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Abstract

Successful navigation requires the ability to compute one’s location and heading from

incoming multisensory information. Previous work has shown that this multisensory input

comes in two forms: body-based idiothetic cues, from one’s own rotations and translations,

and visual allothetic cues, from the environment (usually visual landmarks). However,

exactly how these two streams of information are integrated is unclear, with some models

suggesting the body-based idiothetic and visual allothetic cues are combined, while others

suggest they compete. In this paper we investigated the integration of body-based idiothetic

and visual allothetic cues in the computation of heading using virtual reality. In our experi-

ment, participants performed a series of body turns of up to 360 degrees in the dark with

only a brief flash (300ms) of visual feedback en route. Because the environment was virtual,

we had full control over the visual feedback and were able to vary the offset between this

feedback and the true heading angle. By measuring the effect of the feedback offset on the

angle participants turned, we were able to determine the extent to which they incorporated

visual feedback as a function of the offset error. By further modeling this behavior we were

able to quantify the computations people used. While there were considerable individual dif-

ferences in performance on our task, with some participants mostly ignoring the visual feed-

back and others relying on it almost entirely, our modeling results suggest that almost all

participants used the same strategy in which idiothetic and allothetic cues are combined

when the mismatch between them is small, but compete when the mismatch is large. These

findings suggest that participants update their estimate of heading using a hybrid strategy

that mixes the combination and competition of cues.

Author summary

Successful navigation requires us to combine visual information about our environment

with body-based cues about our own rotations and translations. In this work we investi-

gated how these disparate sources of information work together to compute an estimate
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of heading. Using a novel virtual reality task we measured how humans integrate visual

and body-based cues when there is mismatch between them—that is, when the estimate of

heading from visual information is different from body-based cues. By building computa-

tional models of different strategies, we reveal that humans use a hybrid strategy for inte-

grating visual and body-based cues—combining them when the mismatch between them

is small and picking one or the other when the mismatch is large.

Introduction

The ability to navigate—to food, to water, to breeding grounds, or even to work—is essential

for survival in many species. To navigate effectively we need to continuously update our esti-

mates of location and heading in the environment from incoming multisensory information

[1–3]. This multisensory input comes in two forms: idiothetic cues, from one’s own rotations

and translations (including body-based cues from the vestibular, proprioceptive, and motor

efferent copy systems, as well as visual optic flow), and allothetic cues, from the environment

(usually visual landmarks). In this paper we investigate how information from body-based

idiothetic and visual allothetic cues are integrated for navigation.

Navigation using only idiothetic cues (for example navigating in the dark) is called Path

Integration. Path Integration is notoriously inaccurate involving both systematic and random

errors [4–6]. For example, systematic error include biases induced by execution and past expe-

riences such as history effects from past trials [7–10]. Random errors include noise in the

body-based idiothetic sensory cues as well as in the integration process itself. These random

errors accumulate with the square root of the distance and duration traveled in a manner simi-

lar to range effects in magnitude estimations; a consequence of the Weber–Fechner and Ste-

vens’ Power Law [10–14]. Despite these sources of errors in path integration, humans and

animals rely heavily on path integration because body-based idiothetic cues are constantly

present (unlike visual allothetic landmark cues that may be sparse [6, 15]). In addition, path

integration allows for flexible wayfinding by computing a route through new never experi-

enced paths, and adjust for unexpected changes along the way [4, 16, 17].

Navigation using visual allothetic cues (for example navigating a virtual world on a desktop

computer) using landmarks is called Map or Landmark Navigation [1, 18]. Pure landmark

navigation (i.e. without body-based idiothetic cues) can only be studied in virtual environ-

ments, where body-based idiothetic cues can be decoupled from visual allothetic cues. In these

studies, human participants show no differences in their navigational ability with or without

isolation from body-based idiothetic cues, emphasizing that landmark navigation is a separate,

and potentially independent computation from path integration [19].

Navigation using both body-based idiothetic and visual allothetic cues relies on both path

integration and landmark navigation, yet exactly how the two processes work together is a

matter of debate. In ‘cue combination’ (or ‘cue integration’) models, independent estimates

from path integration and landmark navigation are combined to create an average estimate of

location and heading. This averaging process is often assumed to be Bayesian, with each esti-

mate weighed according to its reliability [20, 21]. Conversely, in ‘cue competition’ models, esti-

mates from path integration and landmark navigation compete, with one estimate (often the

more reliable) overriding the other completely. Based on this view, Cheng and colleagues pro-

posed that path integration serves as a back-up navigational system that is used only when allo-

thetic information is unreliable [22].
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Empirical support exists for both cue combination and cue competition accounts. In a

study by Chen and colleagues [23], humans in a virtual-navigation task averaged estimates

from path integration and landmark navigation according to their reliability, consistent with a

Bayesian cue combination strategy. Conversely, in a similar experiment by Zhao and Warren

[24], participants primarily used visual allothetic information, often ignoring body-based idio-

thetic cues even when the mismatch was as large as 90˚, consistent with a cue competition

strategy. Similar discrepancies exist across the literature, with some studies supporting cue

combination (and even optimal Bayesian cue combination) [23, 25–28], and others more con-

sistent with cue competition [24, 29–34].

Further complicating these mixed findings across studies are the large individual differ-

ences in navigation ability between participants [2, 35–37]. These individual differences

encompass both high level processes, such as learning, knowledge, and decisions about routes

[38–40], as well as lower level processes, such as how individuals respond to Corriolis forces

and the perception of angular rotations due to differences in semi-circular canal radii [41, 42].

Such large individual differences also impact the integration of body-based idiothetic and

visual allothetic cues and may be one reason for the discrepancies in the literature [23, 24].

In this paper, we investigate how people combine body-based idiothetic and visual allo-

thetic cues in the special case of computing egocentric head direction. We focus on head direc-

tion because of its relative simplicity (compared to estimating both heading and location) and

because the head direction system is known to integrate both vestibular (idiothetic) and visual

(allothetic) cues [43]. In our task, participants performed full-body rotations to a goal with

only a brief flash of visual feedback that either matched or mismatched their expectations. By

building models of this task that capture the key features of cue combination and cue competi-

tion strategies, as well as the ‘pure’ strategies of path integration and landmark navigation, we

find evidence for a hybrid strategy in which the estimates of path integration and landmark

navigation are combined when the mismatch is small, but compete when the mismatch is

large. Model comparison suggests that almost all participants use this strategy, with the large

individual differences between participants being explained by quantitative differences in

model parameters not qualitative differences in strategy. We therefore suggest that this flexible,

hybrid strategy may underlie some of the mixed findings in the literature.

Methods

Ethics statement

All participants gave written informed consent to participate in the study, which was approved

by the Institutional Review Board at the University of Arizona.

Participants

33 undergraduate students (18 female, 15 male, ages 18–21) received course credit for partici-

pating in the experiment. Of the 33, 3 students (3 female) did not finish block 1 due to cyber-

sickness and were excluded from this study.

Stimuli

The task was created in Unity 2018.4.11f1 using the Landmarks 2.0 framework [44]. Partici-

pants wore an HTC Vive Pro with a wireless Adapter and held pair of HTC Vive controllers

(Fig 1A). The wireless headset, that was powered by a battery lasting about 2 hours, was

tracked using 4 HTC Base Station 2.0, which track with an average positioning error of 17mm

with 9 mm standard deviation [45]. Participants were placed in the center of a large
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rectangular (13m x 10m x 5m) naturalistic virtual room with several decorations (Fig 1B). This

was to ensure that visual feedback from different angles would be distinguishable by the geom-

etry of the room and the decorations. We controlled the saliency of the decorations for left and

right-handed rotations by placing identical objects in similar vertical positions (Fig 1C).

Preprocessing and exclusion criteria

The 30 participants included for data analysis all completed block 1 (Fig 1F). Due to tracking

failures in the headset caused by a low battery, data from 3 participants was lost for most of ses-

sion 2. Nevertheless we include data from all 30 participants in our analysis. Trials were

removed if participants rotated in the wrong direction or if they pressed in the incorrect but-

ton to register their response. We also removed trials in which participants responded before

they received feedback.

The rotation task

During the procedure, participants were first guided, with a haptic signal from hand held con-

trollers, through a rotation of −α degrees with visual feedback present (encoding phase). They

were then asked to turn back to their initial heading, i.e. to turn a ‘target angle’ +α, with visual

feedback either absent or limited (retrieval phase). In the No Feedback condition, participants

received no visual feedback during the retrieval phase. In the Feedback condition, participants

received only a brief flash of (possibly misleading) visual feedback at time tf. By quantifying the

extent to which the feedback changed the participants’ response, the Rotation Task allowed us

to measure how path integration is combining with visual feedback to compute heading.

More precisely, at the start of each trial, participants faced the door in a virtual reality room

(Fig 1B and 1C) and were cued to turn in the direction of the haptic signal provided by a

Fig 1. Task procedure. (A) Participants wear an HTC VIVE headset along with the handheld controllers to immerse

themselves in a virtual room (B, C). First person view of the virtual environment at the beginning of a trial. (C) Top

down view of the virtual environment. (D, E) Trial timeline for No Feedback (D) and Feedback (E) trials. At the start

of each trial they face the door of the room and turn through −α degrees with visual feedback present. Visual feedback

is then removed (gray squares) and they must turn back α degrees to face the door again. At the end of the turn

participants stop at heading angle θt and report their confidence B by adjusting the size of a red rectangle. The only

difference between the No Feedback and Feedback conditions is the presence of a brief flash of visual information part

way through the turn in the Feedback condition (E). Overall participants completed 300 trials of the Feedback

condition and 100 trials of the No Feedback condition over the course of the experiment (F).

https://doi.org/10.1371/journal.pcbi.1009222.g001
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controller held in each hand (Fig 1A). Haptic signals from the controller held in the left hand

cued leftward rotations (counterclockwise), while signal from the right controlled cued partici-

pants to rotate rightward (clockwise). Participants rotated until the vibration stopped at the

encoding angle, −α, which was unique for each trial (sampled from a uniform distribution,

UðaÞ). Participants were free to turn at their own pace and the experimenter provided no guid-

ance or feedback on their rotational velocity. During the encoding procedure, participants saw

the virtual room and were able to integrate both visual and vestibular information to compute

their heading.

During the retrieval phase, participants had to try to return to their original heading direc-

tion (i.e. facing the door) with no (No Feedback condition) or limited (Feedback condition)

visual feedback. At the beginning of the retrieval phase, participants viewed a blank screen

(grey background in Fig 1D). They then attempted to turn the return angle, +α, as best as they

could based on their memory of the rotation formed during encoding. Participants received

no haptic feedback during this retrieval process.

The key manipulation in this study was whether visual feedback was presented during the

retrieval turn or not and, when it was presented, the extent to which the visual feedback was

informative. In the No Feedback condition, there was no visual feedback and participants only

viewed the blank screen—that is they could only rely on path integration to execute the correct

turn. In the Feedback condition, participants saw a quick (300ms) visual glimpse of the room,

at time tf and angle f, which was either consistent or inconsistent their current bearing ytf
.

Consistent feedback occurred with probability ρ = 70%. In this case the feedback angle was

sampled from a Gaussian centered at the true heading angle and with a standard deviation of

30˚. Inconsistent feedback occurred with probability 1 − ρ = 30%. In this case the feedback was

sampled from a uniform distribution between −180˚ and +180˚. Written mathematically, the

feedback angle, f was sampled according to

f �
N ðf jytf

; s2
f Þ with probability r ¼ 0:7

Uðf Þ with probability 1 � r ¼ 0:3

8
<

:
ð1Þ

where N ðf jytf
; s2

f Þ is a Gaussian distribution over f with mean ytf
and standard deviation σf =

30˚.

This form for the feedback sets up a situation in which the feedback is informative enough

that participants should pay attention to it, but varied enough to probe the impact of mislead-

ing visual information across the entire angle space. To further encourage participants to use

the feedback, they were not told that the feedback could be misleading.

Upon completing the retrieval turn, participants indicated their response with a button

press on the handheld controllers (Fig 1D), thus logging their response angle, θt. Next, a red

triangle appeared with the tip centered above their head and the base 6 meters away. Partici-

pants then adjusted the angle B to indicate their confidence in their response angle using the

touch pad on the controllers. In particular, they were told to adjust B such that they were confi-

dent that the true angle α would fall within the red triangle (Fig 1D). Participants were told

they would received virtual points during this portion, with points scaled inversely by the size

of the B such that a small B would yield to higher points (risky) and large B would yield to lower

points (safe).

After completing their confidence rating, the trial ended and a new trial began immediately.

To ensure that participants did not receive feedback about the accuracy of their last response,

each trial always began with them facing the door. This lack of feedback at the end of the trial
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ensured that participants were unable to learn from one trial to the next how accurate their

rotations had been.

Overall the experiment lasted about 90 minutes. This included 10 practice trials (6 with

feedback, 4 without) and 400 experimental trials split across two blocks with a 2–10 minute

break between them (Fig 1E). Of the 200 trials in each block, the first and last 25 trials in each

block were No Feedback trials, while the remaining 150 were feedback trials. Thus each partici-

pant completed 100 trials in the No Feedback condition and 300 trials in the Feedback

condition.

Participants were allowed to take a break at any time during the task by sitting on a chair

provided by the experimenter. During these breaks participant continued to wear the VR

headset and the virtual environment stayed in the same egocentric orientation.

Models

We built four models of the Rotation Task that, based on their parameters, can capture several

different strategies for integrating visual allothetic and body-based idiothetic estimates of loca-

tion. Here we give an overview of the properties of these models, full mathematical details are

given in Section 1 of S1 File. To help the reader keep track of the many variables, a glossary is

given in Table 1. Note, the following models focus exclusively on the Retrieval portion of the

task. The target location from the Encoding portion of the task is modeled in Section 2 of S1

File.

Path Integration model. In the Path Integration model we assume that the visual feed-

back is either absent (as in the No Feedback condition) or ignored (as potentially in some

participants). In this case, the estimate of heading is based entirely on path integration of

body-based idiothetic cues. To make a response, i.e. to decide when to stop turning, we

assume that participants compare their heading angle estimate, computed by path integra-

tion, with their memory of the target angle. Thus, the Path Integration model can be thought

of as comprising two processes: a path integration process and a target comparison process

(Fig 2).

In the path integration process, we assume that participants integrate scaled and noisy idio-

thetic cues about their angular velocity, dt. These noisy velocity cues relate to their true angular

velocity, δt by

dt ¼ gddt þ nt ð2Þ

where γd denotes the gain on the velocity signal, which contributes to systematic under- or

over-estimation of angular velocity and νt is zero-mean Gaussian noise with variance that

increases in proportion to the magnitude of the angular velocity, |δt|, representing a kind of

Weber–Fechner law behavior [10].

We further assume that participants integrate this biased and noisy velocity information

over time to compute a probability distribution over their heading. For simplicity we assume

this distribution is Gaussian such that

pðytjd1:t� 1Þ ¼ N ðytjmt; s2
t Þ ð3Þ

where the mt is the mean of the Gaussian over heading direction and s2
t is the variance. Full

expressions for mt and s2
t are given in the Section 1 of S1 File. Fig 2 illustrates how this distribu-

tion evolves over time.

In the target comparison process, we assume that participants compare their estimate of

heading from the path integration process to their memory of the target angle. As with the

encoding of velocity, we assume that this memory encoding is a noisy and biased process such
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that the participant’s memory of the target angle is

A ¼ gAaþ bA þ nA ð4Þ

where γA and βA are the gain and bias on the memory that leads to systematic over- or under-

estimation of the target angle, and nA is zero mean Gaussian noise with variance s2
A.

To determine the response, we assume that participants stop moving when their current

heading estimate matches the remembered angle. That is, when

mt ¼ A ð5Þ

Substituting in the expressions for mt and A (from Section 1 of S1 File), we can then compute

Table 1. Glossary of key variables in the paper.

Observed or controlled by experimenter

t time step during rotation

θt true heading angle at time t
α true target angle

δ true velocity

f feedback angle

tf time of feedback

σf standard deviation of true feedback

ρ generative probability that the feedback is true on any trial (= 70%)

B confidence reported by subject

Observed, used, or computed by participant

Estimates of heading
mt estimated heading from Path Integration

st uncertainty in Path Integration estimate of heading

s0 subject’s initial uncertainty in heading angle

m̂t estimated heading from Kalman Filter

ŝ t uncertainty in Kalman Filter estimate of heading

~mcomb
t estimated heading angle from Cue Combination model

~mhy
t estimated heading angle from Hybrid model

Estimates of task/subject parameters
sA subject’s estimate of variability of the memory noise (i.e. their estimate of σA)

r subject’s estimate of the prior probability that the feedback is true

sf subject’s estimate of variability of true feedback (i.e. subject’s estimate of σf)
ptrue subject’s estimate that feedback on current trial is true (¼ pðtruejf ; d1:tf

Þ)

Parameters related to target angle
A subject’s remembered target angle

βA subject’s bias in remembered target angle

γA subject’s gain in remembered target angle

nA subject’s noise in remembered target angle

σA standard deviation of noise in subject’s remembered target angle

Parameters related to velocity
d subject’s estimate of velocity

γd gain in subject’s estimate of velocity

ν noise in subject’s estimate of velocity

σd standard deviation of noise in subject’s estimate of velocity

sd subject’s estimate of their own velocity noise

https://doi.org/10.1371/journal.pcbi.1009222.t001
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the distribution over the measured error; i.e., the difference between participants actual head-

ing and the target (θt − α). Assuming all noises are Gaussian implies that the distribution over

measured error is also Gaussian with a mean and variance given by

E yt � a½ � ¼
ðgA � gdÞaþ bA

gd
; V yt � a½ � ¼

s2
daþ s

2
A

g2
d

ð6Þ

Thus, the Path Integration model predicts that both the mean error and the variance in the

mean error will be linear in the target angle, α, a prediction that we can test in the No Feedback

condition. In addition, in the Feedback condition, the Path Integration model also predicts

that the response error in the Feedback condition will be independent of the visual feedback

(Fig 3A), a result that should not be surprising given that the Path Integration model ignores

visual feedback.

Kalman Filter model. Unlike the Path Integration model, which always ignores feedback,

the Kalman Filter model always incorporates the visual feedback into its estimate of heading

(Fig 4). Thus the Kalman Filter model captures one of the key features of the Landmark Navi-

gation strategy. However, it is important to note that the Kalman Filter model is slightly more

general than ‘pure’ Landmark Navigation. Indeed, for most parameter values, it is a cue combi-

nation model in that it combines the the visual feedback with the estimate from Path Integra-

tion. Only for some parameter settings (as we shall see below), does the Kalman Filter model

converge to a pure Landmark Navigation strategy in which it completely ignores prior idio-

thetic cues when visual feedback is presented.

The Kalman Filter model breaks down the retrieval phase of the task into four different

stages: initial path integration, before the visual feedback is presented; feedback incorporation,

when the feedback is presented; additional path integration, after the feedback is presented;

and target comparison, to determine when to stop.

Fig 2. Schematic of the Path Integration model. During path integration, participants keep track of a probability distribution over their heading,

which is centered at mean mt. To respond they compare this estimated heading to their remembered target location, A, halting their turn when mt = A.

The experimenter observers neither of these variables, instead we quantify the measured error as the difference between the true target angle, α, and the

true heading angle, θt.

https://doi.org/10.1371/journal.pcbi.1009222.g002
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Initial path integration, is identical to the Path Integration model (used in No Feedback tri-

als). The model integrates noisy angular velocity information over time to form an estimate of

the mean, mt and uncertainty, st, over the current heading angle θt.
When feedback (f) is presented, the Kalman Filter model incorporates this feedback with

the estimate from the initial path integration process in a Bayesian manner. Assuming all dis-

tributions are Gaussian, the Kalman Filter model computes the posterior distribution over

head direction as

pðytf
jf ; d1:tf � 1Þ ¼ N ðytf

jm̂tf
; ŝ2

tf
Þ ð7Þ

where ŝ2
tf

is the variance of the posterior (whose expression is given in the Section 1 of S1 File)

Fig 3. Model predictions for the Path Integration, Kalman Filter, Cue Combination, and Hybrid models. In (A-C) the red lines

correspond to the mean of the response error predicted by the model. In (D) the two lines correspond to the mean response when the model

assumes the feedback is true (red) and false (blue). The thickness of the red and blue lines in (D) corresponds to the probability that the

model samples from a distribution with this mean, i.e. ptrue for red and 1 − ptrue = pfalse for blue.

https://doi.org/10.1371/journal.pcbi.1009222.g003
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and m̂tf
is the mean of the posterior given by

m̂tf
¼ mtf

þ Ktf
ðf � mtf

Þ ð8Þ

where Ktf
2 ½0; 1� is the ‘Kalman gain,’ sometimes also called the learning rate [46, 47].

The Kalman gain is a critical variable in the Kalman Filter model because it captures the rel-

ative weighting of idiothetic (i.e. the estimate from Path Integration, mtf
) and allothetic (i.e.

the feedback, f) information in the estimate of heading. In general, the Kalman gain varies

from person to person and from trial to trial depending on how reliable people believe the

feedback to be relative to how reliable they believe their path integration estimate to be. When

the model believes that the Path Integration estimate is more reliable, the Kalman gain is closer

to 0 and idiothetic cues are more heavily weighted. When the model believes that the feedback

is more reliable, the Kalman gain is closer to 1 and the allothetic feedback is more heavily

weighted. In the extreme case that the model believes that the feedback is perfect, the Kalman

gain is 1 and the Kalman Filter model implements ‘pure’ landmark navigation, basing its esti-

mate of heading entirely on the visual feedback and ignoring the path integration estimate

completely.

After the feedback has been incorporated, the model continues path integration using noisy

velocity information until its estimate of heading matches the remembered target angle. Work-

ing through the algebra (see Section 1 of S1 File) reveals that the measured response distribu-

tion is Gaussian with a mean given by

E½yt � a� ¼
1

gd
ðgA � gdÞa � Ktf

ðf � gdytf
Þ þ b

� �

ð9Þ

Fig 4. Schematic of the Kalman Filter model. Similar to the Path Integration model, this models assumes that participants keep track of a probability

distribution over their heading that, before the feedback, is centered on mean mt. When the feedback, f, is presented, they combine this visual

information with their path integration estimate to compute a combined estimate of heading m̂t . They then stop turning and register their response

when m̂t ¼ A, their remembered target. As with the Path Integration model, none of these internal variables are observed by the experimenter, who

instead measures the error as the difference between the true target, α, and heading angle θt.

https://doi.org/10.1371/journal.pcbi.1009222.g004
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This implies that the error in the Kalman Filter model is linear in the feedback prediction

error f � gdytf
(Fig 3B).

Cue Combination model. Like the Kalman Filter model, the Cue Combination model

combines the feedback with the estimate of heading from path integration. Unlike the Kalman

Filter model, however, the Cue Combination model also takes into account the possibility that

the feedback will be misleading, in which case the influence of the feedback is reduced. In par-

ticular, the Cue Combination model computes a mixture distribution over heading angle with

one component of the mixture assuming that the feedback is false and the other that the feed-

back is true. These two components are weighed according to the computed probability that

the feedback is true, ptrue (Fig 5).

Mathematically, the Cue Combination model computes the probability distribution over

heading angle by marginalizing over the truth of the feedback

pðytf
jf ; d1:tf

Þ ¼ pðytf
jfalse; d1:tf

Þpfalse þ pðytf
jtrue; f ; d1:tf

Þptrue ð10Þ

where ptrue ¼ 1 � pfalse ¼ pðtruejf ; d1:tf
Þ is the probability that the feedback is true given the

noisy velocity cues seen so far. Consistent with intuition, ptrue decreases with the absolute

value of the prediction error at the time of feedback (f � mtf
) such that large prediction errors

are deemed unlikely to come from true feedback.

Eq 10 implies that, at the time of feedback, the Cue Combination model updates its estimate

of the mean heading by combining the estimates from Path Integration model, mtf
, with the

Fig 5. Schematic of the Cue Combination model. The Cue Combination model combines two estimates of heading, the path integration estimate, mt,

and the Kalman Filter estimate, m̂t , to compute a combined estimate mcomb
t . The response is made when this combined estimate matches the

remembered target A.

https://doi.org/10.1371/journal.pcbi.1009222.g005
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estimate from the Kalman Filter model, m̂tf
, as

~mcomb
tf

¼ mtf
pfalse þ m̂tf

ptrue ð11Þ

Assuming that a similar target comparison process determines the response (i.e. participants

stop turning when ~mcomb
t ¼ A), then this implies that the response distribution for the Cue

Combination model will be Gaussian with a mean error given by the mixture of the Path Inte-

gration and Kalman Filter responses:

E½yt � a� ¼
1

gd
ðgA � gdÞa � Ktf

ptrueðf � gdytf
Þ þ bA

� �

ð12Þ

Because ptrue depends on the prediction error, Eq 12 implies that the average error in the Cue

Combination has a non-linear dependence on the prediction error (Fig 3C).

Hybrid model. Instead of averaging over the possibility that the feedback is true or false,

in the Hybrid model the estimates from the Path Integration model and the Kalman Filter

model compete (Fig 6).

In particular, we assume that the Hybrid model makes the decision between Path Integra-

tion and Kalman Filter estimates according to the probability that the feedback is true (ptrue),
by sampling from the distribution over the veracity of the feedback. Thus with probability

ptrue, this model behaves exactly like the Kalman Filter model, setting its estimate of heading to

mhy
t ¼ ~mt, and with probability pfalse = 1 − ptrue this model behaves exactly like the Path Inte-

gration model, setting its estimate of heading to mhy
t ¼ mt . This implies that the distribution of

Fig 6. Schematic of the Hybrid model. The Hybrid model bases its estimate of heading, mhy
t , either on the path integration estimate or the Kalman

Filter estimate. Here we illustrate the case where the model chooses the Kalman Filter estimate. The response is made when the hybrid estimate matches

the remembered target angle.

https://doi.org/10.1371/journal.pcbi.1009222.g006

PLOS COMPUTATIONAL BIOLOGY Combination and competition between path integration and landmark navigation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009222 February 10, 2022 12 / 26

https://doi.org/10.1371/journal.pcbi.1009222.g006
https://doi.org/10.1371/journal.pcbi.1009222


errors is a mixture of the Kalman Filter and Path Integration models such that the average

response error is

Eðyt � aÞ ¼

1

gd
ðgA � gdÞa � Ktf

ðf � gdytf
Þ þ b

� �
with probability ptrue

1

gd
ðgA � gdÞaþ bAð Þ with probability 1 � ptrue

8
>>>><

>>>>:

ð13Þ

This competition process ensures that the relationship between response error and feedback

offset will be a mixture of the Path Integration and Kalman Filter responses (Fig 3D). When

the model decides to ignore the feedback, the response will match the Path Integration model.

This occurs most often for large offset angles, when ptrue is closer to 0. When the model decides

to incorporate the feedback, the response will lie on the red line. This occurs most often for

small offset angles, when ptrue is closer to 1.

Summary of models. The behavior of the models on the feedback trials is summarized in

Fig 3. In addition, a summary of the parameters in each model is shown in Table 2.

The Path Integration model ignores all incoming feedback, basing its estimate of location

entirely on the estimate from the path integration of idiothetic cues. Thus, in the feedback con-

dition, the response error is independent of the feedback offset (Fig 3A). The Path Integration

model technically has five free parameters. However, because these parameters all appear as

ratios with γd, only the four ratios (σd/γd etc . . .) can be extracted from the fitting procedure

(Table 2).

The Kalman Filter model always integrates visual information regardless of the offset angle.

Thus, the response error grows linearly with the feedback offset (Fig 3B). The Kalman Filter

model has eight free parameters, three of which appear as ratios such that only seven free

parameters can be extracted from the data (Table 2).

The Cue Combination model combines the estimates from the Path Integration model with

the Kalman Filter model according to the probability that it believes the feedback is true. This

Table 2. Parameters, their ranges and values, in the different models. The presence of a parameter in a model is indicated by either a check mark (when it can be fit on

its own), a ratio (when it can be fit as a ratio with another parameter), or = 1 when it takes the value 1.

Parameter and range Path Integration Kalman Filter Cue Combination Hybrid

Velocity gain, γd
0� γd� 4

= 1 ✓ ✓ ✓

Variance of velocity noise, s2
d

0� σd� 20

σd/γd ✓ ✓ ✓

Target gain, γA
0� γA� 2

γA/γd ✓ ✓ ✓

Target bias, βA
−180� βA� +180

βA/γd ✓ ✓ ✓

Variance of target noise, s2
A

0� σA� 20

σA/γd ✓ ✓ ✓

Participant’s initial uncertainty, s2
0

0� s0� 20

s0/sf ✓ ✓

Participant’s velocity noise variance, s2
d

0� sd� 20

sd/sf ✓ ✓

Participant’s feedback noise variance, s2
f

0� sf� 50

= 1 ✓ ✓

Participant’s prior on true feedback, r
0� r� 1

✓ ✓

https://doi.org/10.1371/journal.pcbi.1009222.t002
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leads to a non-linear relationship between feedback offset and response error (Fig 3C). This

model has nine free parameters, all of which can be extracted from the fitting procedure

(Table 2).

The Hybrid model also uses the estimate from Path Integration model and the Kalman Fil-

ter model. However, instead of combining them, it chooses one or the other depending on the

probability with which it believes the feedback is true. This process leads to bimodal responses

from large feedback offsets (Fig 3D). This model also has nine free parameters, all of which can

be extracted from the fitting procedure (Table 2).

Model fitting and comparison

Each model provides a closed form function for the likelihood that the a particular angular

error is observed on each trial, τ, given the target, the feedback (in the Feedback condition),

and the true heading angle at feedback. That is, we can formally write the likelihood of observ-

ing errorτ on trial τ as

pðerrortjXÞ ¼
pðerrortjat;XÞ No Feedback condition

pðerrortjat; f t; yttf ;XÞ Feedback condition

8
<

:
ð14Þ

where vector X denotes the free parameters of the model. In all cases we used the Path Integra-

tion model to compute the likelihoods on the No Feedback trials and each of the four models

to compute the likelihoods on the Feedback trials. When combining each model with the Path

Integration model in this way, we yoked the shared parameters between the models to be equal

across the No Feedback and Feedback trials.

We then combined the likelihoods across trials to form the log likelihood for a given set of

parameters

LLðXÞ ¼
X

t

log pðerrortjXÞ ð15Þ

where the sum is over the trials in both the No Feedback and Feedback conditions. The best fit-

ting parameters were then computed as those that maximize this log likelihood

XMLE ¼ argmax
X

LLðXÞ ð16Þ

Model fitting was performed using the fmincon function in Matlab. To reduce the possibil-

ity of this optimization procedure getting trapped in local minima, we ran this process 100

times using random starting points. Each starting point was randomly sampled between the

upper and lower bound on each parameter value as defined in Table 2. Parameter recovery

with simulated data showed that this procedure was able to recover parameters adequately for

all models (Section 3 of S1 File and S6 and S8–S10 Figs).

Model comparison was performed by computing the Bayes Information Criterion (BIC)

for each model for each participant

BIC ¼ k log n � 2LLðXMLEÞ ð17Þ

where k is the number of free parameters in the model and n is the number of trials in the data.

Model recovery with simulated data showed that this procedure was sufficient to distinguish

between the four models on this experiment (Section 3 of S1 File and S4 Fig).
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Results

Behavior in the No Feedback condition is consistent with the Path

Integration model

The Path Integration model predicts that the mean of the response error will be linear in the

target angle α. To test whether this linear relationship holds, we plotted the response error θt −
A as a function of target angle α for all of the No Feedback trials (Fig 7). This reveals a clear lin-

ear relationship between the mean response error and target angle. In addition, for many par-

ticipants, the variability of the response error also appears to increase with the target angle,

which is also consistent with the Path Integration model. Notable in Fig 7 are the considerable

individual differences between participants, with some participants having a negative slope

(systematically underestimating large target angles), some a positive slope (overestimating

large target angles), and some with approximately zero slope.

To investigate further, we fit the Path Integration model to the No Feedback data. This

model has five free parameters capturing the gain and noise in the velocity signal (γd, σd) and

the gain, bias and noise in the target encoding process (γA, βA, σA). Because γd only appears as

part of a ratio with other parameters in the Path Integration model, it cannot be estimated sep-

arately. We therefore fix the value of the velocity gain to γd = 1 and interpret the resulting

parameter values as ratios (e.g. γA/γd etc . . .).

Fig 7. Error vs target angle for the No Feedback condition. Each plot corresponds to data from one participant and plots are ordered from most

negative slope (top left) to most positive slope (bottom right). The red circles correspond to human data, the solid blue to the mean error from the Path

Integration model fit, and shaded blue area to the mean ± standard deviation of the error from the Path Integration model fit.

https://doi.org/10.1371/journal.pcbi.1009222.g007
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As shown in Fig 7, the Path Integration model provides an excellent fit to the No Feedback

data, accounting for both the linear relationship between response error and target and the

increase in variability with target.

Looking at the best fitting parameter values, we find that the target gain is close to 1 at the

group level (mean γA/γd = 0.997), indicating no systematic over- or under-weighting of the tar-

get across the population (Fig 8A). Individual participants vary considerably, however, with

γA/γd ranging from 0.8 (negative slope in Fig 7) to 1.2 (positive slope in Fig 7). In contrast to

the target gain, we find a systematic target bias across the population, with all participants

turning slightly too far (mean βA/γd = 13.4˚; Fig 8B). Nonetheless, as can be seen in Fig 7, there

is considerable variability across participants.

For accuracy, we find that most participants have some target noise (mean σA/γd = 5.35˚;

Fig 8C) and all participants have velocity noise (mean σd/γd = 1.19˚; Fig 8D). This latter result

suggests that the variance of the noise in head direction estimates grows linearly with target

angle and with a constant of proportionality close to 1.

Behavior in the Feedback condition is consistent with the Hybrid model

The key analysis for the Feedback condition relates the feedback offset, f � ytf
, to the response

error, θt − α. As illustrated in Fig 3, each model predicts a different relationship between these

variables.

In our experiment we found examples of behavior that was qualitatively consistent with all

four models. These are illustrated in Fig 9. At the extremes, Participant 27 appeared to ignore

Fig 8. Parameter values for the Path Integration model fit to the No Feedback data. Histograms show the distribution parameter values

across participants. The counts are the number of participants, whose fitted parameter values fall within each bin.

https://doi.org/10.1371/journal.pcbi.1009222.g008
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feedback completely, similar to the Path Integration model (Fig 9A), while Participant 30

seemed to always use the feedback, just like the Kalman Filter model (Fig 9B). Conversely, Par-

ticipant 15 appeared to use a Cue Combination approach, while Participant 2’s behavior was

more consistent with the Hybrid model. This latter behavior is especially interesting because it

strongly suggests a bimodal response distribution for large feedback offsets.

To quantitatively determine which of the four models best described each participant’s

behavior we turned to model fitting and model comparison. We computed Bayes Information

Criterion (BIC) scores for each of the models for each of the participants, which penalizes the

likelihood values of each model fit by the number of free parameters. The Hybrid and Cue

Combination models have 9 free parameters, while the Kalman filter and Path integration

models have 8 and 5 free parameters respectively (Table 2). Fig 10A plots BIC scores for each

model relative to the BIC score for the Hybrid model for each participant. In this plot, positive

values correspond to evidence in favor of the Hybrid model, negative values correspond to evi-

dence in favor of the other models. As can be seen in Fig 10, the the Hybrid model is heavily

favored and best describes the behavior of all but three participants (participant 27, who is best

Fig 9. Examples of human behavior on the feedback trials.

https://doi.org/10.1371/journal.pcbi.1009222.g009
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fit by the Path Integration model, and participants 15 and 23, who are best fit by the Cue Com-

bination model; Fig 10B).

Qualitatively, the Hybrid model provides a good account of the data despite the large indi-

vidual differences in behavior. In Fig 11 we compare the behavior of the model to the behavior

of four example participants. As already suggested in Fig 9, Participant 2 is one of the cleanest

examples of Hybrid behavior and it is not surprising that this behavior is well described by the

model. Likewise the Hybrid model does an excellent job capturing the behavior of Participant

30, whose qualitative behavior appears more Kalman Filter like. The reason the Hybrid model

outperforms the Kalman Filter model for this participant is that Participant 30 appears to

ignore the stimulus on two trials at offsets of around -100 and +100 degrees. These data points

correspond to large deviations from the Kalman Filter model behavior but are a natural conse-

quence of the Hybrid model. The Hybrid model also captures the behavior of participants who

integrate the feedback over a much smaller range such as Participants 10 and 25. A comparison

between the Hybrid model and all participants is shown in S13 Fig.

Parameters of the Hybrid model suggest people use a true hybrid strategy

between cue combination and cue competition

Consistent with the individual differences in behavior, there were significant individual dif-

ferences in the fit parameter values across the group (S11 Fig). Of particular interest is what

these parameter values imply for the values of the Kalman gain, Ktf
. As mentioned in the

Methods section, this variable is important because it determines the extent to which the Kal-

man Filter component of the Hybrid model incorporates the allothetic visual feedback vs the

idiothetic path integration estimate of heading. The larger the Kalman gain, the more allo-

thetic information is favored over idiothetic information. Moreover, if the Kalman gain is 1,

then the Hybrid model becomes a ‘pure’ cue competition model. This is because the Kalman

Filter component of the model ignores idiothetic information prior to the feedback (i.e. it

implements ‘pure’ landmark navigation). Thus, the Hybrid model now decides between pure

Path Integration and pure Landmark Navigation, consistent with a pure Cue Combination

approach.

In Fig 12, we plot implied Kalman gains for all trials for each participant. This clearly shows

that the majority of participants do not have Ktf
¼ 1, instead showing intermediate values for

Fig 10. Model comparison. (A) BIC scores for each model relative to the BIC score for the Hybrid model for each participant. For each model, each

circle corresponds to one participant. Positive numbers imply the fit favors the Hybrid model, negative numbers imply that the fit favors the other

model. A ΔBIC value of> 10 (indicated by the dotted line) is considered “very strong” evidence implied by very high posterior odds (P(MHybrid j Data)

> 0.99) [48]. (B) The number of participants best fit by each model. 28 out of 30 participants were best fit by the Hybrid model, suggesting that this

model best describes human behavior.

https://doi.org/10.1371/journal.pcbi.1009222.g010
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the Kalman gain. Thus we conclude that participants use a true hybrid of cue combination,

when the mismatch between idiothetic and allothetic information is small, and cue competi-

tion when the mismatch is large.

Discussion

In this paper, we investigated how humans integrate path integration and visual landmarks/

boundaries to estimate their heading. In our experiment, the ‘Rotation Task’, participants

made a series of turns in virtual reality, mostly without visual feedback. Visual feedback, when

it was presented (in the form of the boundaries of the room with proximal landmarks), was

brief and offset from the true heading angle. This offset led to systematic errors in people’s

turning behavior that allowed us to quantify how people combine visual allothetic feedback

with their internal estimate of heading direction, computed by path integration of body-based

idiothetic cues.

Fig 11. Comparison between data and the Hybrid model for four participants. Four participants’ data (open grey dots) are overlaid

hybrid model’s mean responses when the model assumes the feedback is true (red) and false (blue). The size of the dots corresponds to the

probability that the model samples from a distribution with this mean, i.e. ptrue for red and 1 − ptrue = pfalse for blue.

https://doi.org/10.1371/journal.pcbi.1009222.g011
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While there were considerable individual differences in task performance, our findings sug-

gest that the majority of participants used the same overarching hybrid strategy to complete

the task. In this strategy, body-based idiothetic and visual allothetic cues are combined when

the estimates of path integration and landmark navigation are close and compete when the

estimates are far apart. This behavior was well accounted for by a computational model that

switches between competition and combination according to the subjective probability that

the feedback is valid.

One limitation of this work is that we have focused only on rotation, ignoring translation

completely. While this approach has the advantage of simplifying both the analysis and the

task (e.g. removing the risk of participants accidentally walking into a real-world wall during

their virtual navigation), it may be that we are missing something relevent to navigation, trans-

lations. Indeed, related to this point, Mou and colleagues [30, 31, 49] have argued that esti-

mates from path integration and visual landmarks are combined differently depending on

whether the task is self-localization (position and head direction) or homing (returning to the

start position). Thus, while in the rest of the Discussion, we focus on the general implications

of our work, a key for future work will be to expand our experimental paradigm and model to

account for translational as well as rotational movements.

Our findings in support of a Hybrid model may help to explain the mixed reports in the lit-

erature regarding cue combination. Specifically, some studies report evidence of cue combina-

tion [23, 25, 29, 49] while others find evidence for others cue competition [24, 50]. One set of

studies using a similar experimental paradigm involves the short-range homing task of Nardini

and colleagues and shows evidence for both cue combination and competition depending on

the conditions tested [25]. In this task, participants picked up three successive objects in a tri-

angular path and returned them after a delay. During the return phase of the task, the experi-

menters manipulated the visual feedback to induce a 15 degree mismatch with the body-based

cues. When both visual and body-based cues were present, Nardini et al. found that the vari-

ance of the response was smaller than when navigation relied on only one cue, consistent with

the combination of visual and body-based cues in a Bayesian manner. However, when Zhao

and Warren [24] increased the offset from 15 to 135 degrees, they found that participants

Fig 12. Computed Kalman gain for all participants and all trials. The Kalman gains computed for each trial for each participant are shown

as gray dots. The mean Kalman gain and 95% confidence intervals are shown in red.

https://doi.org/10.1371/journal.pcbi.1009222.g012
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based their estimate of location either entirely on the visual cues (when the offset was small) or

entirely on the body-based cues (when the offset was large), taking this as evidence for a cue-

competition strategy. Thus, in the same task, participants appeared to switch from visual land-

marks to path integration as the offset grew larger. Such behavior is consistent with Hybrid

model, albeit with a Kalman gain that is equal to 1, which is slightly different to what we

observed in our experiment (Fig 12).

One explanation for this difference between our results and Zhao and Warren’s could be

the amount of time that feedback was presented for. In [24], the offset feedback was presented

continuously, whereas in our task the feedback was presented for only 300ms. Thus, partici-

pants in Zhao and Warren’s experiment may have been more confident that the visual feed-

back was correct which, by Eq S13, would lead to a Kalman gain close to 1. Consistent with

this idea, in a different study, Zhao and Warren [51] found, using a catch trials design, that

visual landmark reliability increased with environmental stability. In addition, they observed

individual differences in cue switching behavior with most individuals showing no cue switch-

ing behavior at all. This suggests that for continuous stable visual feedback the Kalman gain

will approach 1 for most participants. Interestingly our visual feedback was not continuous

and was only moderately stable, yet several participants had a Kalman gain close to 1 (Eq S13).

Given these results, an increased visual feedback duration would likely result in more reliance

on visual cues and hence a general increase in the Kalman gain. A critical question for future

work will be to ask how the Kalman gain changes as a function of viewing duration and a

range of different environmental stabilities.

More generally, our model fits with bounded rationality theories of human cognition [52–

55]. That is, people have limited computational resources, which in turn impacts the kinds of

computations they can perform and how they perform them. In our case, combining visual

and body-based cues to compute a probability distribution over heading should be easier

when the cues align and the distribution is unimodal than when the cues conflict and the pos-

terior is bimodal. In this latter case, representing the bimodal distribution by sampling one

mode or the other, as the Hybrid model does, may be a rational strategy that demands fewer

computational resources. Indeed, other work has shown that people may represent complex

and multimodal distributions with a small number of samples, which may be as low as just a

single sample in some cases [56–58].

A key prediction of such a sampling interpretation of the Hybrid model is that participants

should sometimes lose information when integrating visual allothetic and body-based idio-

thetic cues. Similar to Robust cue integration [59], when faced with a large feedback offset,

instead of computing the full posterior distribution over heading, participants collapse this

bimodal distribution to a unimodal distribution centered on the estimate from path integra-

tion or landmark navigation, ignoring the less reliable cue.

Such a ‘semi-Bayesian’ or interpretation, stands in contrast to a fully-Bayesian [21, 59–61]

alternative models studied in visual perception in which, participants do indeed keep track of

the bimodal or mixture posterior and instead sample their estimate of heading direction from

this posterior to determine their response. In this view, when faced with a large feedback offset,

participants do compute the full distribution over heading, but rather than average over this

distribution to compute their response, they sample from it instead. This implies that partici-

pants do not make a decision to ignore or incorporate the feedback and, as a result, do not lose

information about the stimulus or their path integration estimate.

A key question for future work will be to distinguish between these two interpretations of

the task. Does sampling occur at the time of feedback causing a collapse of the posterior distri-

bution to one mode and a loss of information? Or does sampling occur later on and without

the collapse of the posterior? Both interpretations lead to identical behavior on the Rotation
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Task. However, a modified version of the task should be able to distinguish them. One way to

do this would be with two turns and two sets of visual feedback rather than one. In this task,

participants would turn first to landmark A (e.g. the door) and then to landmark B (e.g. the

window). The turn to landmark A would be identical to the task in this paper, with a brief

flash of offset feedback along the way. After reporting their estimate of the location of land-

mark A, and crucially without feedback as to whether they were correct, participants would

then make a second turn to landmark B. This second turn would also include a flash of visual

feedback. If this second flash aligned with one mode of the bimodal posterior it should rein-

force that mode if participants kept track of it. However, if they collapsed their posterior to a

single mode, a flash at the other mode would have less effect. Thus, in principle, the two

accounts could be distinguished.

Future work should also combine the Rotation Task with physiological measures to study

the neural underpinnings of this process. Previous computational models based on line

attractor neural networks produce behavior that is almost identical to the Hybrid model, com-

bining cues when they are close together and picking one when they are far apart [62–67].

Moreover, recent findings in fruit flies suggest that, at least in insects, such networks may actu-

ally be present in the brain [68]. Investigating the link between the Hybrid model and its neu-

ral implementation should be a fruitful line of research.

Finally, it will be interesting to explore individual differences in behavior on the Rotation

Task in more diverse populations including children, older adults, and people with psychiatric

disorders. By providing within-trial dynamics of cognitive variables as well as characterizing

large individual differences with different parameter values, our task and model could help to

set the stage for this future work.
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(TIF)
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