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Background
In recent years, the morbidity of cardiovascular diseases (CVDs) is rapidly increasing in 
China. An estimated 3.0 million Chinese died from CVDs in 2011, accounting for 41% 
of all deaths [1]. An early diagnosis and treatment for this illness is of great use to reduce 
the death toll. Although the doctors diagnose it by electrocardiogram or imaging of 
patient, the shortcoming of these means is absence of quantitative information. Recent 
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advances in evaluation of cardiac function based on medical images have shown tremen-
dous potential towards achieving quantitative diagnosis [2, 3]. Among the various imag-
ing modalities, cardiac magnetic resonance imaging (MRI) is a mainstream technology 
because of non-ionizing radiation [4].

However, computed tomography (CT) has been widely used in the form of not only 3D 
images describing the cardiac anatomy but also 3D +  time image sequences including 
anatomical and functional information [5]. Some advanced techniques such as multislice 
CT (MSCT) [6] and dual-source CT (DSCT) [7] have demonstrated high specificity and 
distinguishability in cardiac structure. To evaluate the cardiac function, doctors com-
monly extract the cardiac chambers, large vessels or coronary arteries from a patient 
scan. Classical manual delineation is no longer suitable for 3D and 3D +  time images 
due to the quantity of data. The other reason is observer variations of manual annotation 
might affect the reliability and repeatability of quantitative evaluation. It is highly desir-
able to develop an automatic segmentation for clinical problem.

At present, automatic segmentation methods of the heart fall into two broad catego-
ries. Boundary-based segmentation incorporating prior knowledge is just one of those 
things. Assen et al. [8] presented a 3-D active shape model for semi-automatic segmen-
tation of cardiac CT and MR volumes. A fuzzy c-means based fuzzy inference system 
was incorporated into the model. A new method was proposed for the local assessment 
of boundary detection [9]. It took any boundary detection function and evaluated its 
performance for a single model landmark in terms of an estimated geometric boundary 
detection error. The authors demonstrated this method can automatically segment com-
puted tomography and magnetic resonance images. Shang introduced a novel scheme 
for the segmentation of 4-D MR cardiac images [10]. 3D spatially hierarchical expres-
sions of the statistical shape models for the cardiac chambers were constructed through 
principal component analysis (PCA) of the manually segmented training set. The limita-
tion of these approaches is that the surfaces from different substructures of the heart are 
prone to intersect each other in segmentation results. An automatic method was pro-
posed to segment the left ventricles and then identify their borders robustly [11]. The 
strengths of four techniques: automatic threshold selection, boundary extraction, defor-
mation flow tracking, and convex shape modeling were effectively combined. In a review 
of segmentation methods of cardiac MR images using the short-axis view, the authors 
proposed the two main categories: segmentation based on no or weak prior, and seg-
mentation based on strong prior [12].

Another popular method, called registration-based segmentation, is to propagate the 
segmentation of an atlas image using deformation field after registration. Zhuang et al. 
[13] proposed a fully automatic whole heart segmentation framework. The locally aff-
ine registration method and the free-form deformations with adaptive control point 
status were applied to registration procedure. Peyrat et al. [14] presented a framework 
for the nonlinear spatiotemporal registration of 4D time-series of images based on the 
Diffeomorphic Demons algorithm. The authors declared that registration should be con-
sistent over time as opposed to 3D registration which solely aims at mapping homolo-
gous points at a given time-point. A novel multi-atlas segmentation incorporating the 
intensity, gradient and contextual information was suggested for cardiac MR images 
[15]. Experimental results show that the accuracy of multi-atlas segmentation can be 
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significantly improved by using the augmented feature vector. Berendsen et  al. [16] 
proposed a new registration with application to organ segmentation in cervical MR. A 
statistical model, trained on the shapes of a set of segmentations, was integrated as a 
penalty term in a free-form registration framework. Compared with registration without 
the use of statistical knowledge, the segmentations were significantly improved.

In this paper, we propose a nonrigid registration algorithm with corresponding points 
constraint. The feature point pairs are extracted from the fixed and moving image by the 
extension of n-dimensional scale invariant feature transform (n-SIFT) method. Auto-
matic segmentation of 4D cardiac CT images is implemented by the use of propaga-
tion framework based on registration. Our method addresses in the large variations and 
boundary ambiguity of the heart structures for the registration between subjects. We 
evaluate the method on fifteen patients at ten time phases, among which the training 
dataset is from ten patients for atlas construction. The remaining data is used to test the 
performance of our approach with comparison to original mutual information.

Methods
In this section, we describe the 4D spatiotemporal segmentation-propagation frame-
work of cardiac CT images using registration technique. As shown in Fig. 1, it includes 
three basic steps. Firstly, atlas intensity images are constructed on the training dataset 
for each time phase. Atlas label images (different colors represent different substruc-
tures) are later produced by manual segmentation. Secondly, we register the images 
needing segmentation to atlas intensity images with the nonrigid transformation. Finally, 
the segmentation results are propagated from atlas label images by the deformation field 
of registration.

Atlas construction

Atlas often plays an important role in computational physiology of the heart [17]. It can 
provide the distinct division and localization of substructures, regarded as a standard 
reference frame. Atlas construction from a population of images is a difficult and com-
plicated topic. We use a simple atlas similar to Ref. [13] because the main goal of this 
work is to validate the performance of the proposed framework. In practice, a reference 
space is selected from a number of CT images at the first. The other CT images are then 
registered to the reference space. At last, we compute a mean intensity image (called as 
atlas intensity image) from these transformed CT images based on registration results. 
The atlas label image can provide corresponding segmentation information of each ana-
tomical substructure of the reference space. Figure 2 shows an atlas case at the first time 
phase.

In order to produce a high quality atlas, some researchers involved the statistical 
shape model into registration procedure [6, 18, 19]. A statistical atlas can provide some 
advantages in the postprocessing and analysis of largely variable datasets. The encod-
ing of population variation indicates that their spatial relationships are known. Here we 
achieved the registration incorporating shape information of multiple-object for atlas 
construction so as to avoid the complexity of statistical shape model. The important 
steps are described as follows:



Page 4 of 15Lu et al. BioMed Eng OnLine  (2017) 16:39 

• • A combined transformation T = Tglobal + Tlocal is employed. The global transfor-
mation is an affine model, and the local transformation is a free-form deformation 
(FFD) model based on B-splines [20].

• • α-Mutual information (α-MI) [21] is combined with Kappa Statistic [22] of six sub-
structures, which is regarded as the similarity measure.

• • An iterative stochastic gradient descent optimization strategy [23] is used to obtain 
the optimal deformation field.

Registration between atlas and unsegmented image

The goal of image registration in this subsection is to relate any point in the atlas inten-
sity image to the unsegmented image. In other words, this purpose is to find the optimal 
transformation T: (x, y, z, t) → (x′, y′, z′, t ′). We use coarse-to-fine strategy to perform 

Fig. 1  The segmentation-propagation framework of 4D spatiotemporal cardiac CT images based on registra-
tion
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this nonrigid registration. The affine model is applied to rough alignment of the images. 
Afterwards, the B-splines FFD model is chosen to estimate local motion parameters. The 
affine alignment result is considered as the initial parameters of nonrigid registration 
using the B-splines FFD model.

The two voxel-based similarity measures, mutual information (MI) and correlation 
coefficient (CC), have been shown to match images accurately and robustly [24]. MI 
expresses the amount of information that one image contains about another image. Let f 
be the image intensity of the fixed image, m be the image intensity of the moving image, 
and μ be the transformation parameter. It can be written as follows:

where p is the discrete joint probability, pF and pM are the marginal discrete probabilities, 
computed by summing p over the fixed image and the moving image respectively. How-
ever, it may not be sufficient for the substructures of cardiac CT images only depending 
on intensity information. The main reason lies in large variations and boundary ambigu-
ity of some substructures for intersubject registration (see Fig.  3). To overcome these 
limitations, some researchers imposed statistical shape constraints on nonrigid registra-
tion [16, 25]. But it is difficult to implement them in practice due to pre-segmentation 
prerequisite and high complexity.

To avoid these obstacles, we propose a new registration integrating mutual informa-
tion and corresponding points. Assume xFi and xMi are the two point sets with known 
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Fig. 2  An atlas example that is shown in axial, sagittal, and coronal planes. Upper an atlas intensity (CT) image 
using the mean shape of ten patient data. Lower atlas label image including aorta (crimson), left atrium (cyan), 
left ventricle (blue), left ventricle myocardium (magenta), right atrium (yellow), and right ventricle (green)
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correspondence, extracted from the fixed and moving image respectively. The regulari-
zation term is the Euclidean distance of xFi and xMi. It is defined as:

where P is the number of corresponding points, and Tμ is the spatial transformation. So 
the energy function of registration can be defined as:

where ω is the weight parameter.
To find the optimal parameters of the B-splines FFD model, we minimize Eq.  (3) by 

the adaptive stochastic gradient descent method. Therefore, the derivative of the energy 
function E with respect to the deformation parameters is required. Its analytical expres-
sion can be written as:

Corresponding points based on n‑SIFT features

In order to achieve high accuracy of intersubject registration, we extract the feature 
point pairs from the fixed and moving image by the extension of n-SIFT [26] method. In 
the first step, multi-scale Harris corner and extrema detector in the DoG (Difference of 
Gaussian) space are used to locate the distinctive points in the unregistered images.

Multi‑scale Harris corner detector

In general, the Harris interest point detector is not invariant to scale changes. We adopt a 
new version with automatic scale selection to obtain a scale invariant detector [27]. Let σI 
be the integration scale, σD be the differentiation scale, and La be the derivative computed 
in the a direction. The scale-adapted autocorrelation matrix of image I (x, y, z) is given by:

where g(σI) is the average operator in the neighborhood of the point by smoothing with a 
Gaussian window of size σI. A point would be a candidate point if it satisfies
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Fig. 3  Some limitations for intersubject registration of cardiac substructures. a, b Demonstrate large changes 
in left ventricle. c Displays boundary ambiguity over left ventricle
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where T1 is a threshold value.
For the candidate point over scales, it may become a corner point by automatic selec-

tion method. The characteristic scale is related to the structure and not to the resolution 
at which the structure is represented. We compute this operator responses for a set of 
scales σn using Laplacian-of-Gaussians:

where |·| denotes the absolute value. If LoG
(

x, y, z; σi
)

> LoG
(

x, y, z; σi−1

)

, 
LoG

(

x, y, z; σi
)

> LoG
(

x, y, z; σi+1

)

, and LoG(x, y, z; σi) > T2, the point will be considered 
as the corner point with scale σi (T2 is a threshold parameter).

Local extrema detector in the DoG space

Similar to Ref. [26], a multilevel image pyramid is created by down-sample of the Gauss-
ian smoothed image. Therefore, starting from the first image at each level, a series of 
Gaussian blurred images are generated. For each neighboring pair of blurred images, a 
DoG image is generated. Within each pyramid level, a voxel of a DoG image is com-
pared with the neighboring voxels, the corresponding voxel in the scale above and all the 
neighbors, and the corresponding voxel in the scale below and all the neighbors. Finally, 
we locate extrema with magnitude greater than a threshold T3.

In the second step, the n-SIFT feature is generated at each of the extrema position. It 
divides the local area into 4 × 4 × 4 subregions. A 8 × 8 bin histogram is used to sum-
marize the gradients of the voxels in each subregion. For our experiments, the n-SIFT 
descriptor is a 4096-dimensional feature vector. In the third step, we find the corre-
sponding points from the fixed and moving image by feature matching. The L2 distances 
between a feature vector in the fixed image against every feature vector of the moving 
image are compared to find the best match. A mechanism is employed for removing 
matches where other features are very close to the best match. Assume that d(u, v) and 
d(u, v′) are the distances from one feature u to its nearest feature v and next nearest fea-
ture v′. If the conditional expression

is satisfied, u and v can be considered as a pair of matching feature, where T4 is a thresh-
old value. Figure 4 displays an example of the 3d coordinate distribution of the corre-
sponding points.

Experiments
The extraction algorithm of the corresponding points was implemented using the 
Insight Toolkit (ITK). All registrations were performed in the software package elastix 
(see http://elastix.isi.uu.nl). All programs were run on a Windows computer with an 
Intel Dual Core 2.40 GHz CPU and 64.0 GB memory.
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Data

The 4D cardiac data was acquired by a dual-source CT scanner (Siemens Somatom Def-
inition, Germany). Fifteen patients were scanned with 10% R–R interval phases. They 
have confirmed pathologies including myocardium infarction, aortic valve stenosis, 
dilated cardiomyopathy, atrial fibrillation, and tricuspid regurgitation. The image dimen-
sions were 512× 512× 131 ∼ 265 voxels of size 0.348× 0.348× 0.5 mm. It is common 
to see that these cases displayed a wide diversity of heart shapes. To avoid the bias of 
using an atlas with similar heart shape, we constructed an atlas at each time phase from 
ten patients with all pathologies of above. The images from the remaining five patients 
are considered as unsegmented images.

The manual segmentations of all these data were performed as the gold standard. They 
were done by either a clinician or a researcher with knowledge of heart anatomy using 
an open-source tool ITK-SNAP (see http://www.itksnap.org). During this operation, 
right atrium (RA) and right ventricle (RV) were delineated firstly. Then left ventricle 
myocardium (LVM) and the blood cavities of left atrium (LA), left ventricle (LV) were 
separately segmented. The region of aorta (AO) was generated in the end (examples of 
manual segmentation can be found in Fig. 6). There are ten atlas intensity images and 
their label images, while the unsegmented images consist of fifty volume data. In total 
fifty registrations were performed for our proposed algorithm.

Choice of parameters

In extraction procedure of the point pairs, we have determined some parameters empiri-
cally for the good result. For multi-scale Harris corner detector, the integration scale was 
set to σI = 1.5× 2i(i = 0, . . . , 4) and σD = 0.7σI. The threshold parameters were set to 
T1 = T2 = 0.1 with α = 0.04. For local extrema detector in the DoG space, the scale fac-
tor was set to 2, the scale for Gaussian blur was set to 1.5, and T3 = 0.0075. We selected 
T4 = 0.9 for feature matching using n-SIFT descriptor.

An affine initial registration was performed before nonrigid registration using the 
B-splines FFD. To avoid the local extrema, we employed a multi-resolution scheme with 
four levels. Gaussian smoothing instead of downsampling was applied to the moving 
images, with σ = 8.0, 4.0, 2.0, and 1.0 voxels for x, y, and z directions. As for the B-spline 
control points, the grid spacing of 80, 40, 20, and 10 mm in all directions was applied 
to four resolution levels respectively. A value of ω = 0.01 can provide a good balance 

Fig. 4  An example of the 3d coordinate distribution of the corresponding points. a The feature points from 
the fixed image. b The feature points from the moving image. The red points were extracted by local extrema 
detector in the DoG space, the blue points were extracted by multi-scale Harris corner detector

http://www.itksnap.org
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between the two terms of the cost function. During the parameter optimization, A = 50, 
τ = 0.602, a = 2000 were set, as well as 1000 iterations were used.

Evaluation method

In order to validate the new method, we compared this hybrid registration (called 
MI + CP) with original MI and CC. Automatic segmentations of six substructures were 
generated by transforming atlas label images, with registration results. Two types of 
measures were used to evaluate the accuracy of segmentation result. The Dice similarity 
coefficient (DSC) [28] was calculated between the transformed segmentation (Vseg) and 
the gold standard (Vgd)

where |·| denotes the number of voxels within the segmentation. DSC = 0 indicates no 
overlap while DSC = 1 indicates perfect agreement.

To compare segmentation accuracy of the two approaches, two-sided Wilcoxon tests 
[29] were carried on the corresponding DSC values. A value of p < 0.05 was regarded as 
a statistically significant difference. The surface distance measures compute the shortest 
distance between each surface point from the transformed segmentation (xseg (i)) and 
the surface of gold standard segmentation (xgd)

where |·| is absolute value operator. It can provide insight into the spatial distribution of 
the registration errors.

Results
Figure  5 plots the Box-and-Whisker diagram of all registrations. The result of CC is 
worst in the three methods. Compared to MI, the median overlap of MI + CP increases 
significantly from 0.7734 to 0.7826 (p = 3.0× 10−4) at the AO, from 0.6978 to 0.6991 
(p = 1.6× 10−2) at the LA, from 0.4703 to 0.5015 (p = 5.0× 10−4) at the LVM, from 
0.6307 to 0.6519 (p = 6.0× 10−4) at the RA, and from 0.6947 to 0.6962 (p = 3.3× 10−3 ) 
at the RV. At the LV, no much difference is seen between the two methods (from 0.6999 
to 0.7000, p = 5.0× 10−1).

Table 1 lists the mean and standard deviation of the 50 cases. It agrees with the results 
in Fig. 5. The segmentation of the Aorta was better than other substructures. The worst 
result was at the left ventricle myocardium. Figure 6 displays the segmentation results of 
four cases by the gold standard segmentation and the two methods. The result of using 
MI + CP method is clearly closer to the gold standard than that of using MI method. It 
means that less manual correction is needed using MI + CP, if the technique was to be 
used in the clinic.

The boxplot of the mean surface distance using the proposed method for six substruc-
tures is shown in Fig. 7. Table 2 also lists the mean and standard deviation of surface 
distance error for each substructure. It is obvious that most of them are below 2.0 mm, 
except left ventricle myocardium and right atrium. This was because there was no clear 
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boundary between left ventricle myocardium and right ventricle, right atrium and right 
ventricle in some cases. Figure 8 shows the color map of surface distance for the whole 
heart segmentation by the two methods. For right atrium and left ventricle myocardium 
it can be seen that the segmentation error of MI + CP is less than that of MI.

Fig. 5  The boxplot of DSC results using the three methods for six substructures. A star indicates a statistical 
significant difference of the median overlap compared to the previous column

Table 1  The mean and standard deviation of DSC results using the three methods for six 
substructures

Cohen’s d value from the current method compared to the method in previous row

Structures Methods DSC (mean ± SD) Cohen’s d

AO CC 0.7716 ± 0.0006 –

MI 0.7759 ± 0.0150 0.410

MI ± CP 0.7826 ± 0.0150 0.452

LA CC 0.6643 ± 0.0035 –

MI 0.6980 ± 0.0460 1.044

MI ± CP 0.7027 ± 0.0490 0.100

LV CC 0.6769 ± 0.0030 –

MI 0.6863 ± 0.0520 0.258

MI ± CP 0.6901 ± 0.0520 0.073

LVM CC 0.3731 ± 0.0346 –

MI 0.4768 ± 0.0630 2.061

MI ± CP 0.5076 ± 0.0490 0.551

RA CC 0.5657 ± 0.0099 –

MI 0.6180 ± 0.0890 0.834

MI ± CP 0.6332 ± 0.0820 0.179

RV CC 0.6076 ± 0.0052 –

MI 0.6904 ± 0.0330 3.566

MI ± CP 0.6935 ± 0.0320 0.096
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Discussion
In the experiments, six substructures were extracted to support quantitative evaluation 
of cardiac functions. The proposed MI + CP approach achieves more accurate segmen-
tation result as the multi-scale Harris corner and extrema detector are adopted. In Fig. 4 
it can be observed that these corresponding points are nonuniformly scattered on some 
substructures of cardiac images. This will result in the small Cohen’s d values of some 

Fig. 6  The exhibition of the segmentation results of four cases by the gold standard segmentation (top row), 
MI method (middle row), and MI + CP method (bottom row)

Fig. 7  The boxplot of the mean surface distance using MI + CP for each substructure
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substructures, such as left ventricle and right ventricle. One possible solution is to add 
some corresponding points on the edge of the specific substructures, since it can reduce 
local minima more directly. Another possibility is to employ some physical transforma-
tion models [30] to accommodate the large cardiac variations between two cases, which 
will at the same time make the proposed method more effectively.

There are two limitations of this work. Firstly, we cannot investigate the sensitiv-
ity of this framework for different atlases. It is a challenge to construct the compre-
hensive atlases on large and highly variable image datasets. In [6], Hoogendoorn et al. 
utilized spatio-temporal statistical model of the human heart based on 4D multislice 
CT to synthesize the high resolution atlas. This method isn’t suitable for the modeling 
of all cardiac substructures although it may reduce the segmentation errors. Another 
way is to employ a parameter-free approach that directly produces a vector field, such 
as the diffeomorphic demons [31]. Secondly, further improvement in computational 
accuracy is still required. At the left ventricle myocardium, the DSC result using the 
proposed framework is only 0.5076 ± 0.0490. It indicates that depending on only this 
propagation framework is insufficient to handle this substructure. Perhaps incorporat-
ing the boundary-based segmentation technique [32] into this process will improve 
this limitation.

Table 2  The mean and  standard deviation of  surface distance measure using MI  +  CP 
for six substructures

Structures Surface error (mm)

AO 0.73 ± 0.13

LA 1.78 ± 0.78

LV 1.60 ± 0.13

LVM 2.47 ± 0.72

RA 2.30 ± 0.79

RV 1.50 ± 0.62

Fig. 8  The error map of surface distance for the whole heart segmentation by the two methods. a Using MI. 
b Using MI + CP
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Conclusions
We have introduced a novel registration algorithm for the implementation of the heart 
segmentation-propagation framework. Our aim is to improve the segmentation accu-
racy of DSCT images under the condition of the large variations and boundary ambigu-
ity. An extension of n-SIFT method was developed to generate the corresponding points 
from atlas and unsegmented image. Nonrigid registration was achieved by mutual infor-
mation with corresponding points constraint based on the free-form deformation. We 
have tested the performance using 4D cardiac images of fifteen patients. It was shown 
that the median overlap of our method improves significantly on most of anatomical 
substructures except left ventricle, in comparison to original mutual information. The 
reason should be that there are no enough corresponding points to support this sub-
structure. In fact, the segmentation of the left ventricle is more challenging than the 
right ventricle and other parts because large displacements frequently occur between 
adjacent images or the papillary muscles fuse with the wall [33]. The segmentation errors 
had been significantly reduced by the proposed algorithm, in particular left ventricle 
myocardium and right atrium. The proposed segmentation framework achieved a mean 
surface distance of 1.73 mm for the whole heart between the propagated segmentation 
and the gold standard segmentation.

In future work, the diffeomorphic demons model could be used for atlas construction. 
It could be valuable to further investigate the effect of different atlases on the segmenta-
tion-propagation framework. Additionally, it is also important to develop the approach 
that enables us to propagate the atlas from a cardiac phase to another cardiac phase.
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