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Large-scale phosphorylation mapping reveals the
extent of tyrosine phosphorylation in Arabidopsis
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Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome-
wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary
phosphopeptide enrichment techniques coupled with high-accuracy mass spectrometry. Using
unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172
high-confidence, unique phosphorylation sites from 1346 proteins. The distribution of phospho-
serine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical
tyrosine-specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines
among the phospho-residues in Arabidopsis is similar to that in humans, where over 90 tyrosine-
specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows
features distinct from those of the serine and threonine phosphoproteomes. Taken together, we
highlight the extent and contribution of tyrosine phosphorylation in plants.
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Introduction

Protein phosphorylation is a critical regulatory step in
signaling networks and is arguably the most widespread
protein modification affecting almost all basic cellular
processes in various organisms (Hunter, 2000; Manning
et al, 2002).

Advances in mass spectrometry (MS)-based technologies
accompanied with phosphopeptide enrichment methods
paved the way for high-throughput, large-scale in vivo
phosphorylation site mapping, and indeed, several pioneering
plant phosphoproteome studies have been reported in the past
5 years (Nuhse et al, 2003, 2004, 2007; de la Fuente van
Bentem et al, 2006; Benschop et al, 2007). Although these
studies provided new insights into phosphorylation events in
plants, the analyses were restricted to subfractionated
samples, such as plasma membrane proteins, containing a

few hundred phosphoproteins. No plant study has yet been
reported using unfractionated whole cells to provide a wide-
ranging view of cellular phosphorylation events.

More than 1000 phosphorylation sites have recently been
identified in animal and yeast cells, using a combination of two
or more methods for phosphopeptide enrichment coupled
with mass spectrometric phosphopeptide-oriented techniques,
such as neutral loss-triggered MS3 to generate fragment ions
after elimination of labile phosphate groups, multistage
activation, and electron transfer dissociation (Olsen et al,
2006; Bodenmiller et al, 2007a; Chi et al, 2007; Molina et al,
2007; Villen et al, 2007). We also reported the identification of
more than 2000 in vivo phosphorylated sites in unstimulated
HeLa cells employing an aliphatic hydroxy acid-modified
metal oxide chromatography (HAMMOC) as a phosphopeptide
enrichment method (Sugiyama et al, 2007). Since different
phosphopeptide enrichment methods are likely to have
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distinct preferences for particular properties of phosphopep-
tides (Bodenmiller et al, 2007b), it is reasonable to use two or
more phosphopeptide enrichment methods for evaluation of
proteome-wide phosphorylation.

Comparative genome analyses revealed substantial differ-
ences in the ensembles of kinases (kinomes) in eukaryotes
(Diks et al, 2007). The Arabidopsis genome encodes at least
two times more protein kinases than the human genome
(Manning et al, 2002; Champion et al, 2004). Importantly, the
Arabidopsis genome (Initiative, 2000) does not contain any
predicted human-type TKs (Rudrabhatla et al, 2006). However,
plants are likely to utilize tyrosine phosphorylation signaling,
as bona fide tyrosine-specific protein phosphatases do exist
in Arabidopsis (Xu et al, 1998; Luan, 2003), and a few
early studies detected tyrosine phosphorylation by using pY
antibodies (Barizza et al, 1999; Kameyama et al, 2000; Luan,
2002). In addition, a previous Arabidopsis phosphoproteome
study identified a small number of phosphorylated tyrosine
residues, although the actual data sets were missing in the
report (Benschop et al, 2007). Thus, evidence for tyrosine
phosphorylation in plants is limited so far.

Here, we present a large-scale phosphoproteome analysis of
Arabidopsis, providing an overview of in vivo phosphorylation
events in Arabidopsis at the cellular level. Importantly, we
show the extent of tyrosine phosphorylation in plants, which
has been largely underestimated to date.

Results and discussion

Large-scale in vivo phosphorylation site mapping
in Arabidopsis

To collect a comprehensive data set of Arabidopsis phosphor-
ylation sites, we employed six distinct methods for phospho-
peptide enrichment (Supplementary information). Our
approach identified 2172 unique phosphorylation sites with
very high confidence on 1346 proteins from unfractionated
Arabidopsis cell lysates; this is one of the largest data sets
available for a plant to date (Supplementary Table I and
Supplementary information). A large majority (1155; 85.8%)
of the identified phosphoproteins are novel, while 191 (14.2%)
were reported in the previous phosphoproteome studies that
focused on plasma membrane proteins (Nuhse et al, 2004;
Benschop et al, 2007) (Supplementary Figure 2).

Arabidopsis phosphoproteome

To obtain an overview of phosphorylation events in Arabi-
dopsis, protein abundance distribution, cellular localization,
molecular function, and biological processes of identified
phosphoproteins were analyzed and compared with those of
all proteins encoded by the Arabidopsis genome (Supplemen-
tary Figures 3 and 4). Phosphoproteins were generally less
abundant, as expected, even when we did not take account of
the degree of phosphorylation (Supplementary information).
Proteins from all subcellular compartments were found to be
targets for phosphorylation. However, approximately 40% of
phosphorylation occurred on predicted nuclear proteins. Since
nuclear proteins account for only approximately 20% of all
genome-encoded proteins and 15% of the experimentally

identified proteins in this study, phosphorylation is likely to
target nuclear proteins preferentially (Supplementary Figures
4A and 5). The distributions of the molecular function and
biological processes of phosphoproteins and that of all
genome-encoded proteins were relatively similar (Supplemen-
tary Figures 4B and C). This indicates that most cellular
processes in Arabidopsis are likely to be regulated at least in
part by various phosphorylation events.

To our surprise, of the 2172 identified phosphorylation sites,
we found 94 sites to be tyrosine residues (Table I). The kinome
of Arabidopsis does not contain any of the typical TKs found in
humans, suggesting that plants and humans do not share
mechanistic features of tyrosine phosphorylation. Neverthe-
less, the relative abundances of pS, pT, and pY in Arabidopsis
were estimated to be 85.0, 10.7, and 4.3%, which are strikingly
close to the human phosphoproteome profile recently
reported. The proportion of pY among phospho-residues in
human cells is estimated to be between 1.8 and 6.0%,
depending on the analyzed samples (Olsen et al, 2006; Molina
et al, 2007; Sugiyama et al, 2007). These data clearly indicate
that the importance of tyrosine phosphorylation in plants has
been greatly underestimated.

Arabidopsis tyrosine phosphoproteome

The 94 identified pY residues were mapped on 95 proteins
(Supplementary Table II). The difference in the number of pY
residues and corresponding proteins is due to matching of
single phosphopeptides to several different proteins. Since the
sequences surrounding tyrosine phosphorylation sites on
the listed protein kinases are often well conserved, the number
of protein kinases is over-represented. To investigate whether
tyrosine phosphorylation is targeted to a specific subset
of proteins, gene ontology analyses of serine-, threonine-, or
tyrosine-phosphorylated proteins were performed as de-
scribed (Figure 1). Tyrosine phosphorylation preferentially
occurs on proteins that possess kinase activity or transferase
activity (Figure 1B). Otherwise, no outstanding differences
were found in the distributions.

Location of phosphorylation sites on
characterized protein domains

To assess whether trends or patterns exist in the position of
tyrosine phosphorylation sites, we investigated whether these

Table I Numbers of identified phosphopeptides, phosphoproteins, phospho-
rylation sites, and the content of phosphorylated residues

Items Number

Number of phosphopeptidesa 2597
Number of phosphoproteinsb 1346
Number of unique phosphorylation sites 2172
Phosphorylated residues (Ser:Thr:Tyr) 1847:231: 94

(85.0%) (10.6%) (4.3%)

aThe number of phosphopeptides is based on unique sequences containing
missed cleavage products, oxidization of methionine, and phosphorylation of
different sites.
bMultiple distinct proteins except splicing variants matched against a single
peptide are also counted.
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sites are located in conserved domains. Pfam search (Bateman
et al, 2004) was used to extract domain information of the
identified phosphoproteins. Of the 1346 proteins, we obtained
domain information for the 1118 proteins. In these proteins,
77.95% of phosphorylation sites (1548 sites) were located
outside of conserved domains (Table II). The tendency that the
majority of phosphorylation occurs outside of conserved

domains is consistent with the observations from the
phosphoproteome study of plasma membrane proteins
(Nuhse et al, 2004). Interestingly, however, nearly half
(48.5%) of pYs were found to be located on conserved
domains (Table II). These data indicate that tyrosine phos-
phorylation may have more impact on domain-associated
function compared to serine and threonine phosphorylation.
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Figure 1 Gene ontology analysis of the serine-, threonine-, or tyrosine-phosphorylated proteins. (A) Cellular localization, (B) molecular function, and (C) biological
process.
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Conservation of tyrosine phosphorylation sites
in plant homologs

Conservation of the tyrosine phosphorylation sites between
homologous proteins in Arabidopsis, rice (Oryza sativa), and
poplar (Populus trichocarpa) was investigated to get an
overview of tyrosine phosphorylation events in other plant
species. Of the 95 tyrosine-phosphorylated proteins (109
tyrosine phosphorylation sites), 84 proteins (97 sites) were
validated to possess homologs in Arabidopsis (paralogs),
while 89 (103 sites) and 92 (106 sites) proteins had
corresponding homologs (orthologs) in rice and poplar,
respectively (Supplementary Table II). Multiple sequence
alignments of the homologous proteins were created using
ClustalW (Thompson et al, 1994), and the conservation of the
phosphorylatable tyrosine residues was verified manually
(Figure 2). In total, 72 sites are conserved within Arabidopsis
paralogs, while 72 and 79 sites are conserved in rice and poplar
orthologs, respectively. Most of these sites (61 sites) are
conserved in all three plant species, indicating that the tyrosine
phosphorylation sites are nearly equally conserved in paralogs
and orthologs. This observation is in clear contrast to the case
of serine phosphorylation sites, which are less conserved in
paralogs compared to orthologs (Nuhse et al, 2004).

Distribution of the phosphorylation sites

We found that most (76.3%) of the pY-containing phospho-
peptides are multiply phosphorylated, while the majority
(80.9%) of phosphopeptides are singly phosphorylated
(Table III). In other words, tyrosine phosphorylation seems
to occur near other phospho-residues (Supplementary Table
III). Since the amino acids surrounding the phosphorylation
sites often contribute substantially to recognition by protein
kinases, the phosphorylation status of neighboring residues is
an essential factor in determining whether the phosphoryla-
tion site is targeted by a particular protein kinase. It would be
very interesting to investigate whether and how the phosphor-
ylation state of the neighboring residues affects tyrosine
phosphorylation events in Arabidopsis.

Tyrosine phosphorylation motifs

An obvious question arising from our finding is, which kinases
carry out tyrosine phosphorylation in plants? To address this

question, we attempted to extract significant patterns sur-
rounding the pY residues from our data set, assuming that
conserved phosphorylation sites within functionally related
proteins tend to be well targeted by structurally similar protein
kinases. We have extracted 20 pY motifs through the substrate-
driven approach (Schwartz and Gygi, 2005) (Supplementary
information). Most of the identified pY motifs are novel and
distinct from the human pS, and pT and pY motifs in the
human protein reference database (Amanchy et al, 2007).
These results indicate that tyrosine phosphorylation in plants
is carried out by a novel class(es) of plant kinases. One
candidate might be dual-specific serine/threonine/tyrosine
protein kinases (Rudrabhatla et al, 2006). Other possible
candidates would be tyrosine-specific protein kinase-like
kinases (TKLs), which are especially abundant in plants: 776
in Arabidopsis and nearly 1000 in rice, compared to 55 in
humans (Miranda-Saavedra and Barton, 2007). Tyrosine
phosphorylation by human TKLs has not been reported.
Functions of plant TKLs remain also unknown, but the large
number of TKLs in plants may suggest that they carry out
important and diverse plant-specific functions. In this sense, it
is of particular interest to investigate if any of TKL possesses
tyrosine phosphorylation activity.

Materials and methods

Plant material

Arabidopsis cell suspension line (ecotype Landsberg erecta) (Maor
et al, 2007) was grown in Murashige and Skoog medium (pH 5.7)
containing 3% sucrose, 0.59 g/l MES, 100 mg/l myo-inositol, 10 mg/l
thiamine-HCl, 1 mg/l pyridoxine-HCl, 1 mg/l nicotinic acid, 0.5 mg/l
1-naphthaleneacetic acid, and 0.05 mg/l 6-benzylaminopurine under a
16-h light/8-h dark cycle at 221C. Seven-day-old Arabidopsis suspen-
sion cultures were harvested by vacuum filtration, frozen immediately
in liquid nitrogen, and kept at �801C until the analysis.

Digestion of Arabidopsis cell cytoplasmic fraction

Arabidopsis cells (0.2 g, wet) were frozen in liquid nitrogen and then
disrupted with a Multi-beads shocker (MB400U; Yasui Kikai). The
disrupted cells were suspended in 0.1 M Tris–HCl (pH 8.0), containing

Table II Location of phosphorylation sites on characterized protein domains

Number of proteins
possessing Pfam domain

Number of phosphorylation sites

Pfam domaina Total (%)

ON (%) OUTb (%)

pS 1014 317 (19.1) 1340 (80.9) 1657 (100)
pT 195 74 (32.2) 156 (67.8) 230 (100)
pY 87 49 (48.5) 52 (51.5) 101 (100)
All 1118 440 (22.1) 1548 (77.9) 1988 (100)

aWhether the phosphorylation sites are located on the conserved domains
annotated in the Pfam database was analyzed.
bA single phosphorylation site was counted only once, regardless of how many
domains are found in a single phosphoprotein.
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Figure 2 Venn diagram showing the number of conserved tyrosine
phosphorylation sites in homologs. Blue, yellow, and red circles indicate the
conserved sites in Arabidopsis paralogs, rice orthologs, and poplar orthologs,
respectively.
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protein phosphatase inhibitor cocktails 1 and 2 (Sigma) and protease
inhibitors (Sigma). The homogenate was centrifuged at 1500 g for
10 min and the supernatant was reduced with dithiothreitol, alkylated
with iodoacetamide, and digested with Lys-C, followed by dilution and
trypsin digestion as described (Saito et al, 2006). These digested
samples were desalted using StageTips with C18 Empore disk
membranes (3 M) (Rappsilber et al, 2003). The peptide concentration
of the eluates was adjusted to 1.0 mg/ml with 0.1% TFA and 80%
acetonitrile.

Enrichment of phosphopeptides

HAMMOC using titania and zirconia was performed as described
previously (Sugiyama et al, 2007) with some modifications. Custom-
made MOC tips were prepared using C8-StageTips and metal oxide
bulk beads (0.5 mg beads per 10ml pipette tip), as described for
SCX(beads)-C18 tips (Ishihama et al, 2006). Prior to loading samples,
the MOC tips were equilibrated with 0.1% TFA, 80% acetonitrile,
containing a hydroxy acid as a selectivity enhancer (solution A). As an
enhancer, lactic acid was used at a concentration of 300 mg/ml for
titania MOC tips and b-hydroxypropanoic acid at 100 mg/ml for
zirconia MOC tips. The digested sample from 100mg of Arabidopsis
total proteins was diluted with 100 ml of solution and loaded onto the
MOC tips. After successive washing with solution A and solution B
(0.1% TFA and 80% acetonitrile), 0.5% ammonium hydroxide or
1.0% disodium hydrogen phosphate was used for elution. The eluted
fraction was acidified with TFA, desalted using C18-StageTips as
described above, and concentrated in a Tony CC-105 vacuum
evaporator (Tokyo, Japan), followed by the addition of solution A
for subsequent nanoLC-MS/MS analysis.

Fe-IMAC was conducted using Phos-Select (Sigma) as described
previously (Kokubu et al, 2005; Ishihama et al, 2007), except for the
use of C8-StageTips instead of C18-StageTips for packing Phos-Select
beads. Briefly, after loading the sample solutions, the tips were rinsed
with 0.5 ml of 50% ACN in 0.3% TFA. Then, 0.5% ammonium
hydroxide or 1.0% disodium hydrogen phosphate was used for
elution. The eluted fraction was acidified with TFA and desalted using
C18-StageTips using HAMMOC methods. The eluted phosphopeptide
fraction was concentrated in the vacuum evaporator and resuspended
in solution A for nanoLC-MS/MS analysis.

NanoLC-MS system

A Finnigan LTQ-Orbitrap (Thermo Fisher Scientific, Bremen, Ger-
many) coupled with a Dionex Ultimate3000 pump (Germering,
Germany) and an HTC-PAL autosampler (CTC Analytics AG, Zwingen,
Switzerland) was used for nanoLC-MS/MS analyses throughout this
study. ReproSil C18 materials (3mm; Dr Maisch, Ammerbuch,
Germany) were packed into a self-pulled needle (150 mm
length� 100 mm i.d., 6mm opening) to prepare an analytical column
needle with ‘stone-arch’ frit (Ishihama et al, 2002). An x–y–z
nanospray interface (Nikkyo Technos, Tokyo, Japan) was used to
hold the column needle and to set the appropriate spray position. A
spray voltage of 2400 Vwas applied. The injection volume was 5ml and
the flow rate was 500 nl/min. The mobile phases consisted of (A) 0.5%
acetic acid and (B) 0.5% acetic acid and 80% acetonitrile. A three-step
linear gradient of 5–10% B in 5 min, 10–40% B in 60 min, 40–100% B in
5 min and 100% B for 10 min was employed throughout this study. The
MS scan range was m/z 300–1400, and the top 10 precursor ions were
selected for subsequent MS/MS scans. A lock mass function was used

for the LTQ-Orbitrap to obtain constant mass accuracy during gradient
analysis (Olsen et al, 2005).

Database searching

Mass Navigator v1.2 (Mitsui Knowledge Industry, Tokyo, Japan)
was used to create peak lists on the basis of the recorded fragmentation
spectra. Peptides and proteins were identified by means of automated
database search using Mascot v2.1 (Matrix Science, London) against
TAIR7_pep_20070425 (ftp://ftp.arabidopsis.org/home/tair/Sequences/
blast_datasets/TAIR7_blastsets/) with a precursor mass tolerance of
3 p.p.m., a fragment ion mass tolerance of 0.8Da and strict trypsin
specificity (Olsen et al, 2004), allowing for up to two missed cleavages.
Carbamidomethylation of cysteine was set as a fixed modification, and
oxidation of methionines and phosphorylation of serine, threonine, and
tyrosine were allowed as variable modifications. Peptides were con-
sidered identified if the Mascot score was over the 95% confidence limit
based on the ‘identity’ score of each peptide and at least three successive
y- or b-ions with a further two and more y-, b-, and/or precursor-origin
neutral loss ions were observed, based on the error-tolerant peptide
sequence tag concept (Mann and Wilm, 1994). A randomized decoy
database created by a Mascot Perl program estimated a 2.1% false-
positive rate for identified peptides within these criteria. Note that most
sulfated peptides can be discriminated from phosphopeptides because of
the ultrahigh accuracy of the Orbitrap instrument that we used.

Phosphorylated sites were unambiguously determined when y- or
b-ions between which the phosphorylated residue exists were
observed in the peak lists of the fragment ions.

Bioinformatics

We used the KAGIANA tool (http://pmnedo.kazusa. or.jp/kagiana/
index.html) to extract cellular localization information of Arabidopsis
proteins predicted by the WoLF PSORT program (Horton et al, 2007).
For molecular function and biological process annotations extraction,
the TAIR gene ontology annotation search tool (Berardini et al, 2004)
was used.

For the homologs search, BlastP searches (Altschul et al, 1997) were
performed against the protein databases, TAIR7_pep_2007425,
rap1_all_orf_amino, and proteins.Poptr1_1.JamboreeModels for Ara-
bidopsis, rice, and poplar, respectively (Ohyanagi et al, 2006; Tuskan
et al, 2006). The E-value cutoff of 10�3 was used for the initial search
and if there were no protein hits, the cutoff value was lowered stepwise
to 10�2 and 10�1. In some cases, E-value cutoff of 10�6 was used for
AT1G70520.1, E-value cutoff of 10�5 was used for AT3G05140.1, and E-
value cutoff of 10�4 was used for AT2G30940.1. For multiple sequence
alignment, ClustalW (Thompson et al, 1994) was performed with
default parameter settings. The aligned sequences were further
manually analyzed using the MEGA4 program (Tamura et al, 2007).

Pfam domain information was extracted from the database,
TAIR7_all.domains (ftp://ftp.arabidopsis.org/home/tair/Proteins/
Domains/).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb) and at the RIKEN website
(OmicBrowse, http://omicspace.riken.jp/gps) (Toyoda et al, 2007)
connected to the Keio Univ PepBase (http://pepbase.iab.keio.ac.jp).

Table III Comparison of singly and multiply phosphorylated peptides

All pS pT pY

Single Multi Single Multi Single Multi Single Multi

1888 (80.9%) 445 (19.1%) 1712 (80.3%) 419 (19.7%) 153 (61.0%) 98 (39.0%) 23 (23.7%) 74 (76.3%)

Whether pS-, pT-, or pY-containing phosphopeptides are singly or multiply phosphorylated was analyzed.
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