which currently have limited accessibility. We
discussed this further in the last section (Future roadmap
and perspective).

3.2 Computational Cancer Models
Data generated from OMICs-based research approaches (such as
genomics, transcriptomics, proteomics, and metabolomics) have
added greater value to the field of cancer research as it has in any
other biomedical field. The ‘OMICs’ generally refers to the
analysis of structure, function, and origin of biomolecules
derived from high throughput studies, along with their
implication in the applied fields of biology (71). OMICs based
studies tend to generate vast amounts of data, and a systematic
approach is needed to store, access, and analyse them using
various tools. Advances in the field of molecular and
computational biology have enabled us to perform genomic,
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proteomic, and transcriptomic analyses from the patient samples
or primary cell culture (72, 73). Databases generated from
“Omics” studies certainly provide a platform for biologists to
access them from different sources and integrate it in their
research (74, 75). Although some of these databases are behind
a paywall or require specific permission, most of these are in the
public domain and are made freely available for cancer
researchers. Some of the publicly available database document
information regarding the human disease, mutations, expression
of proteins, and response to drugs (e.g., TCGA Database) while
other databases enlist similar information regarding cell lines
Frontiers in Oncology | www.frontiersin.org 5
(e.g., CCLE). Databases are also available to explore other
potential areas like epigenetic modification, miRNA regulation,
and detailed mutation analysis (76). Some of the relevant
databases are listed in Table 1, nevertheless describing them in
detail is beyond the scope of this article. As we have discussed
earlier regarding the therapeutic challenges posed by tumor
heterogeneity, drug resistance, and drug mistargeting, it
becomes vital to analyse OMICs data to understand disease
progression, identify molecular markers, and response to
therapy (98). The main use of cancer databases is to enable the
generation of scientific hypotheses from the available datasets.
TABLE 1 | Major databases used in cancer research.

Type Name Main features Type of
available

data

Weblink References

Proteomics Cancer-HPP (The Human
Cancer Proteome Project)

Characterize proteomes, proteome forms, and
protein networks from different cancers

Patient and
cell line
data

https://www.hupo.org/Human-
Cancer-Proteome-Project

(77, 78)

CPTAC (Clinical Proteomic
Tumor Analysis
Consortium)

Generates both peptide-spectrum-match (PSM)
reports and gene-level reports

Patient
data

https://hupo.org/Clinical-Proteome-
Tumor-Analysis-Consortium-(CPTAC)

(79–81)

TCPA (The Cancer
Proteome Atlas)

Diverse visualization and analysis of protein data for
patient tumours and cancer cell lines

Patient and
cell line
data

http://tcpaportal.org (82)

TCGA (The Cancer
Genome Atlas)

Houses huge amount of genomic, epigenomic and
transcriptome data with integrated analysis
platforms

Patient https://portal.gdc.cancer.gov/ (83)

Genomics COSMIC Catalogue Of
Somatic Mutations In
Cancer)

Largest somatic mutation database; genome
sequencing paper curation

Patient and
cell line
data

http://cancer.sanger.ac.uk (84)

cBioPortal Graphical summaries; gene alteration; processed
data; visualization

Patient and
cell line
data

http://www.cbioportal.org/public-
portal/

(85)

GDAC (from Broad
Institute)

Downstream Data analysis platform using; TCGA
data giving user-friendly reports

Patient
data

http://gdac.broadinstitute.org/ (86)

SNP500Cancer Sequence and genotype verification of SNPs Patient
data

http://snp500cancer.nci.nih.gov (87)

canEvolve Comprehensive analysis of tumour profile; Data from
90 studies involving more than 10,000 patients

Patient
data

www.canevolve.org/ (88)

MethyCancer Relationship between DNA methylation, gene
expression and cancer

Patient and
cell line
data

http://methycancer.psych.ac.cn (89)

SomamiR Correlation between somatic mutation and
microRNA; genome-wide displaying

Cell line
data

http://compbio.uthsc.edu/SomamiR/ (90)

NONCODE ncRNAs; lncRNAs; up-to-date and comprehensive
resource

Patient and
cell line
data

http://www.noncode.org/ (91, 92)

canSAR Multidisciplinary information; drug discovery Cell line
data

https://cansar.icr.ac.uk/ (93)

CGWB Visualization; gene mutation and variation;
automated analysis pipeline

Patient
data

https://cgwb.nci.nih.gov/
https://omictools.com/cgwb-tool

(94)

UCSC Cancer Genomics
Browser

Clinical information; gene expression; copy number
variation; visualization

Patient and
cell line
data

https://genome-cancer.soe.ucsc.edu/ (95)

GDSC (Genomics of Drug
Sensitivity in Cancer)

Drug sensitivity information; drug response
information

Cell line
data

http://www.cancerrxgene.org (96)

TCGA (The Cancer
Genome Atlas)

Houses huge amount of genomic, epigenomic and
transcriptome data with integrated analysis
platforms

Patients
data

https://www.cancer.gov/about-nci/
organization/ccg/research/structural-
genomics/tcga

(83)

Metabolomics HMDB (The Human
Metabolome Database)

Metabolomics database, seven cancer drug
metabolism pathways and twelve cancer drug
action pathways

Human
data

https://hmdb.ca/ (97)
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These hypotheses can vary from the expression of a certain gene
to the efficiency of certain drugs. In certain cases, these
hypotheses can be tested using scientific tools, like cBioportal,
which gives information about associated mutations, responsible
protein function, and their association with survival. Alongside,
proteomic databases are being used for developing diagnostics,
identifying mechanisms, and designing treatment strategies. The
main purposes of these databases are to save time by providing
information that might be acquired from traditional wet lab and
animal experiments, whereby avoiding repetition and
duplication of experiments Moreover, many of these databases
are based on integrated human and cell line experimental data
and are carefully curated. Therefore, these databases can provide
a starting platform where we can get information similar to that
obtained with animal models and help to avoid further or
duplicate use of animals. With data being generated at a high
pace and their huge scope of application, one must admit that
above-mentioned databases have been underutilized and can be
used more broadly and efficiently.

The major advantage of many of the above mentioned
repositories is that many of them contain patients’ data and
thus are useful for accurate, human-relevant predictions.
Increasingly, more data sets are being validated using other
supporting experiments and have slowly started getting global
acceptance. These approaches have the potential not only to
complement but also to reduce many of the currently used wet-
Frontiers in Oncology | www.frontiersin.org 6
lab experimental models in an inexpensive manner. They open
several new possibilities in the field of personalized medicine.
However, a major limitation of these databases is their sheer
volume and difficulty in handling them. The in silico models,
which apply sophisticated algorithms, help in handling
voluminous data of different cancer databases, to advance
scientific understanding. Experience in computational analysis
and specialized computational labs capable of handling big data
are necessary to utilize the full potential of these databases.
Therefore, a systematic approach is taken to analyse these data
and model different outcomes. These can be built based on
several approaches such as statistical models, network-based
models, and tissue-based models (99). Examples of these
models are provided in Table 2.

A new in silico approach to drug development is based on AI
(artificial intelligence). Machine learning and deep learning
methods are employed to improve the above models (109).
These models can automatically access most of the available
data and draw a conclusion using the AI approach to design
lead compounds, refine existing drugs, validate them on artificial
disease models and predict the emergence of drug resistance (110).
Some software include modelling options. For e.g., Cytoscape is a
free software package that provides user-friendly visualization of
these open-source data (111). It may be noted that several of the
primary databases also integrate these modelling features or allow
the users to model the available data according to their needs.
TABLE 2 | Web-based resources of in silico platforms for modelling cancer.

Main Category Sub category In silico
analysis
platforms

Features Web link References

Statistical
model

Gene
Expression
Models

Ensembl Annotate genes, computes multiple alignments, predicts regulatory function, and
collects disease data. Ensembl tools include BLAST, BLAT, BioMart and the
Variant Effect Predictor (VEP)

https://asia.
ensembl.org/
index.html

(100)

UCSC Genome
Browser

A large genomic data repository with a wide range of tools to align genes, predict
regulatory regions etc.

https://
genome.
ucsc.edu/

(101)

Pathway
Enrichment
Models

Kyoto
Encyclopedia of
Genes and
Genomes
(KEGG)

Database resource for understanding high-level functions and utilities of the
biological system from molecular-level information, especially large-scale molecular
datasets generated by genome sequencing and other high-throughput
experimental technologies.

https://www.
genome.jp/
kegg/

(102)

Gene Ontology
(GO)

Computational representation of our current scientific knowledge about the
functions of genes

http://
geneontology.
org/

(103, 104)

Network-
Based models

Protein
interaction
networks

Database of
Interacting
Proteins (DIP)

Catalogues experimentally determined interactions between proteins https://dip.
doe-mbi.ucla.
edu/dip/Main.
cgi

(105)

Protein
interaction
networks

STRING
interactome

Models protein interactions based on several parameters including physical, co-
expression, co-mentioned etc.

https://string-
db.org/

(106)

Cellular
Signaling

Database of
Quantitative
Cellular Signaling
(DQQCS)

Repository of models of signalling pathways. https://
doqcs.ncbs.
res.in/

(107)

Stoichiometric
Models of
Biochemical
Reaction

Kinetic Data of
Bio-molecular
Interactions
Database

A database of experimentally determined kinetic data of protein-protein, protein-
nucleic acid, protein-ligand, nucleic acid-ligand binding or reaction events
described in the literature.

http://bidd.
nus.edu.sg/
group/kdbi/
kdbi.asp

(108)
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Though we have described these platforms primarily as cancer
databases, it must be noted that several of these databases serve a
dual role of data repository as well as a platform to analyse these
data and model cancer. The field is evolving rapidly, and very soon
AI-based platforms will be available as a complete package. These
packages may be able to offer a more user friendly approach to
analysing the databases and thus, supplementing cancer research.
Advanced AI platforms, in combination with superior 3D cancer
models, have the potential to replace unnecessary animal
experiments as they more human relevant besides being faster,
resource saving, effective and reproducible.
4 FUTURE ROADMAP AND PERSPECTIVE

Presently, there is a need to integrate different human-based
interdisciplinary research methodologies from the perspective of
a holistic understanding of disease mechanisms, prediction, and
treatment. 2D cell culture can still serve as a model for large scale
pilot drug screening studies or mechanistic studies until 3D cell
culture is made more economical and workable. However, after
initial screening, different 3D cell culture models can play a big
role in narrowing down potential drugs or to reveal specific
molecular insights into biological mechanisms. These
techniques promise better and more accurate results than
conventional 2D cell culture models. Preliminary analysis using
widely available human OMICs data alongside or in prior can
help in better predictions and minimise the need for additional
laboratory experiments. Simple co-culture experiments using 3D
setup can aid groups studying the tumor microenvironment to
understand complex interactions of cancer and non-cancer cells,
which can be integrated with organ chip or the printed organ
model to mimic actual organ with high precision. Publicly
available datasets can be used for basic to extensive in silico
analysis to understand the etiology, design drugs, and predict
disease outcomes. For non-computational or wet-lab researchers,
several software tools are publicly available and being developed
in a way that can easily be handled by them for basic yet
important analysis. While few research groups can
independently perform and integrate both wet-lab and
computational analysis, there is a need for scientists to
collaborate and form large interdisciplinary groups, get people
from diverse backgrounds under one umbrella to solve difficult
and important problems. The use of systems biology approaches
by the amalgamation of different human-specific research
approaches (by integrating diverse research groups) promises to
save time, resources, and provide specificity by reducing errors.
Scaling of human biobanks would be vital for aiding human-
centric cancer research. Its objective is not only to aid in
personalized therapy but also provide human tissues for basic
and translational research. Few existing cancer biobanks are listed
here (112). With evolving modern in vitro culture methodologies,
the cancer biobank can provide human cells/tissues to research
labs to understand molecular mechanisms, intracellular
communications, regulation of microenvironment, besides
being used for high-throughput screening and personalized
Frontiers in Oncology | www.frontiersin.org 7
therapeutics. These can potentially more precisely tap into areas
and scope of research which was not possible with animal models.

Biobanks represent the core for the development of future
human-centric research. Cancer tissue biobanks need both
vertical and horizontal expansion. For the latest in vitro
technologies to be of the highest value, a framework has to
be in place which ensures rapid, affordable tissue distribution
from the biobanks to places (labs and institutes) that do not
have easy access. An increase in collaboration both at the level
of institute and nation will aid faster development. Policy
changes aiming at expanding the cancer biobanks and making
them accessible to wider research institutions, whereby
promoting projects involving collaborations with hospitals
will enhance and widen the scope of human-centric
research. Minimizing extensive paperwork for setting up
hospital collaborations without compromising on good
research practice would be a welcoming step in this regard.
Alongside, development of accessible, more economical and
advanced cell culture techniques and availability of user-
friendly, free computational tools with increased availability
of human tissue/cell repositories, surely has the potential to
replace animal-centric models that have not been successful
enough for long. The proposed roadmap of the human-centric
cancer research models as an alternative to the animal-centric
model is demonstrated in Figure 1.

We must realize that developing human-centric methods
are essential for studying heterogeneous human diseases like
cancer, where disease progression depends upon multiple
components. With significant advancements in both wet-lab
and dry lab technologies, it gives us the opportunity to work
with human cells, thereby moving close to understanding the
disease. These advanced set-ups will provide greater leads in
understanding the disease both from the mechanistic and
therapeutic perspective. We envisage that the human-centric
advancements will add great value in reducing cancer-related
death by adding specificity to treatment against cancer and
specifically drug resistance. We need to shift from a cultural
reliance on animal models to more human-centric models
which certainly seems to be a relevant and an economical
substitute. The integration of computational biology with
the modern in vitro human-based cell culture techniques
has the potential to replace the necessity for animal
experiments. The merits and demerits of all the different
models in cancer research are described in Table 3.

Overall, the whole community including academic and
industrial partners as well as their regulators need to show
more confidence in using human-based advanced models and
explore avenues to better exploit these models for improved
drug-predictability, leading to lesser drug attrition, faster and
efficient drug development, leading to higher clinical success
rates. Collaborative efforts of cancer biologists, computational
biologists, and data mining specialists can lead to a better
interpretation of these data. Government policy makers and
universities should promote such collaborative endeavours by
opening new interdisciplinary centers. Funding must be raised
from numerous sources to support and increase the reach of
July 2022 | Volume 12 | Article 896633
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FIGURE 1 | An integrated roadmap to apply advanced human-centric research approaches and potentially replace animal models in cancer research, both for basic
and applied research. Two main approaches are considered for replacement of animal models (A) Experimental model and (B) Computational model. The
experimental models are mainly based on the in vitro cell culture platforms, which grows in complexity from simple 2D models to the extremely sophisticated organ-
on-chip, or 3D printed tumour models to match the specific microenvironment of primary cancer. The computational models take advantage of the different human-
based databases and apply different computational methods to model cancer and its outcome. While both methods are advancing significantly, only by combining
the two models, we can hope to truly predict the outcome of the cancer therapeutics.
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TABLE 3 | Potential and limitations of different cancer research models (including in vitro, in vivo and in silico models).

Tools in cancer research Scientific potential Limitations Required Infrastructure Required
level of
Training

Cost

Animal
Models

Transgenic
(GEM models),
Autograft,
xenograft and
PDX models,

• Controlled
environment
• Provides 3D tumor
architecture
• Presence of tumor
microenvironment
• Genetic
manipulation possible
• Drug-host
interaction

• Anatomical and
physiological
difference with human
• Lack of immune
interactions in
immunocompromised
animals
• Difficult and time
consuming
• Lacking tumor
heterogeneity
• Different drug-host
interaction profile
• Costly
• Ethical issues and
complexitie

• Specialized animal house and animal care facilities
including ethical committee approval
• Level-2/3 biological safety laboratory
• Trained professionals dedicated for animal handling

Very High Very
High

Conventional
non-animal
models

2D cell culture
models

• Easy to perform
• Drug testing is easy
and effective
• Considerably less
ethical issues than
animals
• Genetic
manipulation possible

• Dissimilarity with
3D architecture of
original tumor
• Absence of tumor
microenvironment
• Lack of immune
interactions
• Lack of tumor
heterogeneity
• Absence of drug-
host interactions
• Cannot mimic the
blood flow.

• Level-2/3 biological safety Laboratory
• Cell culture experience

Low Low

Scaffold based
3D cell culture
models

• Can provide 3D
tumor architecture
• Can provide a
platform to create
Tumour
microenvironment
• Genetic
manipulation possible
• Drug testing is more
effective.
• Considerably less
ethical issues than
animals.

• Tumor
microenvironment is
represented
simplistically.
• Lack of immune
interactions
• Lack of tumor
heterogeneity
• Absence of drug-
host interactions.
• Cannot mimic the
blood flow.

• Scaffold fabrication facility
• Level-2/3 biological safety Laboratory
• Trained professionals for animal cell culture

Moderate Moderate

Emerging
human cell
based
models

Spheroid,
Organoid,
models

• Can provide a
better 3D tumor
architecture
• Can mimic Tumor
microenvironment
• Can recreate tumor
heterogeneity
• Genetic
manipulation possible
• Drug testing is more
effective
• Considerably Less
ethical issues than
animals

• Lack of immune
interactions
• Absence of drug-
host interactions
• Cannot mimic the
blood flow.

• Level-2/3 biological safety Laboratory
• Trained professionals for organoid/spheroid culture

Moderate Moderate

Organ on chip,
tumor on chip

• Can provide host
like 3D tumor
architecture
• Can mimic Tumor
microenvironment

• Immune
interactions are not
similar to the host
• Drug-host
interactions are not

• Fabrication facilityImmune interactions are not similar
to the hostLevel-2/3 biological safety LaboratoryImmune
interactions are not similar to the host>Trained
professionals for animal cell culture/organoid/spheroid
culture.

High High

(Continued)
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such platforms. Although several agencies and charitable
institutes are supporting and encouraging funding for non-
animal projects, a funding thrust from government and more
private agencies can significantly promote the usage and
validations using advanced in vitro models.
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