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Neuronal developmental disorder is a class of diseases in which there is impairment of the central nervous system and brain
function. )e brain in its developmental phase undergoes tremendous changes depending upon the stage and environmental
factors. Neurodevelopmental disorders include abnormalities associated with cognitive, speech, reading, writing, linguistic,
communication, and growth disorders with lifetime effects. Computational methods provide great potential for betterment of
research and insight into the molecular mechanism of diseases. In this study, we have used four samples of microarray
neuronal developmental data: control, RV (resveratrol), NGF (nerve growth factor), and RV + NGF. By using computational
methods, we have identified genes that are expressed in the early stage of neuronal development and also involved in neuronal
diseases. We have used MeV application to cluster the raw data using distance metric Pearson correlation coefficient. Finally,
60 genes were selected on the basis of coexpression analysis. Further pathway analysis was done using the Metascape tool, and
the biological process was studied using gene ontology database. A total of 13 genes AKT1, BAD, BAX, BCL2, BDNF, CASP3,
CASP8, CASP9, MYC, PIK3CD, MAPK1, MAPK10, and CYCS were identified that are common in all clusters. )ese genes
are involved in neuronal developmental disorders and cancers like colorectal cancer, apoptosis, tuberculosis, amyotrophic
lateral sclerosis (ALS), neuron death, and prostate cancer pathway. A protein-protein interaction study was done to identify
proteins that belong to the same pathway. )ese genes can be used to design potential inhibitors against neurological
disorders at the early stage of neuronal development. )e microarray samples discussed in this publication are part of the data
deposited in NCBI’s Gene Expression Omnibus (Yadav et al., 2018) and are accessible through GEO Series (accession
number GSE121261).

1. Introduction

1.1. Neuronal Development Disorder. Neurogenesis is a
process of generating new and functional neurons from
neuronal precursors known as NSC (neuronal stem cells)
[1, 2]. Functional neurons are generated at the embryonic
stage at different stages of development throughout life
[3, 4]. With rapid advancement in techniques and curiosity
to understand neuronal diseases at the development stage,
researchers have explored a wide area of neuronal devel-
opment diseases and their causes [5–8]. Neuronal stem cells
have two major features that are regeneration capacity, that
is, ability of self-renewal by process of cell division, and
differentiation capacity, that is, process of generating new

and specialized cell types [9]. Developed neurons do not
carry dendrites and axons, but they play an important role to
receive and send signals to other neurons [10]. Significant
development has been made to identify genes that are in-
volved in neuronal diseases at the developmental stage [11].
It is important to study different stages of nervous system
development and to identify abnormalities that can arise
from improper development of brain at its early stage [12].
Significant contribution has been made by scientists to
identify neuronal disorders that occur at the early stage of
development [13]. Neuronal disorders include abnormalities
associated with intellectual disability, attention deficit hy-
peractivity disorder (ADHD), and cognitive skills disorders,
like dyslexia and dysgraphia, and language development
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disorders like expression disorder [14–18]. Scientific evi-
dence shows that neurological disorders can be identified at
the early stage by the first week or month of a lifecycle
[19–21]. It is important to identify which genes are crucial
and result in neurological disorders.

We have used high-throughput microarray experiment
to identify genes that are involved in the early stage of
neurodevelopment. Our aim was to identify genes that were
expressed when stem cells were exposed to MCP (mono-
crotophos), a neurotoxicant, and to evaluate the effective
role of resveratrol (RV) and nerve growth factor (NGF) as
the neuroprotectant.

1.2. Resveratrol Clinical Perspectives. Resveratrol is a natural
phenol and phytoalexin produced naturally by several plants
in response to injury [22]. )ere is exponential evidence
since 1939 in the literature that resveratrol is a promising
natural compound for prevention and treatment of a wide
range of human diseases [23]. Resveratrol is also reported to
be effective against neuronal cell dysfunction and cell death,
Huntington’s disease and Alzheimer’s disease [24–27].
Molecular studies show that resveratrol is associated with an
induction of genes for oxidative phosphorylation and mi-
tochondrial biogenesis [28]. Effect of resveratrol is known to
extend lifespan, and it impacts mitochondrial function and
metabolic homeostasis [29]. In the current work, we have
mapped effectiveness of resveratrol against injured neuro-
development samples. In this study, four samples were
prepared (control, resveratrol, NGF, and RV + NGF).
Datasets of prepared samples were taken to investigate the
neuroprotective role of resveratrol against exposure of
monocrotophos. In silico expression analysis of different
datasets is done to identify genes that are coexpressed.

1.3. Microarray Data Analysis. Microarrays provide a rich
source of data on the molecular mechanism of cell function.
Each microarray reports expression of thousands of mRNAs
[30]. Virtually, almost every human disease is being studied
using microarrays experiment, with the aim of finding the
novel genes involved in diseases and disease markers and to
identify drug targets [31]. Bioinformatics analysis plays an
important part of processing the information, embedded in
large-scale expression profiling studies, and for laying the bi-
ological interpretation of high throughput microarray data
[32]. A basic yet challenging task in the analysis of microarray
gene expression data is the identification of changes in gene
expression that are associated with particular biological con-
ditions [33, 34]. Careful statistical design and analysis are es-
sential to identify genes involved in each biological condition.

A standard workflow is required to utilize computational
tools at various steps of microarray analysis. )is paper also
describes use of different bioinformatics tools for quality
control, normalization, coexpression, annotation, and
pathway and protein-protein interaction analysis.

1.4. Clustering and Coexpression Analysis. Clustering is a
method to identify genes that are coexpressed in each bi-
ological condition [35]. Clustering methods uses a distance

measure (e.g., Euclidean metric) to compare expression
values of pairs of genes for each experiment [36]. When the
distance between a pair of genes is small, then the two genes
might be clustered. Clusters are analyzed to identify genes
that are coexpressed and coregulated.

1.5. Biological Annotation and Interpretation. After exten-
sive analysis of microarray data, one needs to annotate
Affymetrix IDs for its significance. Annotation reveals the
biological significance of genes like its molecular pathway,
diseases involved, gene ontology, and so on [37]. Careful
exploration is required to identify genes that are expressed in
each condition of microarray experiment. Pathway and
process enrichment is a crucial part of annotation, as it leads
to the identification of set of genes that are involved in the
same pathways [38]. Pathways analysis also highlights the set
of proteins that interact with each other; this information is
used to categorize protein interaction partners and to study
protein-protein interaction network [39].

2. Materials and Methods

2.1. Microarray Data. )e MSCs (mesenchymal stem cells)
were used to study effect of monocrotophos (MCP) and
repairing capability of resveratrol and nerve growth factor.
MSCs were exposed to RV, NGF, and RV + NGF, re-
spectively. In total, four samples were generated to identify
genes that were coexpressed at the neuronal development
stage. Affymetrix gene chip platform (Prime view.CDF) was
used to identify gene expression using four samples as
described in Table 1.

2.2. Microarray Data Analysis and Annotation.
Computational software and tools were used to identify genes
that are coexpressed. Figure 1 shows the workflow used for
microarray data analysis and annotation. Raw files were used,
i.e., chip electronic file (CEL) and chip description file (CDF)
for quality control analysis. R and Bioconductor, Affy
package, was used for data normalization and data trans-
formation. Gene expression matrix was generated form Affy
package, using RMA (robust multiarray average).

Significant analysis of microarray (SAM) [40] and clus-
tering were done using MeV application [41]. )e clustering
method was used to cluster significant genes obtained from
the SAMmethod. For clustering, the distance metric Pearson
correlation coefficient was used, using parameter of k–means
algorithm, number of cluster 10, and number of iteration 50.
Coexpressed genes were identified by analyzing each ten
clusters.

2.3. Pathway Enrichment and Protein-Protein Interaction
Analysis. Coexpressed genes identified from clustering
analysis were further annotated for biological intervention
and pathway analysis. )e list of coexpressed genes was
searched against pathway and GO database using the
Metascape tool (http://metascape.org) [42]. Each gene was
studied for its pathway and process enrichment score for
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statistical significance of genes in each biological process.
Genes were also clustered according to their pathways.
Relationship between genes was also identified by using the
network map generated from the Metascape tool and vi-
sualized in the Cytoscape tool [43].

Protein-protein interaction analysis is carried out by
different protein interaction databases like BioGrid,
InWeb_IM, and OmniPath by using the Metascape tool.
Molecular complex detection (MCODE) algorithm was used
by the Metascape tool to identify densely connected network
of protein-protein interaction [44].

3. Results

3.1. Quality Control Analysis. Quality control (QC) is an
important aspect of examining microarray data, before any
statistical analysis to be done. QC analysis was done using
Affy package of R and Bioconductor [45]. Figure 2 shows the
chip image of four samples: (a) control sample, (b) NGF
sample, (c) RV sample, and (d) RV +NGF sample; it signifies
there is no error in chips of all four samples, and they can be
used for data exploration and analysis.

3.2. Data Normalization and Transformation. Finding bi-
ologically relevant answer from microarray experiment is a
primary need of any microarray experiment. Variations in
gene expression should be biologically not from any source
of errors like biasness in dyes, lasers, samples, and chip
spotting during microarray experiment [46]. To analyze
microarray data, one needs to remove these biasness and
errors in microarray experiment. Normalization is a method
to remove these systematic errors that affect gene expression
measures [47]. After QC analysis, normalization was done

using Affy package of R and Bioconductor.We have used the
RMA method of normalization. Figure 3 shows the box plot
of four samples after data normalization. Box plot shows
statistical values like mean ormedian and variations between
samples [48]. Figure 3 shows that means of all four samples
are at position. Data were transformed to logarithm base 2
value of the expression ratio, and expression matrix was
written, for further statistical analysis and comparisons.

3.3. Clustering and Coexpression Analysis. Significant anal-
ysis of microarray (SAM) was done to identify the number of
genes that were statistically significant. Out of 49,495 genes,
49,022 genes were found to be insignificant and 473 genes
were statistically significant. K-means clustering was done
on significant genes with parameter of k � 10. Ten clusters
were generated and studied for coexpression of genes.
Figure 4 shows cluster 1 (only one cluster is shown but all ten
clusters were studied for coexpression analysis) which shows
coexpression of Tp53 and B-cell cll/lymphoma2 gene. In
addition, Caspase-8, Caspase-10, and dopamine receptor are
also coregulated.

Analysis of all ten clusters results in identification of
coexpressed genes. Rigorous analysis of clustering shows
that 60 genes were coexpressed (AKT1, BAD, BAX, BCL2,
BDNF, CASP3, CASP8, CASP9, MYC, PIK3CD, MAPK1,
MAPK10, and CYCS). )ese genes were used for gene
ontology, biological function, and pathway analysis. De-
scriptions including function of these 60 genes were shown
in pathway and process enrichment analysis.

3.4. Pathway and Process Enrichment Analysis.
Coexpressed genes that were clustered in the clustering step
were used for biological annotation and interpretation. )e
Metascape tool was used to study pathway and process of
these 60 genes. Protein-protein interaction network was
constructed to identify more proteins that have similar
function and belong to same pathway. 60 genes were further
clustered into 20 groups on the basis of their enrichment
score (enrichment score is the score between observed count
and expected count by chance) [49].

In each cluster, one term represents the cluster that is
most statistically significant [42]. Figure 5 shows the heat map
of enriched terms colored by the p value. Pathway enrichment
analysis shows that most of the genes were involved in co-
lorectal cancer, neurotrophin signaling pathway, neuron
death, and thyroid hormone signaling pathway. Other clusters
indicate genes that were involved in cellular response to
organonitrogen compounds, response to nicotine, and head
development. Genes that belong to these clusters were further
studied in detail for function and pathway analysis.

Top 5 clusters are shown in Table 2; count is the number
of genes in each cluster; percentage is the total gene ontology
provided in list of genes; Log10(P) is the log base 10 value;
and Log10(q) is the log base 10 adjusted p value [42].

Pathway enrichment shows that neuronal development
genes are involved in colorectal cancer, neuron death, and
other diseases like leukemia and sclerosis [50]. Genes AKT1,
BAD, BAX, BCL2, CASP3, CASP8, CASP9, MYC, PIK3CD,

Table 1: Four samples that were used for microarray gene ex-
pression analysis.

S.no Samples Description Raw files
1 Control Control sample Control.CEL
2 RV MSCs exposed to RV RV.CEL
3 NGF MSCs exposed to NGF NGF.CEL

4 RV + NGF MSCs exposed to
combined RV+NGF RV + NGF.CEL

Raw data

Quality control 
analysis

Normalization 
and data 

transformation

Significant 
analysis of 
microarray

Clustering

Co-expression 
analysis Gene ontology

Pathway and 
process 

enrichment 
analysis

Protein-protein 
interaction 

analysis

Figure 1: Workflow used for microarray data analysis and
annotation.
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MAPK1, MAPK10, and CYCS are commonly expressed in
the cluster of colorectal cancer, neuronal signaling pathway,
neuronal death, amytrophic lateral aclerosis, and tubercu-
losis [51]. Further proteins are identified that show in-
teraction with these proteins on the basis of protein-protein
interaction study.

3.5. Protein-Protein Interaction Enrichment Analysis.
Protein-protein interaction (PPI) enrichment was done
among the list of genes that were clustered in pathway and
process enrichment analysis. )e Metascape tool predicts
PPI network by comparing it with protein interaction
databases (BioGrid, InWeb_IM, and OmniPath) [42]. PPI
is made between proteins having physical interactions,
and PPI network is further subclustered on the basis of
the p value score. Figure 6 shows the PPI map between the
set of input genes. )ree best scoring genes by the p value

are identified; these proteins define the functionality
of PPI network. Best scoring genes belong to apoptosis
(hsa04210) [52], colorectal cancer (hsa05210) [53], and
hepatitis B (hsa05161) [54]. PPI network represents in-
volvement of neuronal development genes in diseases like
cancer.

)e molecular complex detection (MCODE) method
was applied to identify closely related protein from PPI
network. )e MCODE algorithm subclustered PPI network
into 3 subclusters. Figure 7 shows MCODE components
(red, blue, and green as MCODE 1, 2, and 3). )ree dense
PPI were made and detail of each cluster is given in Table 3.
MCODE prediction validates the results of clustering as
previously shown in Figure 4. )e same set of proteins was
identified by MCODE algorithm as predicted by clustering
using the MeV tool. )ese proteins have the same GO and
pathway.
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Figure 2: Affymetrix chip image: (a) control sample, (b) NGF sample, (c) RV sample, and (d) RV + NGF sample.
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Cluster analysis of MCODE components is done, and
details of proteins involved in each cluster and their corre-
sponding pathways are shown in Table 3. Cluster 1 includes
proteins CASP3, CASP9, BAX, TP53, BAD, GSK3B, POU5F1,
MAPK14, CREB1, SOX2, andKLF4. Gene ontology data show

that these proteins are associated with amyotrophic lateral
sclerosis (hsa05014) [55], colorectal cancer (hsa05210) [56],
and positive regulation of neuron death (GO: 1901216) [57].

Cluster 2 genes are mentioned in Table 3. GO analysis
shows that these proteins belong to thyroid hormone
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signaling pathway (hsa04919) [55], diseases of signal
transduction (R-HSA-5663202) [56], and pathways in
cancer (hsa05200) [57]. Cluster 3 proteins are involved in
pathways of toxoplasmosis (hsa05145) [55], tuberculosis
(hsa05152) [56], and fluid shear stress and atherosclerosis
(hsa05418) [55].

MCODE cluster and cluster of MeV software show that
some genes were commonly expressed and were coregu-
lated. AKT1, BAD, BAX, BCL2, BDNF, CASP3, CASP8,
CASP9, MYC, PIK3CD, MAPK1, MAPK10, and CYCS
genes are coregulated. PPI analysis identifies other proteins
that have interaction with abovementioned proteins. )ese
proteins are important in neuronal differentiation, and re-
generation proteins like ACTB, GSK3B, CREB1, and

CTNNB1 have physical interaction with coexpressed pro-
teins [58]. Table 3 also gives the information about proteins
and association with diseases. Analysis of disease associated
with proteins highlights that some proteins belong to dif-
ferent classes of cancers. 12 proteins (CASP3, CASP9, BAX,
TP53, BAD,GSK3B, MTOR, BCL2L11, SIRT1, CASP8,
AKT1, and C TNNB1 proteins) are involved in diverse types
of cancers like lung cancer, breast cancer, ovarian cancer,
colorectal cancer, and leukemia [59].

While other proteins (GSK3B, POU5F1, MAPK14,
CREB1, SOX2, KLF4, PRKACA, MAPK10, STAT1, ACTB,
TUBB3, MYC, GAPDH, AKT1, and CTNNB1) are related
with process of aging, neuronal diseases, cardiovascular
diseases, abnormal brain development, mental retardation,
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20 25
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Figure 5: Heat map of enriched terms across input gene lists, colored by p values.

Table 2: Pathway and process enrichment analysis.

S.no GO Category Description Count % Log10 (P) Log10 (q)
1 Hsa05210 KEGG pathway Colorectal cancer 15 25 −25.7 −21.4
2 Hsa04722 KEGG pathway Neurotrophin signaling pathway 16 26.6 −22.8 −19.1
3 Go: 0070997 Go biological processes Neuron death 19 31.6 −20.3 −16.9
4 Hsa04919 KEGG pathway )yroid hormone signaling pathway 14 23.3 −19.2 −15.9

5 Hsa04550 KEGG pathway Signaling pathways regulating pluripotency
of stem cells 14 23.3 −18.0 −14.9

Figure 6: Protein-protein interaction network.
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schizophrenia, and mycobacterial and viral infections
[60–62].

Key findings of the pathway and disease association
study are identification of proteins involved in neurological
diseases and also expressed at the early stage of neuronal
development. SOX2 protein was expressed in optic nerve
hypoplasia and abnormalities of the central nervous system
[63], STAT1 was expressed during mycobacterial and viral
infections [64], TUBB3 was related with fibrosis and cortical
dysplasia and brain deformities, AKT1 was expressed in
breast cancer, colorectal cancer, ovarian cancer, and
schizophrenia [65] and CTNNB1 was expressed in colorectal
cancer, hepatocellular carcinoma, ovarian cancer, and
mental retardation [66]. )e study shows that proteins
(SOX2, STAT1, AKT1, and CTNNB1) can be used as
markers for neurological disease at the early stage of neu-
ronal development, and they can be potential drug targets
for therapeutic development.

4. Conclusion and Discussion

Microarray experiment is designed to investigate the genes
that are expressed at the early stage of neuronal develop-
ment. Neurodevelopmental microarray gene expression data
are used to identify genes that are expressed in neuronal
disorders, at its initial stage of progress [67]. Four samples
were prepared, viz, control, resveratrol, nerve growth factor,
and RV + NGF and hybridized to Affymetrix chip (Prime

view). Gene expression matrix was constructed, and com-
putational analysis was done. )e protocol is designed to
study biologically significant genes. Microarray data analysis
workflow includes quality control, data normalization,
clustering, pathways enrichment, and PPI study. Clustering
analysis identifies genes that are coexpressed. )ese sets of
coexpressed genes are used for pathway and process en-
richment analysis. Gene ontology and pathway study reveal
proteins that share common pathways and function. Further
protein-protein interaction network is constructed to
identify more number of proteins, which have physical
interaction with coexpressed proteins. PPI network is
subclustered to predict closely related proteins. Gene on-
tology information of these proteins is used to identify
function and disease associated with proteins. 12 proteins
CASP3, CASP9, BAX, TP53, BAD, GSK3B, MTOR,
BCL2L11, SIRT1, CASP8, AKT1, and CTNNB1 proteins are
predicted that are involved in various types of cancers like
lung cancer, breast cancer, ovarian cancer, colorectal cancer,
and leukemia [60, 61, 62]. Some proteins like SOX2, STAT1,
AKT1, and CTNNB1 proteins are associated with neuro-
logical disease like abnormal brain development, mental
retardation, schizophrenia, and mycobacterial and viral
infections [63–66]. )ese genes can be used as markers for
neurological disease, for detection of abnormalities at the
early stage of neuronal development [67]. Predicted pro-
teins can also act as potential drug targets for the drug
development process. Further work is required for wet lab
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Figure 7: MCODE protein-protein interaction network. Colors show the different components of MCODE (red color: MCODE 1, blue
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verification of predicted genes that are expressed in neuro-
logical disorders and express at the developmental stage.
More research is required in the field of neurodevelopmental
biology to identify neurological abnormalities at its budding
stage.)is paper also highlights the importance of microarray
experiment in understanding the neurological diseases and
methodology to study various outcomes of gene expression
data, like coexpression analysis, pathway and process iden-
tification, and protein-protein interaction network study.

Data Availability

)emicroarray data used to support the findings of this study
are included within the supplementary information file.
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Gene expression matrix microarray raw files (CEL and CDF
files) were used to make gene expression matrix using Affy
package and RMA (robust multiarray average) method. )is

matrix file was used for further microarray analysis like
clustering, pathway, and protein-protein interaction anal-
ysis. Pathway and protein-protein interaction result as
generated from the Metascape tool is given.)is file includes
information about clustered formed within genes and net-
work details with scores. Annotation and enrichment an-
notation file and pathway enrichment result as generated
from the Metascape tool is given. Annotation file includes
information about genes like gene symbol, gene description,
GO biological process, protein function, and so on. (Sup-
plementary Materials)
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