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Abstract

Human T-lymphotropic virus type 1 (HTLV-1) causes leukaemia or chronic inflammatory disease in ,5% of infected hosts.
The level of proviral expression of HTLV-1 differs significantly among infected people, even at the same proviral load
(proportion of infected mononuclear cells in the circulation). A high level of expression of the HTLV-1 provirus is associated
with a high proviral load and a high risk of the inflammatory disease of the central nervous system known as HTLV-1-
associated myelopathy/tropical spastic paraparesis (HAM/TSP). But the factors that control the rate of HTLV-1 proviral
expression remain unknown. Here we show that proviral integration sites of HTLV-1 in vivo are not randomly distributed
within the human genome but are associated with transcriptionally active regions. Comparison of proviral integration sites
between individuals with high and low levels of proviral expression, and between provirus-expressing and provirus non-
expressing cells from within an individual, demonstrated that frequent integration into transcription units was associated
with an increased rate of proviral expression. An increased frequency of integration sites in transcription units in individuals
with high proviral expression was also associated with the inflammatory disease HAM/TSP. By comparing the distribution of
integration sites in human lymphocytes infected in short-term cell culture with those from persistent infection in vivo, we
infer the action of two selective forces that shape the distribution of integration sites in vivo: positive selection for cells
containing proviral integration sites in transcriptionally active regions of the genome, and negative selection against cells
with proviral integration sites within transcription units.
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Introduction

The completion of the human genome sequence has made

genome-wide studies of retroviral integration possible. Such

studies have led to a good understanding of the targeting

preferences of retroviruses for integration. However, the genomic

distribution of integration sites has not been widely studied in the

context of persistent infection, where infected cells are subjected to

additional selection forces such as the immune response. Here we

tested the hypothesis that in vivo selection influences the genomic

distribution of proviral integration sites in persistent HTLV-1

infection.

Genome-wide studies have revealed that proviral integration is

not random, but that each retrovirus has distinct target site

preferences [1–4]. For instance, HIV shows a bias towards

integration into genes, whereas MLV integration is biased towards

CpG islands and the transcriptional start sites of genes [1–4]. Each

retrovirus also targets a characteristic inverted repeat consensus

nucleotide sequence at the site of integration [5–11]. The different

targeting preferences of the individual retroviruses are determined

by several known factors, including the properties of the viral

integrase [12], DNA binding proteins [13,14], cellular targeting

proteins [15–19] and the chromatin structure at the point of

integration [20,21].

A recent study of HTLV-1 integration sites isolated from HeLa

cells infected in vitro showed that HTLV-1 has integration site

preferences most similar to those of avian sarcoma-leukosis virus

(ASLV) [22]. Both ASLV and HTLV-1 were found to target

genes, transcriptional start sites and CpG islands. Although in each

case the bias was statistically significant, the magnitude of the

effect was lower than observed in integration with other

retroviruses (HIV-1, SIV, MLV and FV) [22]. Since the Integrases

of ASLV and HTLV-1 are more closely related in sequence to

each other than to the other retroviruses, this observation

supported the idea that Integrase is a major determinant of

retroviral integration site targeting.

HTLV-1 is associated with the neoplastic disease Adult T cell

Leukemia (ATL) and the inflammatory condition HTLV-1-

associated myelopathy/ tropical spastic paraparesis (HAM/TSP).

The mechanisms of pathogenesis of HAM/TSP have not been

elucidated. However, it is well established that the proviral load of

HTLV-1–the proportion of peripheral blood mononuclear cells
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(PBMCs) that contain a provirus–varies widely among HTLV-1-

infected individuals and is strongly correlated with the risk of

HAM/TSP [23]. In addition, there is evidence from the study of

the cell-mediated immune response that the rate of HTLV-1

proviral expression at a given proviral load correlates with the

outcome of infection [24]. An individual patient’s proviral load

remains constant over time [25]. In contrast, proviral loads show

large variation between patients [23]. The causes of this proviral

load variation are not yet clear. It was recently demonstrated that

variation between individuals in the efficiency of the cytotoxic T

lymphocyte (CTL) response determined approximately 30% of the

observed between-individual variation in proviral load [26]. An

additional 13% of proviral load was determined by the rate of

provirus expression, independently of CTL efficiency [24]. We

hypothesised that the CTL-independent variation in proviral load

was due to molecular factors that affect proviral load and provirus

expression. We postulated that one such factor was the integration

site of the virus.

The proviral load of HTLV-1 appears to be determined by a

dynamic balance between viral replication and the host immune

response [27]. HTLV-1 has two potential routes of infection:

infectious transmission (across the virological synapse [28]) or

mitotic replication of an infected cell (instigated by the viral

transactivating protein Tax [29,30]). The sequence of HTLV-1 is

stable within an individual, indicating that the proviral load in vivo

is maintained chiefly by proliferation of infected cells [31]. This

interpretation is supported by the observation of large clones of

infected cells with a common integration site in vivo [29,30]. We

have hypothesised that infectious transmission of HTLV-1 is

important early in infection whilst mitotic replication may be

responsible for maintaining proviral load later in infection once

persistent infection has been established and reached equilibrium

with the immune response [27].

There are few existing data on the distribution of HTLV-1

integration sites in non-malignant cases of infection in vivo.

Previous studies suggested that genes are favoured targets for the

integration of HTLV-1 in ATL [32–34] whereas integration sites

isolated from asymptomatic carriers (ACs) and from patients with

HAM/TSP showed no preference for transcriptionally active

regions [32,35]. The power of these studies was, however, limited

by the small number of integration sites and by investigation of few

genomic parameters. In this study we compared the genomic

characteristics of HTLV-1 integration sites resulting from infection

in a cell culture system in vitro with those of integration sites from

freshly isolated PBMCs, in which the integration sites have been

subject to years of in vivo selection. The results suggest positive

selection for cells that possess a provirus integrated in a

transcriptionally active genomic region and negative selection

against cells with a provirus integrated in a transcriptional unit (i.e.

a gene) during persistent infection in vivo. Moreover, frequent

integration in transcriptionally active genomic regions was

associated with a high level of HTLV-1 proviral expression and

with the inflammatory disease HAM/TSP.

Results

The datasets used in this analysis are summarised in Table 1

and can be downloaded from http://bushmanlab.pbwiki.com/f/

Meekings.fa. Using linker-mediated PCR (LM-PCR) we cloned

the genomic integration sites in human lymphocytes (Jurkat)

resulting from co-incubation with a chronically HTLV-1-infected

cell line, MT-2. For each observed integration site, ten matched

random control sites (MRC) were generated. Each MRC lay the

same distance from a randomly chosen NlaIII site in the genome

as the observed integration site from its respective NlaIII site. This

procedure controlled for any potential bias resulting from a non-

random distribution of the restriction enzyme cleavage sites in the

genome [36]. The experimental HTLV-1 integration sites were

then compared to the MRCs using a logistic regression model and

x-squared analysis. A detailed description of the statistical analysis

is presented in Protocol S1. These sites were compared to an

existing set of 527 integration sites generated by the in vitro

infection of HeLa cells by HTLV-1 [22] and with 5270

corresponding MRCs. Our stringent selection criteria (see

Materials and Methods) enabled us to map the genomic sites of

527 of the 541 sites reported [22]. The comparison of these two

datasets from in vitro infection, using a logistic regression model,

showed no significant differences in any of the genomic parameters

analysed. We therefore combined the two datasets in subsequent

analysis.

We then isolated and analysed 313 integration sites from 24

individuals infected with HTLV-1. The individuals comprised 11

ACs and 13 patients with HAM/TSP with proviral loads ranging

from 0.49 to 36.3 proviral copies/ 100 PBMCs. Details on

individuals used in this study and the number of integration sites

contributed by each individual are given in Table S1. Many

integration sites were detected more than once in the same

individual, reflecting the T cell proliferation that maintains the

HTLV-1 proviral load (see Introduction). In the ensuing analysis,

each distinct integration site was counted once. Analysis of the

relationship between integration site distribution and the relative

clonal abundance of HTLV-1 proviruses will require a high-

throughput sequencing study: such a study is now underway.

In this paper we use the term ‘in vitro integration’ to refer to

proviral integration generated by infection in cell culture , and ‘in

vivo integration’ to refer to integration sites isolated from

individuals persistently infected with the virus.

HTLV-1 integration in vivo and in vitro is identical at the
nucleotide level

Studies of other retroviruses have shown that integration occurs

in a statistically-defined consensus sequence, identified by analysis

of a large number of integration sites [5–11,22]. It has been

suggested that this consensus nucleotide sequence preference is an

inherent property of the retrovirus [5]. Therefore, it should not be

Author Summary

The human leukaemia virus HTLV-1 causes a lifelong
infection that cannot be cleared by the immune system. By
integrating into the host’s DNA, the virus can lie dormant
within the cell. The virus can then be reactivated, by
processes that are only partly understood, causing the
infected cell to multiply and leading to an increase in the
quantity of virus in the infected person. In some infected
people, the virus is reactivated much faster than in others,
and such people are more likely to develop HTLV-1-
associated inflammatory diseases such as HAM/TSP, which
results in paralysis of the legs. It is not understood what
determines this rate of viral reactivation in each person. In
this study, we found that integration of HTLV-1 in the
host’s DNA close to other genes was associated with faster
viral reactivation and a higher probability of HAM/TSP. By
comparing the viral integration site positions in samples
from patients and in cells infected with HTLV-1 in the
laboratory, we can identify some of the major forces that
allow the virus to persist lifelong whilst avoiding eradica-
tion by the immune response.

HTLV-1 Integration Site Distribution In Vivo
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influenced by in vivo selection. In agreement with this, both in vivo

and in vitro integration sites showed an identical consensus

sequence at the point of integration (Figure S1).

Distribution of HTLV-1 proviral integration sites in vitro
and in vivo

The datasets of HTLV-1 integration sites were analysed for

proximity to genomic features of transcriptional activity including

transcription units, transcriptional start sites and CpG islands [3].

Here ‘transcriptional unit’ denotes a full-length unprocessed RNA

transcript. The observed frequency of HTLV-1 integration near

each feature was compared to the expected frequency derived

from analysis of the MRC sites using statistical analyses (x-squared

and logistic regression). A recent study of the integration sites of

HTLV-1 in vitro reported significant targeting of transcription units

and a weak but significant targeting of regions containing

transcriptional start sites and CpG islands [22]. Our in vitro co-

culture system revealed identical integration preferences. We

therefore combined both sets of HTLV-1 in vitro integration sites

and compared the combined dataset to the MRC sites for

proximity to genomic features of transcriptional activity. Analysis

of the proportions of HTLV-1 integration sites and MRC sites

within a specified distance (window size between 1 kb and 25 kb)

of a CpG island showed a significantly higher frequency of HTLV-

1 integration sites than MRC sites at all distances above 2 kb

(3.5% of HTLV-1 integration sites lying 62 kb of a CpG island

compared with 2.0% of MRC sites; observed/expected (O/E)

ratio of 1.75; p = 0.0059, x-squared, Figure 1A). In vitro there was

no significant difference in the frequency of HTLV-1 proviral

integration sites within CpG islands themselves, and 61 kb of a

CpG island, compared to MRCs, but statistical power was limited

by the small numbers of sites in this very small genomic region

(0.13% vs 0.24% within a CpG island, Table 2; 1.13% and 0.91%

61 kb, Figure 1).

Compared to the MRC frequencies, there were also signifi-

cantly more HTLV-1 proviral integration sites in the vicinity of

gene transcriptional start sites. This was evident at all distances

investigated (2–25 kb from a transcriptional start site) (i.e. 3.2% of

HTLV-1 integration sites lay 62 kb of a RefSeq gene transcrip-

tional start site compared with 1.7% of MRCs; O/E = 1.88;

p = 0.026, x-squared, Figure 1A). There was also a statistically

significant excess of proviral integration sites present in transcrip-

tion units compared to MRC frequencies using a number of

different gene annotation databases (e.g. 44.5% in RefSeq genes

compared with 34.0% of MRCs; O/E = 1.31; p = 3.361029, x-

squared, Table 2). Further, by investigating the gene density in

genomic regions containing an HTLV-1 provirus, we observed

that the proviral integration sites were associated with regions of

high gene density: there was a significantly increased frequency of

HTLV-1 provirus integration compared to MRC sites in regions

of higher gene density at all region sizes investigated (from 25 kb

to 8 Mb from the integration site; p values ranged from 3.1610219

to 1.161028; logistic regression analysis, Figure 1B).

The integration sites identified in persistent infection in vivo were

also associated with transcriptionally active regions as shown by

their proximity to CpG islands, transcriptional start sites and their

positioning in gene-dense regions. There were three times as many

HTLV-1 proviral integrations (1.92%) as MRC sites (0.61%) lying

within a CpG island (Table 2, p = 0.007, x-squared analysis). In

addition, there was a statistically significant increased frequency of

HTLV-1 integration compared to MRC sites near CpG islands at

all distances investigated (1 kb to 25 kb from a CpG island)

(Figure 1A). For instance, compared to the 3.0% of MRC sites,

11.5% of the HTLV-1 proviral integration sites from persistent

infection lay 62 kb of a CpG island (O/E = 3.83; p = 4.1610214,

x-squared). There was also a significant excess frequency of

HTLV-1 proviral integration sites near gene transcriptional start

sites: 5.4% of HTLV-1 sites lay within 62 kb of a RefSeq gene

transcriptional start site compared with 2.1% of MRCs; O/E

= 2.57; p = 0.0002, x-squared (Figure 1A). The integration sites

identified in persistent infection were also found in regions of

higher gene density than MRC sites (Figure 1B). However, in

contrast to the in vitro integration sites, the frequency of integration

in transcription units in vivo was not significantly different from

expectation (the expected value was calculated, as before, from the

distribution of MRCs) (Table 2). Thus, although the integration

sites isolated from persistent infection were shown to be associated

with transcriptionally active genomic regions, this did not include

an association with transcriptional units.

The methods used in this study and by Derse et al used different

restriction enzymes (NlaIII and MseI respectively). The proportion

of MRCs that lie within a given distance from a CpG island

differed according to the restriction enzyme used: 3.0% of the

MRC in vivo sites generated with NlaIII lay 62 kb of a CpG

island, compared with 2.0% of the MRC in vitro sites (of which 266

were generated with NlaIII and 527 generated with MseI). Also,

2.1% of NlaIII in vivo sites lay within 62 kb of a transcriptional

start site compared to 1.7% of the in vitro MseI/NlaIII sites. That

is, the respective restriction enzyme sites are differently distributed

in the genome with respect to the features associated with

transcriptional activity, and it was therefore essential to use

different MRC sets in each case. We therefore compared each

Table 1. Datasets used in this study

Author Reference Source of integrations Number of sites Use of Sites

Derse et al. 22 In vitro infection of HeLa cells with virus like
particles

527 Comparison of in vitro and in vivo integration sites
(Fig 1).

Meekings et al. This Study In vitro infection of Jurkat cells by co-culture
with infected cell line

266 Comparison of in vitro and in vivo integration sites
(Fig 1).

Meekings et al. This Study In vivo infected PBMCs isolated from naturally
infected HAM/TSP patients and Acs blood
samples

313 Comparison of in vitro and in vivo integration sites (Fig 1).
Investigation of the association of the distribution of
integration sites and Tax expression between
individuals (Fig 3).

Meekings et al. This Study Flow cytometric sorting of provirus expressing
vs. non-expressing naturally infected patient
PBMCs

40 Investigation of the association of the distribution of
integration sites and Tax expression within an
individual (Fig 4)

doi:10.1371/journal.ppat.1000027.t001
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dataset to its respective MRC set before comparing the

experimental datasets to each other.

In vivo selection shapes integration site distribution
To test for evidence of in vivo selection on the distribution of

integration sites, we compared the genomic distribution of 313 in

vivo integration sites with the combined set of 793 in vitro

integration sites using a logistic regression model. First, the logistic

regression model was used to test for non-random frequency of

integration across all chromosomes in vitro and in vivo. The

chromosomal distribution of HTLV-1 integration sites in vivo

differed significantly from the MRCs (Figure 2; p = 0.00095).

Using x-squared analysis and correcting for multiple comparisons,

there was a significant excess frequency of integration in

Chromosome 13 in vivo (p = 0.014). The logistic regression model

also suggested non-random chromosome distribution of HTLV-1

integration in vitro (Figure 2, p = 0.016, x-squared analysis) but this

bias was not statistically significant after correcting for multiple

comparisons (p.0.1). However, logistic regression confirmed a

significant difference (p = 0.006) between the chromosomal

distribution of sites in vivo and in vitro.

Compared with the in vitro integration sites, there were

significantly more integrations in vivo into transcriptionally active

genomic regions, i.e. near a CpG island or a transcriptional start

site. The ratio of the numbers of observed HTLV-1 integration

sites to expected (MRC) sites lying within a specified distance

(ranging from 1 to 25 kb) from either a RefSeq gene transcrip-

tional start site or a CpG island were compared in vitro and in vivo.

Although both datasets showed a greater than expected frequency

of proviral integration in transcriptionally active regions, there

Figure 1. Integration of HTLV-1 in transcriptionally active genomic regions. Panel A: Near gene transcriptional start sites and CpG
islands. HTLV-1 showed significantly greater than expected frequency of integration in the vicinity of RefSeq transcriptional start sites (TxStart sites)
and CpG islands in cell culture in vitro and in persistent infection in vivo. The vertical axes for the in vitro and in vivo datasets show the proportion of
observed HTLV-1 integration sites or expected MRC sites in the vicinity of the respective genomic feature. * indicates a significant difference between
HTLV-1 sites and MRCs, by x-squared analysis (p,0.05). There was a significantly greater association with integration in the proximity of TxStart sites
and CpG islands comparing the distribution of observed HTLV-1 integration sites to expected MRC sites in vivo and in vitro (vertical axis, in vitro vs in
vivo). $ indicates a significant difference between the frequency of HTLV-1 in vivo sites and in vitro sites, by logistic regression (p,0.005). Panel B: In
regions of high gene density. HTLV-1 showed an increased frequency of integration in gene dense regions. Gene density in regions from 25 kb to
1 Mb around the integration site was analysed. In all region sizes, there was a greater association of HTLV-1 integration in gene dense regions both in
vivo and in vitro. However, there was a significantly greater association between proviral integration frequency and gene density in persistent
infection in vivo than was seen in vitro. A graphical illustration of the 25 kb region and data on the logistic regression results comparing the in vivo
and in vitro HTLV-1 datasets for the first three region sizes is given (Panel B).
doi:10.1371/journal.ppat.1000027.g001
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were also significantly more integrations near both CpG islands

and transcriptional start sites in vivo than in vitro (Figure 1A;

p,0.005, logistic regression analysis). There were also significantly

more integrations lying within a CpG island (p = 961024, logistic

regression analysis) (Table 2) in vivo than in vitro. In addition, we

analysed the gene density in a range of window sites (625 kb to

61 Mb) around each integration site. Logistic regression analysis

showed significantly more integrations into regions of higher gene

density in vivo than in vitro at all window sizes tested (p = 0.032 at

625 kb; p = 2.561026 at 6100 kb; Figure 1B). However,

although the observed association with integration into transcrip-

tionally active regions was stronger in vivo than in vitro, there were

significantly fewer integrations into transcription units in vivo

(Acembly, RefSeq and Ensemble gene definitions tested;

p = 2.561024, 0.044, 0.0065 respectively) (Table 2). Whereas

HTLV-1 proviral integration frequency in transcription units

exceeded expectation in vitro, in vivo there was no deviation from

expected frequencies.

The distribution of integration sites is associated with
proviral expression and disease status

We wished to compare the distribution of integration sites

between individuals with a high proviral load and those with a low

load; between those with high levels of expression of the viral

protein Tax and those with low levels; and between patients with

HAM/TSP and ACs. In each comparison, the individuals in

Table S1 were split into 2 equal groups based on the above

parameters (i.e. above and below the median value of the

respective parameters) and the integration sites from the two

respective groups of subjects were compared using a logistic

regression model as set out in Protocol S1. There were no

significant differences in the genomic characteristics of the

integration sites between individuals with a high proviral load

Table 2. Percentage of integration sites residing within gene
coding regions/CpG islands in vitro and in vivo

Genomic Feature: In Vitro: Cell Culture
In Vivo: Persistent
Infection

(N = 793): (N = 313):

Sites MRCs Sites MRCs

CpG island$ 0.13 0.24 1.92* 0.61

Acembly gene$ 64.6* 52.0 51.4 52.2

GenScan gene 70.7 69.5 69.0 71.4

Known gene 47.9* 38.1 40.3 39.5

RefSeq gene¥ 44.5* 34.0 36.1 35.2

Unigene gene 48.8* 40.8 41.2 41.4

Ensembl gene$ 49.3* 37.5 38.7 38.9

The proportion of HTLV-1 integration sites lying within a CpG island or the coding
region of a gene (as defined by specified databases) in cell culture in vitro and in
persistent infection in vivo were compared to the proportion of Matched Random
Control (MRC) sites derived in silico (see Materials and Methods).. Human gene
annotation tables from the UCSC genome database include Acembly genes,
GenScan genes, Known genes, RefSeq genes, Unigene and Ensembl genes. *
indicates a significant difference between the HTLV-1 proviral dataset and MRCs
(p,0.01). $ and ¥ indicate a significant difference between in vivo and in vitro
HTLV-1 proviral datasets (p,0.01 and p,0.05 respectively).
doi:10.1371/journal.ppat.1000027.t002

Figure 2. Chromosomal distribution of HTLV-1 integration sites in vitro and in vivo. The distribution of HTLV-1 integration sites within the
genome in vivo during persistent infection was non-random across all chromosomes compared to matched random controls (logistic regression
analysis, p = 0.00095). In particular, chromosome 13 had a significantly increased frequency of integration sites compared to MRC sites (x-squared
test; p = 0.014 after correction for multiple comparisons). The vertical axis indicates the proportion of integration sites lying in each chromosome.
Integration of HTLV-1 in vitro (combined data from the co-culture sites obtained in this report and sites generated in a previous report [22]) showed a
weak overall chromosome bias (logistic regression analysis, p = 0.016) but no particular chromosome was favoured. Logistic regression analysis
confirmed that the chromosomal distribution differed significantly in vivo compared to in vitro. * indicates a significant difference between HTLV-1
dataset and MRCs (logistic regression analysis, p = 0.014).
doi:10.1371/journal.ppat.1000027.g002
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and those with a low proviral load (data not shown). However,

differences in the distribution of integration sites were apparent

according to the level of expression of Tax and the disease status.

The HAM/TSP group and high Tax group each showed a

consistent tendency to a higher frequency of integrations both in

the vicinity of genes and in regions of higher gene density. Of the

integration sites isolated from high Tax-expressing individuals,

38% were located in RefSeq genes, compared with only 33% of

sites from low Tax-expressing individuals. The high Tax-

expressing group also had a significantly higher gene density in

the region surrounding the integration site than the low Tax-

expressing group (p = 0.034; logistic regression model using a

500 kb window around each integration site, data not shown).

There is evidence that the Tax protein is expressed at a

significantly higher frequency in patients with HAM/TSP than in

ACs with a similar proviral load [24]. Since the data presented

above showed that the proviral integration site distribution was

associated with the level of Tax protein expression, we wished to

test the hypothesis that the integration site distribution differed

between HAM/TSP patients and ACs. The results show that the

HAM/TSP patients had significantly more integration sites

located in RefSeq genes (41%) compared to the ACs (30%)

(Figure 3, p = 0.049; logistic regression model).

These observations suggested that the integration site is

associated with the rate of expression of the provirus in vivo, i.e.

that integration in gene-dense regions is concomitant with higher

provirus expression and consequently with a higher risk of the

disease HAM/TSP. We tested the validity of this conclusion in an

independent series of experiments by comparing the genomic

distribution of proviral integration sites between HTLV-1-infected

T cells that expressed Tax spontaneously within 18 hrs and those

from the same individual that did not express Tax. In independent

experiments, CD8+ cell-depleted PBMCs from each of three

patients with HAM/TSP were incubated for 18 hrs in vitro to allow

spontaneous Tax expression. Each of the three individuals had

approximately 5% Tax+CD4+ T-cells after culture. After intra-

cellular staining with a fluorescent-labelled monoclonal antibody

for the Tax protein, the Tax-expressing cells were separated from

Tax non-expressing cells by flow cytometric sorting. The

integration sites in each respective cell population were then

cloned. The integration sites from the Tax-expressing (Tax+)

fraction for the three individuals were pooled and the distribution

compared to that of the Tax non-expressing fraction (Tax2). The

results (Figure 4) corroborated the hypothesis that the distribution

of integration sites in vivo is associated with the rate of proviral

(Tax) expression. The Tax+ fraction had a significantly higher

proportion of HTLV-1 integration sites in genes compared to the

Tax2 fraction (50% and 23% in RefSeq genes respectively)

(Figure 4A). This difference was significant at the one-tailed level

(p = 0.04). The Tax+ cell fraction also had a significantly higher

proportion of HTLV-1 integration sites in the vicinity of a CpG

island ( with 35.7% of integration sites lying within 610 kb from a

CpG island in Tax+ cells compared with 11.5% of integration sites

in Tax2 cells, p = 0.034, x-squared analysis, Figure 4B). Finally,

the Tax+ fraction had a significantly higher gene density around

each integration site than the Tax2 fraction (p = 0.019; logistic

regression model using a 1 Mb window around each integration

site, Figure 4C). In summary the results show that, both between

and within patients, proviral integration into areas of transcrip-

tional activity was associated with Tax expression.

Discussion

The results presented here show that the integrated HTLV-1

provirus is associated with transcriptionally active regions of the

human genome both in vitro in cell culture and in vivo in persistent

infection. This was shown by an increased frequency of integration

in gene-dense regions, near CpG islands and near transcriptional

start sites compared to controls. However, we also found

significant differences in the distribution of HTLV-1 integration

sites when comparing the in vitro sites with those identified in

patients’ PBMCs, which had been subjected to years of immune

and viral selection in vivo. We used 2 datasets of HTLV-1 sites

generated in vitro: an existing set resulting from infection of HeLa

cells with virus-like particles [22] and a novel set formed by the

infection of Jurkat cells by short-term co-culture with MT2 cells.

The presented results are in agreement with the analysis by Derse

et al on the set of HeLa-derived HTLV-1 proviral integration sites

[22]. In addition, the distribution of integration sites did not differ

between these two in vitro datasets in any genomic parameter

tested. This finding is consistent with previous evidence that the

distribution of retroviral integration sites is largely independent of

the cell type [1,4,6,22,36–39]. We then pooled these sites to

compare the genomic distribution of 793 in vitro sites with 313 sites

resulting from persistent infection in vivo.

Two major differences were found between the distribution of in

vivo and in vitro HTLV-1 integration sites. First, there was a

significantly stronger association with integration in transcription-

ally active regions in vivo than in vitro. That is, there were

significantly more integrations in vivo into regions of high gene

density, near RefSeq gene transcriptional start sites, and near CpG

islands. Second, there were significantly fewer integrations into

transcription units in vivo than in vitro: whereas HTLV-1 showed a

significant bias towards integration in transcription units in vitro

both in HeLa and in Jurkat cells, there was no deviation from

Figure 3. The genomic distribution of HTLV-1 integration sites
was associated with disease status. Integration sites isolated from
the PBMCs of individuals with HAM/TSP were compared to integration
sites from ACs using logistic regression analysis. The integration sites
from the HAM/TSP group were associated with RefSeq genes (logistic
regression model, p = 0.049). The numbers of integration sites
compared in each group are indicated.
doi:10.1371/journal.ppat.1000027.g003
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expected frequencies in vivo. These results are consistent with the

existence of two selection forces that act in vivo to shape the initial

distribution of integration sites: positive selection for cells

containing an integration within a transcriptionally active regions

of the genome, and negative selection against gene disruption

resulting from proviral integration within a transcription unit.

Positive selection for proviruses integrated into transcriptionally

active genomic regions is likely to result from the actions of the

HTLV-1 Tax protein, which transactivates transcription of both

viral and host genes and causes clonal T cell proliferation. This

conclusion is consistent with two existing lines of evidence on the

mechanism of HTLV-1 persistence in vivo. First, there is evidence

that HTLV-1 persists in vivo during the chronic phase of infection

chiefly by clonal proliferation of infected cells [29,40]. Second,

there is an abnormally fast turnover rate of HTLV-1-infected T

cells in vivo, especially of Tax-expressing cells [41,42], indicating

that the selective proliferation of HTLV-1-infected T cell clones in

vivo depends on persistent expression of the provirus. It is possible

that proviral integration in transcriptionally active regions also

affects the expression of host genes lying in the vicinity of the

integration site, so conferring a growth advantage on the infected

clone.

We observed a significantly lower frequency of HTLV-1

proviral integration in transcription units in vivo than in vitro. We

postulate that the lower frequency in vivo results from the

disruption of gene function. If correct, this conclusion implies

the existence of haploinsufficiency in many human genes [43].

There are currently insufficient published data available to make

possible an accurate estimate of the proportion of human genes

that are subject to haploinsufficiency. However, there is an

increasing number of reports of human diseases, including cancer

and developmental disorders, that are associated with haploinsuf-

ficiency [44–46]. Haploinsufficiency has also shown to be a

common phenomenon in yeast [47,48]. Negative selection against

integration into transcription units was not observed in HIV

infection, in which integration was biased towards transcription

units both in vitro and in vivo [36,49]. Most cells productively

infected by HIV have a short lifespan, perhaps too short to allow

negative selection against integration in transcription units [50]. In

contrast to HIV, HTLV-1 infection results in increased lympho-

cyte turnover via clonal proliferation [41]. We suggest that this T

cell proliferation maintains the proviral load and the lymphocyte

count in the face of negative selection against integrations in genes.

We analysed the distribution of in vivo proviral integration sites

to test the hypothesis that the distribution of integration sites is

associated with proviral load, provirus expression and disease

status. There were no statistically significant differences in the

distribution of integration sites between the high-load and low-

load subjects. However, there were significant differences in the

distribution of integration sites between patients with high

expression of the viral protein Tax and those with low expression,

and between patients with HAM/TSP and ACs. Both the high

Tax and the HAM/TSP group showed a greater frequency of

proviral integrations in genes compared to the low Tax and AC

group respectively. We conclude that integration in regions of

higher gene density was concomitant with higher levels of the viral

protein Tax. Since the level of Tax expression correlates with

disease risk [24], this integration distribution also manifests as a

higher proportion of integrations in gene-dense regions in HAM/

TSP patients compared to ACs. We propose that integration in

transcriptionally active genomic regions favours HTLV-1 proviral

expression and persistence, but that this is counter-selected by an

efficient immune (particularly CTL) response. This conclusion is

consistent with evidence that the efficiency of the CTL response

correlates negatively with proviral load [26] and with recent

evidence that HTLV-1 proviral expression contributes to the

persistence of HTLV-1 in vivo [41].

As a more stringent test of the relationship between the

integration site and the level of provirus expression, integration

sites from Tax+ and Tax2 provirus-positive cells isolated from

cultured PBMCs were amplified by LM-PCR. We analysed these

sites to test the hypothesis that the Tax+ cell fraction had

significantly more integrations in transcriptionally active regions.

The results showed that the Tax+ fraction indeed had significantly

more integration sites lying in transcription units: 50% of the sites

in the Tax+ fraction were located in RefSeq transcription units

Figure 4. The genomic distribution of HTLV-1 integration sites within individuals was associated with provirus expression. CD8+ cell-
depleted PBMCs from an HTLV-1-infected individual were separated into Tax+ and Tax2 fractions after 18 hrs incubation in vitro. Integration sites
were cloned from each fraction. The integration sites from three independent experiments were combined and the distribution of sites between the
Tax+ and Tax2 fractions compared using logistic regression analysis. The Tax+ fraction had significantly more integrations in RefSeq genes than did
the Tax2 fraction (Panel A, p = 0.04). The Tax+ fraction also had a higher proportion of integrations lying within 10 kb of a CpG island (Panel B,
p = 0.034) and a higher gene density around the integration site (Panel C, p = 0.019 using 1 Mb around each integration site). The numbers of
integration sites compared in each group are indicated.
doi:10.1371/journal.ppat.1000027.g004
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compared to only 23% in the Tax2 fraction. Similar experiments

with other retroviruses have also shown an association between

integration in gene-rich regions and viral transcription in vitro

[12,51]. The results of this within-patient experiment (Figure 4)

corroborated the relationship between integration site distribution

and Tax expression. The results also revealed a stronger association

between integration in genes and Tax expression within individuals

than that observed in the between-individual experiment. We

suggest that this stronger association results from the greater

difference in Tax expression between Tax+ and Tax2 cells (an all-

or-nothing effect) than between the high-Tax and low-Tax patient

groups, which represent two halves of a continuous distribution. In

addition, other factors such as variation in the host immune

response to HTLV-1 are likely to contribute to between-individual

variation in the intensity of selection for proviral expression [26].

We propose that an individual’s steady-state rate of proviral

expression (measured as Tax protein), and the accompanying risk

of inflammatory diseases such as HAM/TSP, are the result of an

equilibrium between HTLV-1 replication and the immune

response in vivo (Figure S2). Selection for cells with high levels of

Tax expression leads to an increased frequency of proviruses

integrated in gene-dense regions of the genome. Clonal prolifer-

ation of an infected cell leads to dominance of Tax-expressing

clones. The increased proviral load resulting from this prolifera-

tion will increase the rate of infectious spread of the virus and

thereby increase the frequency of integration in genes, owing to

the intrinsic preference of the virus. Balancing these positive

forces, the specific CTLs kill HTLV-1-expressing cells and

therefore select against integration in transcriptionally active areas

of the genome. In addition, integration into genes, which may

disrupt their function, reduces the steady state frequency of

proviruses in gene-dense regions. These parameters act in concert

with host genetic factors [52,53] to determine an individual’s

proviral load, level of Tax expression and disease status.

Materials and Methods

Patients; blood samples
Samples from 24 individuals infected with Human T-cell

Leukaemia Virus 1 (HTLV-1) were analysed. These included 11

ACs and 13 patients with HAM/TSP. All patients attended the

HTLV-1 clinic at St Marys Hospital, London and donated their

blood having given written informed consent. HTLV-1 infection was

confirmed by the presence of antibodies to HTLV-1 Gag and Env

antigens in sera by Western blot (HTLV blot 2.4; Genelabs).

Diagnosis of HAM/TSP was made following World Health

Organisation criteria. PBMCs were isolated from whole blood by

density gradient centrifugation using Histopaque-1077 (Sigma). Cells

were washed twice in PBS and cryopreserved in fetal calf serum

(FCS, Sigma) with 10% dimethyl sulphoxide (DMSO, Sigma) in

liquid nitrogen until required. DNA was extracted as described in the

manufacturer’s protocol (Qiagen, DNeasy Tissue Kit).

Co-culture Assay
The HTLV-1 producing cell line MT2 was labelled with CD4+

microbeads (Miltenyi), stained with CFSE and gamma-irradiated

(137Cs, 40,000 rads). The cells were then co-cultured with Jurkat cells

for 3 hrs at 37uC at a 1:1 ratio. The MT2 cells were then depleted

and an aliquot of the Jurkat cells analysed to verify Gag transmission

from the MT2 cells and to quantify MT2 contamination.

Contamination was less than 5%. By one week co-culture, all

remaining MT2 cells had died. Sixteen days post-culture, DNA was

extracted from the Jurkat cells and amplified for HTLV-1

integration sites. To verify integrations were novel and not

contaminating MT2 sites, DNA was also extracted from MT2 cells

and the resulting integrations were used to search the set of novel

integrations for MT2 sites. No contaminating MT2 sites were found.

Linker-Mediated PCR
In this paper, we refer to integration sites generated by infection

in cell culture as in vitro sites and those derived from patients’

PBMCs as in vivo sites. Four mg of extracted DNA was digested with

10 U Nla III (New England Biolabs) in a total volume of 50 ml for

3 hours at 37uC. After purification with the PCR clean-up kit

(Qiagen) following manufacturer’s instructions, DNA was eluted

into 50 ml elution buffer. For the linear linker-mediated PCR for

amplification of in vivo sites, 20 ml of this DNA solution was

incubated for 30 minutes at room temperature with 2 ml Quick

Ligase (New England Biolabs) and 40 pmoles of the primer Bio1

[29]. After a further purification, the ligated DNA was eluted into

55 ml, of which 10 ml was used in each of four replicate linear PCR

reactions: 100 cycles, using 20 pmoles of the primer Bio2 [29] and

the following conditions: 94uC for 10 min; 100 cycles of 95uC for

45 sec, 60uC for 45 sec, 72uC for 2 min; and a final elongation step

of 72uC for 10 min. Ten ml of a five-fold dilution of the linear PCR

product was used in the classical (bidirectional) PCR reaction. In the

bidirectional PCR, DNA was amplified with 20 pmoles each of Bio3

and Bio4 [29] with the following conditions: 94 uC for 10 min; 100

cycles of 95uC for 45 sec, 60uC for 45 sec, 72uC for 2 min; and a

final elongation step of 72uC for 10 min.

For amplification of the in vitro integration sites, the digested

product was ligated to a longer double-stranded NlaIII linker

overnight at 16uC. Bidirectional PCR was then carried out using

primers in the viral LTR (Bio2) and the linker (AE2814), followed

by nested PCR using the primers Bio3 and AE2815 [36].

Cloning and Sequencing
Two ml of amplified integration site products were combined

with 0.5 ml TOPO-TA cloning sequencing vector PCR-4H and

used to transform MachT1 cells according to manufacturer’s

instructions (Invitrogen). Clones were picked and sequenced using

the T3 primer (Invitrogen). To check that the amplification was

HTLV-1 specific, plasmids were digested with EcoRI, run on a

2% agarose gel and transferred to nylon membrane (Roche) by

southern blotting. They were then probed using the Bio5 primer

found in the viral LTR [29] conjugated to a single digoxigenin-

labelled dideoxyuridine-triphosphate (DIG-ddUTP) (Bio5-DIG)

according to manufacturer’s instructions (Roche Applied Science).

Membranes were pre-hybridised for 30 min at 70uC using DIG

EasyHyb (Roche Applied Science) before 4 hours of hybridisation

with 10 pmol Bio5-DIG in 7 ml EasyHyb. Membranes were

washed twice for 5 min in 2xSSC/ 0.1% SDS and twice for

15 min in 0.5xSSC/ 0.1% SDS at hybridisation temperature.

Bound Bio5-DIG was detected using the Roche DIG nucleic acid

detection kit following manufacturer’s protocol. Results were

documented by scanning the membrane once dry.

Integration site determination
The genomic integration site was located within the cloned

sequence by identifying the terminal 59 sequence of the viral LTR

and the junction between the genomic sequence and Bio1. The

genomic sequence was mapped on to the hg17 assembly of the

human genome using the BLAST-Like alignment tool (BLAT)

[54] http://genome.ucsc.edu/cgi-bin/hgBlat?command = start. A

match was defined as a sequence having all 3 of the following:

1) 98% or more homology between the match and the obtained

sequence.
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2) Homology extending from three bases of the HTLV-1

terminus.

3) Yielded a unique best hit.

A total of 313 sequences from persistently infected individuals

and 266 sequences from the in vitro co-culture could be mapped to

the human genome obeying the above criteria. In addition, 527

sequences from a previously published in vitro study were mapped

using the same protocol [22]. Integration sites were examined for

the occurrence of various chromosomal features using tables

available from the University of California, Santa Cruz database

[55]. Proviral integration sites can be downloaded from http://

bushmanlab.pbwiki.com/f/Meekings.fa.

A set of randomised controls was generated. Ten control sites per

integration site were generated, each equidistant from a genomic

NlaIII site, to account for any possible bias introduced by a non-

random genomic distribution of the restriction enzyme. These sites

were analysed in the same manner as the experimental sites.

The statistical method used to compare the experimental sites to

MRC sites and the comparison between retroviruses is described

in Protocol S1. Software tools and annotated data files are

available upon request.

Staining for CD4/CD8 and Tax
To stain for cell surface markers, treated cells were washed

once, fixed with 2% paraformaldehyde (Sigma) for 20 mins at

room temperature, washed again and resuspended in 100 ml PBS/

10% FCS in a ‘V’ bottomed 96-well plate with appropriate

antibodies (15 mg/ml phycoerythrin-cyanine 5(PC5)-conjugated

anti-CD4 and energy coupled dye (ECD)-conjugated anti-CD8

antibodies (Immunotech)) for 20 mins at room temperature. Cells

were permeabilised at room temperature for 10 mins using PBS/

0.1% Triton X-100 (Sigma). The cells were then washed and

resuspended in PBS/7% normal goat serum (NGS, Sigma) with

1:200 dilution of Lt-4 anti-Tax antibody (gift from Y. Tanaka) for

25 mins at room temperature. Cells were resuspended in PBS

ready for flow cytometric analysis. All flow cytometry was done on

a Coulter Epics XL (Beckman Coulter) flow cytometer and data

analysis done using Coulter Expo 32 software.

Proviral load measurement
DNA was amplified for HTLV-1 DNA and for b-actin (as a

measure of genomic DNA) using the Tax sequence-specific

primers SK43 and SK44 [56] and b-actin primers specific for

the 59 and 39 ends. Three dilutions of neat eluted DNA (1:4, 1:8,

1:16) were amplified by real time quantitative PCR in a Roche

light cycler using SYBRH Green 1 Dye incorporation (Roche) and

1 mM of each primer. Incorporation was detected at 85uC at the

end of each of the 45 cycles. Standard curves were generated using

the rat cell line TARL2 which contains 1 copy per cell of the

HTLV-1 provirus [23]. The sample copy number was estimated

by interpolation from the standard curve, calculated as an average

of the 3 dilutions, and expressed as percentage of PBMCs infected,

assuming 1 proviral copy per cell.

Supporting Information

Figure S1 HTLV-1 integration in vivo and in vitro is identical at

the nucleotide level. Integration of HTLV-1 in vivo is indistinguishable

from that in vitro at the nucleotide level (in vitro data combined from the

co-culture sites obtained in this report and sites reported by Derse et al.

[22]). Integration generates a hexameric repeat (figure, box) at the

point of integration (indicated by arrow). The HTLV-1 site, analogous

to those previously described for other retroviruses, shows palindromic

symmetry centred around the middle of the hexameric repeat (dashed

line). Strand transfer positions are marked by black arrows. Blue and

red boxes show changes 630% respectively compared to matched

random control sites (MRCs). The integration site can also be viewed

as a LOGO image where the overall height of the stack represents the

sequence conservation at that point and the height of each symbol in

the stack represents the frequency of the respective nucleic acid at that

point. The HTLV-1 integration site, as well as the integration sites of

HIV, SIV and MLV, has a preference for T at position -2 and an A at

position +2 after the nucleotide repeat.

Found at: doi:10.1371/journal.ppat.1000027.s001 (2.88 MB TIF)

Figure S2 The dynamic control of Tax expression in vivo. The

present study shows that a high proportion of integrations in regions

of transcriptional activity is associated with a high rate of proviral

(Tax) expression, which in turn is associated with the inflammatory

disease HAM/TSP. A low proportion of integrations in regions of

transcriptional activity is associated with low Tax expression and

asymptomatic infection (AC). The figure depicts the putative

selection forces that act on the genomic distribution of integrated

proviruses. Tax expression in vivo is decreased by the CTL response

and by negative selection against gene disruption. Proliferation of the

infected cell caused by expression of Tax leads to a positive feedback

to increase proviral expression; the intrinsic preference of HTLV-1

to integrate in transcriptionally active regions also increases provirus

expression. In this way, there is a dynamic balance in vivo acting to

determine an individual’s level of proviral expression and hence the

risk of HTLV-1-associated inflammatory disease.

Found at: doi:10.1371/journal.ppat.1000027.s002 (1.33 MB TIF)

Protocol S1 Supplementary statistical analyses methods.

Found at: doi:10.1371/journal.ppat.1000027.s003 (0.69 MB PDF)

Table S1 Classification of individuals used in this study. Identifi-

cation codes, Tax expression levels (% of CD4+ T cells expressing

Tax), Proviral loads (number of provirus positive cells per 100

PBMCs), disease status and number of contributing sites are given.

Found at: doi:10.1371/journal.ppat.1000027.s004 (0.05 MB

DOC)
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