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A B S T R A C T

Peptides, as small molecular compounds, exhibit prominent advantages in the inhibition of coronaviruses due to 
their safety, efficacy, and specificity, holding great promise as drugs against coronaviruses. The rapid and effi
cient determination of the activity of anti-coronavirus peptides (ACovPs) can greatly accelerate the development 
of drugs for treating coronavirus-related diseases. Hence, we present ACVPICPred, a computational model 
designed to predict the inhibitory activity of ACovPs based on their sequences and structural information. By 
leveraging bioinformatics tools AlphaFold3 for structural predictions and several feature extraction methods, the 
model integrates both sequence and structural features to enhance prediction accuracy. To address the limita
tions of existing datasets, we employed data augmentation techniques, including the introduction of noise and 
the SMOGN, to improve the model robustness. The model’s performance was evaluated through five-fold cross- 
validation, achieving a Pearson correlation coefficient of 0.7668 (p < 0.05) and an R2 of 0.5880 on the training 
dataset. Overall, in our study, compared to models that only use sequence features, models that combine 
structural features have achieved more robust results in various evaluation metrics. ACVPICPred is freely 
accessible at the following URL: http://i.uestc.edu.cn/acvpICPred/main/Main.php.

1. Introduction

Coronaviruses are a group of enveloped, positive-sense, single- 
stranded RNA viruses that belong to the order Nidovirales and the family 
Coronaviridae. They possess receptor-binding proteins on the surface of 
their outer shells that engage with specific receptors on the host cell 
surface, mediating the virus’s entry into the host cell [1]. These viruses 
cause respiratory infections in both animals and humans [2], leading to 
manifestations such as colds and respiratory ailments [3]. There have 
been three major human coronavirus outbreaks to date, respectively 
caused by severe acute respiratory syndrome coronavirus (SARS-CoV), 
middle east respiratory syndrome coronavirus (MERS-CoV), and severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of July 21, 
2024, the worldwide tally for confirmed COVID-19 cases has surpassed 
775 million, with more than 7 million reported deaths [4].

Various approaches for treating coronavirus infections have been 

investigated. Treatment strategies can generally be divided into two 
categories based on their therapeutic targets: host-targeted and virus- 
directed therapies [5]. Host-targeted therapies disrupt host cell mech
anisms, enhance immune responses, and reduce inflammation [6]. They 
combat viruses by enhancing interferon responses, inhibiting host 
signaling pathways associated with viral replication, disrupting host 
factors that utilized during viral processes, stimulating the host’s de
fense mechanisms, and modulating pathways disrupted by pathogens 
that cause excessive inflammation. Examples of such medications are 
type-I interferon-β [7], entry inhibitors N-(2-aminoethyl)− 1-azir
idine-ethanamine [8], and convalescent plasma therapy [9]. The 
virus-directed therapeutic strategies specifically target viral compo
nents, including spike glycoproteins, enzymes involved in nucleic acid 
synthesis, and structural/accessory proteins [5]. Nucleoside/nucleotide 
reverse transcriptase inhibitors, protease inhibitors, entry/uncoating 
inhibitors, and polymerase inhibitors, are among the main types of 
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antiviral medications [6]. For example, protease inhibitors like lopina
vir/ritonavir[10], polymerase inhibitor remdesivir [11], and favipiravir 
[12], are utilized as post-infection treatments. However, the emergence 
of viral resistance has led to diminished efficacy of current treatments 
[13]. Consequently, there is an urgent need for the development of novel 
antiviral drugs to counteract coronavirus infections effectively.

Peptide drugs are distinguished by their high selectivity, natural 
composition, potent efficacy, low toxicity, broad target coverage, min
imal tissue accumulation, and relatively straightforward synthesis pro
cess compared to other biopharmaceuticals [14]. Studies have shown 
that specific anti-coronavirus peptides (ACovPs) exhibit inhibitory ef
fects against coronaviruses [15–17]. For instance, HR2P, a peptide 
derived from the S protein of MERS-CoV, has been found to inhibit the 
fusion and replication of MERS-CoV [18]. Additionally, the peptide 
OC43-HR2P, originating from the HR2 region of HCoV-OC43, has 
demonstrated extensive inhibitory effects on the fusion of diverse 
human coronaviruses. Its optimized form, EK1, has exhibited notably 
improved inhibitory activity and superior drug properties [19]. Despite 
the vast potential of peptide drugs, their approval is often hindered by 
the intricate and lengthy procedures involving peptide selection, iden
tification, preclinical and clinical trials, and ultimate approval [14]. 
Therefore, developing computational methods for in silico screening of 
peptides with potent coronavirus-inhibiting abilities would be highly 
conducive to expediting drug development.

With the advancement of bioinformatics, machine learning and deep 
learning methods have been extensively utilized in peptide research, 
providing effective tools for predicting peptides with specific function 
[20–22], estimating the physicochemical properties of peptides [23] and 
aiding in peptide design [24,25]. Currently, numerous computational 
models, such as PreAntiCoV [26] and iACVP [27], have been developed 
to identify ACovPs. However, these classification models are unable to 
predict the specific inhibitory activity value or potency of ACovPs. 
Investigating anti-coronavirus activity of a peptide by traditional 
experimental methods is time-consuming, resource-intensive and costly. 
Therefore, an in silico method that directly predicts peptides’ 
anti-coronavirus activity would be advantageous for more accurately 
discovering peptides with strong anti-coronavirus ability, thereby 
improving drug development efficiency, avoiding unnecessary experi
mentation and trial-and-error processes, conserving time and research 
resources.

In response to these challenges, this study proposes a prediction 
model that utilizes peptide sequences and structural information to 
assess the inhibitory potency of ACovPs. The model’s predictive accu
racy is validated by comparing predicted values with experimentally 
determined anti-coronavirus activity, using five-fold cross-validation 
and an independent test dataset. To facilitate broader use, the model has 
been implemented into a user-friendly web server called ACVPICPred, 
which is publicly accessible at http://i.uestc.edu.cn/acvpICPred/main/ 
Main.php. This computational model can be used to identify peptides 
with enhanced anti-coronavirus potential for experimental validation, 
thereby advancing ACovPs research.

2. Materials and methods

2.1. Datasets

Bioinformatic resources, for example ACovPepDB [28] and dbAMP 
[29], have consolidated extensive information related to ACovPs. 
ACovPepDB, the most recent manually curated repository, includes 214 
distinct ACovPs with information on their amino acid sequence and 
inhibitory activity, as well as assays to measure their inhibitory effects. 
We retrieved the complete dataset from this database and performed 
necessary data preprocessing steps. We initially excluded sequences 
containing non-natural amino acids. We also discarded entries lacking 
inhibition values. For entries with ambiguous inhibitory values, such as 
numerical ranges (for example >500, <10) or with uncertainties (for 

example 1.2 ± 0.5), we applied the following criteria: (1) Entries with 
values in the "> range" were excluded; (2) For those in the "< range", we 
used the maximum value as the final data value. (3) For values with a ±
symbol, we considered the average value preceding the ± as the defin
itive data value.

In addition to peptide sequences, we took into account several other 
additional factors related to anti-coronavirus activity. These included 
the specific virus targeted by each peptide, type of antiviral assays 
conducted to evaluate its inhibitory effect on coronaviruses, inhibitory 
value type (Half-Maximal Inhibitory Concentration (IC50), 90 % Inhib
itory Concentration (IC90), or Half-Maximal Effective Concentration 
(EC50)), and the units of these inhibitory values (micromole (μM) or 
micrograms per milliliter (μg/ML)). After completing the aforemen
tioned data preprocessing, the dataset comprised a total of 163 data 
items. Subsequently, 10 % of them (16 items) were randomly selected as 
an independent testing dataset, while the remaining 90 % (147 items) 
were allocated as the training dataset.

2.2. Structural feature

Peptide structures were predicted based on their sequences using the 
AlphaFold3 algorithm [30]. By analyzing peptide structures with DSSP 
[31], we extracted several key features including secondary structure 
type, solvent-accessible surface area (ASA), average relative 
solvent-accessible surface area (avg_rASA), the secondary structure 
segment length, and residue positions. ASA represents the surface area 
of a biomolecule that can interact with solvents, which is crucial for 
comprehending protein interactions, identifying active functional re
gions, and distinguishing stable internal structures. The avg_rASA metric 
quantifies the average exposure of local regions to the solvent. Sec
ondary structures of peptides refer to specific spatial conformations, 
such as helices, strands, and random coils, formed by hydrogen bonds 
within localized regions of the peptide chain. DSSP categorizes protein 
secondary structures into eight types: α-helix, 3₁₀-helix, π-helix, parallel 
β-sheets, antiparallel β-sheets, turns, bends, and random coils. We 
incorporated secondary structure type, segment length, and residue 
position into the structural feature matrix to enhance the characteriza
tion of these conformations.

2.3. Sequence feature

To comprehensively characterize the differences between various 
peptide sequences, five feature extraction methods were utilized to 
encode each peptide: amino acid composition (AAC), dipeptide 
composition (DPC), composition of k-spaced amino acid group pairs 
(CKSAAGP), pseudo amino acid composition (PAAC), and physico
chemical properties. This process was performed using an internally 
developed Python script. By consolidating all peptide descriptors, each 
peptide was transformed into a feature vector with a dimensionality of 

Table 1 
529-dimensional features.

Descriptors Number of features

1 AAC 20
2 DPC 400
3 CKSAAGP 75
4 PAAC 25

5

Isoelectric point

9

Net charge
Hydrophobicity
Hydrophobic moment
Transmembrane propensity
Boman index
Aliphatic index
Alpha helical propensity
Solubility

6 Total 529
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529 (Table 1). Furthermore, we applied One-Hot encoding to convert 
various factors related to anti-coronavirus activity, including the type of 
resistant coronaviruses, assay type, inhibitory value type, and the unit of 
the inhibitory value, into numerical data.

AAC characterizes peptide sequences by calculating the percentage 
of each amino acid, yielding a 20-dimensional feature vector. In this 
vector, each dimension corresponds to the relative abundance of its 
respective amino acid. 

AAC(i) =
N(i)
N

(1) 

where i represents the i-th amino acid, N(i) denotes the number of the i- 
th amino acid, and N represents the total number of residues in the 
sequence.

DPC calculates the occurrence frequency of each dipeptide in the 
sequence, generating a 400-dimensional feature vector. 

DPC(a, r) =
Nar

N − 1
(2) 

where a and r represent the a-th and r-th amino acids, respectively, and 
Nar represents the number of this dipeptide. N is the total number of 
residues in the sequence.

PAAC compensates for the limitations of traditional AAC methods by 
incorporating sequence order information [32]. PAAC introduces a set of 
discretization factors and is defined by two crucial parameters: the 
weight factor ω and discrete counted-rank correlation factor λ. It gen
erates a feature vector with 20 + λ dimensions. In this study, we have 
specifically chosen the values ω = 0.4 and λ = 5.

CKSAAGP integrates amino acid spacing with the physicochemical 
properties of amino acids to calculate the occurrence frequency of res
idue pairs with k-spacing [33]. Specifically, CKSAAGP initially classifies 
the 20 amino acids into five groups based on their physicochemical 
properties: aliphatic, aromatic, positively charged, negatively charged, 
and uncharged amino acids (g1-g5). For each group of 25 amino acid 
pairs labeled with physicochemical properties, the occurrence fre
quencies of these amino acid pairs in peptide sequences are calculated 
using k-spacing, and the frequencies of these combinations are 
computed to obtain the final feature vector. In this study, k values of 0, 1, 
and 2 were selected, thereby resulting in a 75-dimensional feature 
vector. 
(

Ng1g1

L − (k + 1)
,

Ng1g2

L − (k + 1)
,

Ng1g3

L − (k + 1)
,…,

Ng5g5

L − (k + 1)

)

25
(3) 

where L represents the length of the peptide sequence.
The physicochemical properties of peptides, such as solubility and 

isoelectric point, are also crucial factors influencing their functions. 
Referring to the methods utilized in PreAntiCoV [26], we selected the 
same eight physicochemical property features and additionally incor
porated solubility (see Table 1). Since no existing dataset or database 
directly provides solubility information for peptides, we employed the 
PeptideBERT [34] tool to predict the solubility from the peptide 
sequences.

2.4. Data Augmentation

To tackle the challenge of limited sample size, we employed two 
methods to augment the training dataset. The first method involved 
extracting features from the peptide sequences and adding noise to the 
feature vectors. Specifically, we randomly selected 10 % of the stan
dardized features and introduced 5 % noise. The second method, 
SMOGN [35], combines random undersampling, SmoteR, and Gaussian 
noise. The core concept of SMOGN is to generate synthetic samples by 
merging these strategies while using Gaussian noise as a conservative 
measure to mitigate the potential risks of SmoteR and increase the di
versity of the synthetic samples. After applying these two augmentation 

techniques, we obtained an expanded dataset with 388 ACovPs 
(Table 2). It should be noted that data augmentation was performed 
exclusively on the training dataset, not on the testing dataset.

2.5. Feature selection

The utilization of diverse peptide descriptors enables a more 
comprehensive extraction of features from peptide sequences. However, 
not all features contribute effectively to model performance [36]. Our 
dataset consists of 388 samples with an initial feature dimension of 560. 
Given the limited sample size and high feature dimension, there exists a 
significant potential for overfitting. To mitigate this issue, we employed 
three common feature selection methods, including Pearson correlation 
coefficient, mutual information (MI), and least absolute shrinkage and 
selection operator (Lasso), which are also frequently used in the field of 
bioinformatics [37–39], to identify key features in this study.

Feature selection based on the Pearson correlation coefficient in
volves evaluating the linear relationship between each feature and the 
target variable. This is accomplished by computing the respective 
Pearson correlation coefficients, which quantify the degree of linear 
association. MI is a metric used to assess the level of interdependence 
between two random variables [40]. In feature selection, it calculates 
the mutual information between each feature and the target variable 
and then selects features with mutual information exceeding a set 
threshold. Lasso regression is an extension of linear regression that en
ables feature selection by incorporating an L1 regularization term [41], 
which imposes constraints on the coefficients of the model. Specifically, 
Lasso achieves sparsity in features by minimizing the objective function 
comprising squared loss and the L1 regularization term, leading to some 
feature coefficients being reduced to zero. By adjusting the regulariza
tion parameter, the extent of feature selection can be flexibly modulated.

2.6. Machine learning and deep learning

To construct regression models with robust fitting effects, we 
employed various traditional machine learning and deep learning 
methods for model training. Focusing solely on sequence data and uti
lizing the aforementioned feature extraction and selection methods, we 
developed models using Ridge regression, Lasso regression, Bayesian 
Ridge regression, Elastic Net, Gradient Boosting, K-Nearest Neighbors 
regression, Random Forest regression, Support Vector Regression, and 
multilayer perceptron (MLP). We utilized the grid search for optimal 
parameter tuning in all models to achieve a relatively better fitting 
performance for each regression model. Model construction was per
formed at a computational server (Sugon I840-G20, Dawning Informa
tion Industry Co., LTD., Beijing, China).

Furthermore, we designed a hybrid model that integrates both 
sequential and structural features to enhance predictive accuracy. The 
structure of the model is shown in Fig. 1. This model is architected with 
three principal components: a sequential feature processing module, a 
structural feature processing module, and a final feature fusion and 
prediction module. The sequence feature processing module processes 
the input sequence features through a single fully connected layer, with 
an input dimension corresponding to the number of features and an 
output dimension of 64. A rectified linear unit (ReLU) activation func
tion is applied to enhance nonlinear expressiveness. For the structural 
feature processing module, the input is a two-dimensional matrix with 

Table 2 
Training Dataset after Augmentation.

Training Dataset Number of anti-coronavirus peptides

Original training dataset 147
Newly generated dataset (5 % noise) 147
Newly generated dataset (SMOGN) 94
Total 388
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dimensions corresponding to the structural feature length of 119 and the 
feature dimension of 12. It employs two two-dimensional convolutional 
neural network (2D-CNN) layers. The first layer has one output channel, 
a kernel size of 3 × 3, and a ReLU activation function, followed by a 
max-pooling operation with a kernel size of 2 × 2 to reduce the spatial 
dimensions. The second convolutional layer similarly has one output 
channel, a 3 × 3 kernel size, ReLU activation, and max-pooling with a 
2 × 2 kernel size. After the convolutional layers, the output is flattened, 
and two fully connected layers are applied to reduce the feature 
dimensionality. The first fully connected layer maps the features to a 
128-dimensional space, and the second layer reduces this to 16 di
mensions, both using ReLU activation functions. In the feature fusion 
and prediction module, the output features from the sequence and 
structure feature processing modules are concatenated, yielding a uni
fied feature vector of 80 dimensions (64 +16). This vector is then passed 
through a fully connected layer (8 dimensions, ReLU activation func
tion), followed by a final linear layer that outputs a single predicted 
value. This predicted value corresponds to the inhibitory potency of 
ACovPs. The model was trained using Python 3.9 as the coding lan
guage, and PyTorch version 1.9.1 with support for CUDA 11.1 was 
employed to construct the model.

2.7. Performance evaluation

We employed five-fold cross-validation to evaluate the model per
formance. This approach evenly divides the training dataset into five 
folds, with four folds used for model training and the remaining one fold 
is used for testing [42]. Through five iterations, each time a different 
fold is chose as the testing dataset, and the model is trained with the 
other four folds and tested on the testing dataset. The final performance 
of model is determined by calculating the average performance across 
the five iterations.

The primary evaluation indicators of the regression model in this 
study include mean square error (MSE), Pearson correlation coefficient 
(r) and coefficient of determination (R-squared, R2). The MSE was uti
lized as the loss function for all model training procedures. This metric 
effectively captures the discrepancy between the predicted and actual 
values, as demonstrated by the following formula: 

MSE =
1
n
∑n

i=1

(
Xact

i − Xpred
i

)2
(4) 

The final fitting performance of the model was evaluated by 
employing the r, calculated by the following formula: 

r =
∑n

i=1

(
Xact

i −
Xact

)(
Xpred

i − Xpred
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
Xact

i − Xact
)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Xpred

i − Xpred
)2

√ (5) 

The adequacy of fit for the regression model was assessed by using 
the R2. 

R2 = 1 −

∑n
i=1

(
Xact

i − Xpred
i

)2

∑n
i=1

(
Xact

i − Xact
)2

(6) 

In the above formulas, Xpred
i represents the predicted values by the 

model and Xact
i represents the actual values. Xact denotes the mean of the 

actual values, Xpred signifies the mean of the predicted values, and n 
represents the sample size.

2.8. Target prediction model construction

Additionally, we trained a simple target prediction model to enhance 
the practical relevance of ACVPICPred. We reorganized the peptide 
dataset downloaded from ACovpepDB. After retaining the entries with 
target information and removing redundancies, 74 ACovPs were ob
tained. According to the target type of these ACovPs, we divided them 
into two categories: the S1 class, consisting of 28 ACovPs, and the S2 
class, comprising 46 ACovPs. ACovPs in the S1 class target the N-ter
minal subunit of spike protein (S1), whereas those in the S2 class 
interact with the C-terminal subunit of spike protein (S2). Employing the 
same feature extraction and selection methods mentioned above, we 
selected the Random Forest algorithm, which is suitable for small and 
imbalanced data sets, to construct the model. The model’s efficacy was 
evaluated by a five-fold cross-validation, utilizing common evaluation 
indicators, including accuracy, sensitivity and specificity.

3. Result

3.1. Overall workflow

The workflow for the model construction in this study is illustrated in 
Fig. 2. We first conducted data collection, preprocessing, and dataset 
splitting. The resulting data comprised two main components: peptide 
sequences and classification data related to inhibitory values. We then 
obtained peptide structures that predicted by AlphaFold3 based on their 
sequences. Subsequently, various feature extraction methods were used 
to capture key feature information, and data enhancement was per
formed using the additive noise and SMOGN methods. We then trained 
the model using the augmented data and evaluated its performance 

Fig. 1. Schematic diagram of the hybrid model.
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using evaluation metrics. Finally, we selected the model that demon
strated the best performance to build our web platform.

3.2. Model performance on the training dataset

During the evaluation phase, all models were assessed using a five- 
fold cross-validation strategy. Among the models that did not incorpo
rate structural data, the combination of MLP and Lasso exhibited the 
most promising results, achieving a Pearson correlation coefficient of 
0.6427 (p < 0.05) and an R2 of 0.4131 (Table 3).

In contrast, models trained with sequence and structure features 
demonstrated enhanced performance. Specifically, the model with Lasso 
for feature selection notably outperformed those constructed with fea
tures selected by the other two feature selection techniques with a 
Pearson correlation coefficient of 0.7668 (p < 0.05) and an R2 of 0.5880 
(Table 3). The superior performance observed in the model using Lasso 

during five-fold cross-validation suggests that the selected features 
effectively capture the key information influencing ACovPs inhibition 
values. Therefore, features selected by Lasso and the hybrid model were 
utilized for the construction of the final predictive model.

3.3. Model performance on the independent testing dataset

The model’s generalization ability was rigorously evaluated using an 
independent testing dataset. The hybrid model using Lasso as the feature 
selection method demonstrated notable performance in independent 
testing, yielding a Pearson correlation coefficient of 0.8836 (p < 0.05) 
and an R2 of 0.7807. These results indicate the model’s robust gener
alization capacity on previously unseen data.

Fig. 2. Workflow of this study. AAC: amino acid composition; DPC: dipeptide composition; PAAC: pseudo amino acid composition; CKSAAGP: composition of k- 
spaced amino acid group pairs; Pearson: Pearson correlation coefficient; MI: mutual information; Lasso: least absolute shrinkage and selection operator; RF: Random 
Forest regression; SVR: Support Vector Regression; EN: Elastic Net; MLP: multilayer perceptron; 2D-CNN: Two-Dimensional Convolutional Neural Network.

Table 3 
Prediction performance of models (five-fold cross-validation).

Methods
r (p) R2

No feature selection LASSO Pearson Cor MI No feature selection LASSO Pearson Cor MI

BR 0.4327 (<0.05) 0.5488 (<0.05) 0.4703 (<0.05) 0.5102 (<0.05) 0.1872 0.3012 0.2212 0.2603
EN 0.4951 (>0.05) 0.5354 (<0.05) 0.5174 (<0.05) 0.5276 (<0.05) 0.2451 0.2867 0.2677 0.2784
GB 0.5628 (<0.05) 0.5791 (<0.05) 0.6154 (<0.05) 0.6310 (<0.05) 0.3167 0.3354 0.3787 0.3982
KNN 0.5788 (<0.05) 0.5950 (<0.05) 0.6016 (<0.05) 0.5804 (<0.05) 0.3350 0.3540 0.3619 0.3369
Ridge 0.4770 (>0.05) 0.5582 (<0.05) 0.5038 (>0.05) 0.4964 (>0.05) 0.2275 0.3116 0.2538 0.2464
Lasso 0.4508 (>0.05) 0.5362 (<0.05) 0.4729 (>0.05) 0.4793 (<0.05) 0.2032 0.2875 0.2236 0.2297
RF 0.5343 (<0.05) 0.6096 (<0.05) 0.5862 (<0.05) 0.5924 (<0.05) 0.2855 0.3716 0.3436 0.3509
SVR 0.4979 (<0.05) 0.5838 (<0.05) 0.5108 (<0.05) 0.5128 (<0.05) 0.2479 0.3408 0.2609 0.2630
MLP 0.6000 (<0.05) 0.6427 (<0.05) 0.6116 (<0.05) 0.6077 (<0.05) 0.3600 0.4131 0.3741 0.3693
Hybrid (MLP, 2D-CNN) 0.6212 (<0.05) 0.7668 (<0.05) 0.7407 (<0.05) 0.7430 (<0.05) 0.3859 0.5880 0.5486 0.5520

Notes: r(p): Pearson correlation coefficient (p_value); BR: Bayesian Ridge regression; EN: Elastic Net; GB: Gradient Boosting; KNN: K-Nearest Neighbors; Ridge: Ridge 
regression; Lasso: Least Absolute Shrinkage and Selection Operator; RF: Random Forest; SVR: Support Vector Regression; MLP: multilayer perceptron; 2D-CNN: Two- 
Dimensional Convolutional Neural Network.
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3.4. Performance of the target prediction model

The target prediction model exhibited commendable performance in 
the five-fold cross-validation, achieving an average accuracy of 86.38 %, 
an average sensitivity of 86.67 %, and an average specificity of 85.33 %. 
While this model is rudimentary in its design, it serves as a valuable 
adjunct to the network service, enhancing the interpretability of the 
predicted activities to a moderate degree. Its integration provides users 
with supplementary insights into potential targets of ACovPs.

3.5. ACVPICPred web service

To enhance the accessibility of our model in predicting the activity 
value of ACovPs, we have developed a user-friendly web service that can 

be accessed for free at http://i.uestc.edu.cn/acvpICPred/main/Main. 
php. This webpage requires users to input the peptide sequence, select 
relevant experimental information, and upload peptide structure files in 
PDB format to estimate the anti-coronavirus activity values of the pep
tides (Fig. 3). The result interface provides the predicted anti- 
coronavirus efficacy values as well as resistant virus, type of the assay 
conducted, inhibitory value type, unit and the predicted target.

4. Discussion

AcovPs are expected to be peptide drug candidates for the treatment 
of diseases caused by coronaviruses. The inhibitory activity of AcovPs is 
one of the most critical parameters that determine its probability of 
being successfully developed into a therapeutic peptide. Computational 

Fig. 3. Web service interface. (A) Input interface. Users can input the peptide sequence, upload the corresponding structure file (.pdb) and select relevant inhibition 
value features to get the prediction. (B) Result interface. The result table provides the predicted anti-coronavirus efficacy values as well as resistant virus, type of the 
assay, inhibitory value type, unit, and the predicted target.
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methods for predicting the inhibitory activity of AcovPs with high 
throughput and low costs are highly beneficial. They enable fast and 
efficient screenings. In this study, we developed an artificial neural 
network (ANN) based model for predicting the activity values of AcovPs 
based on sequences and structural information that extracted from 
three-dimensional structures. Independent testing results suggest that 
ACVPICPred achieves a decent prediction performance. ACVPICPred 
has the potential to reduce the time and resource costs associated with 
measuring the inhibition concentration of AcovPs.

Several computational tools have been developed to identify AcovPs. 
For example, PreAntiCoV employs a two-stage approach with balanced 
random forest to distinguish AcovPs from other peptides [26]. 
ENNAVIA-C and ENNAVIA-D differentiate AcovPs from non-antiviral 
peptides and random peptides using deep neural networks [43]. Iacvp 
leverages word2vec embedding methods to enhance feature encoding 
and combines with the random forest for model training [27]. 
ACP-Dnnel is an ensemble model that utilizes bi-directional LSTM as the 
base model for pre-training and employs deep convolutional neural 
networks for model construction [44]. The aforementioned models are 
binary classification models used to predict whether a given peptide 
exhibits anti-coronavirus function. ACVPICPred is a regression model 
that capable of estimating the inhibitory activity of AcovPs based on 
peptide sequences, experimentally relevant features and their struc
tures. By evaluating the inhibition concentration, it becomes possible to 
preliminarily identify peptides with potent anti-coronaviral activity. 
Hence, the classification model can identify AcovPs and regression 
model can pinpoint more effective AcovPs within the identified set, 
facilitating a reduction in the experimentation scope and costing.

Currently, there is no predictor tailored for the prediction of the 
inhibitory effect of ACovPs. In 2015, a model known as AVP-IC50Pred 
was developed to predict the antiviral activity of peptides [45]. While 
AVP-IC50Pred was designed as a broad-spectrum predictor of antiviral 
peptide activity, its efficacy in predicting the specific inhibitory effects 
of ACovPs was found to be inferior to our proposed ACVPICPred, with a 
Pearson correlation coefficient of 0.3942 (p > 0.05) on our independent 
testing set. This disparity is primarily attributed to the variations in the 
training datasets. Human-infecting coronaviruses are notably con
strained in number, with only seven known types to date [46]. Prior to 
the emergence of SARS-CoV-2 in 2019, the diversity and abundance of 
ACovPs are indeed limited. Consequently, the development of the 
AVP-IC50Pred model in 2015 was constrained by a limited dataset of 
ACovPs, which is likely a primary factor contributing to its reduced 
effectiveness. Furthermore, our model offers an additional capability of 

predicting the targets of ACovPs, a feature that AVP-IC50Pred lacks. 
There are also differences between the two models in terms of the fea
tures and machine learning methods employed, as delineated in Table 4. 
The pursuit of more comprehensive datasets and advanced machine 
learning techniques will be pivotal in enhancing the predictive accuracy 
and interpretability of future models.

The function of a peptide is determined by its structure. Peptides 
with similar sequences may exhibit significant structural variations, 
which may confer distinct functions. Therefore, relying solely on 
sequence-derived features is considered insufficient for comprehensive 
peptide characterization. In constructing our predictive model, we 
employed 2D-CNN to extract features from the structural information. 
This approach ensures a more thorough analysis of peptide character
istics and enhances the predictive capability of the model.

In the present study, we developed ACVPICPred, a tool designed to 
predict the inhibitory activity of ACovPs based on their sequences and 
structures. This model, however, exhibits certain limitations. First, we 
used an ANN to train the model. While ANNs have shown decent pre
dictive performance in many fields [47], they operate as black-box 
models, which hinders the understanding of their internal mecha
nisms. Consequently, ACVPICPred predicts the activity of ACovPs 
without revealing the underlying virological processes. The develop
ment of interpretable ANNs remains an ongoing challenge, and we aim 
to investigate more transparent models in subsequent studies. Second, 
although we performed data augmentation, the size of the training data 
remains relatively limited, which may not be adequate for the training of 
more extensive networks. Future endeavors should prioritize expanding 
the dataset. By incorporating more experimental data and structural 
insights, ACVPICPred will be better equipped to capture the character
istics and mechanisms of peptides more accurately.

5. Conclusion

In this study, we developed an online computational tool called 
ACVPICPred (http://i.uestc.edu.cn/acvpICPred/main/Main.php) to 
predict the inhibitory activity of ACovPs. It is based on peptide se
quences and structural information, trained using MLP and 2D-CNN, and 
achieves relatively high performance through cross-validation and in
dependent test datasets. With this tool, researchers can quickly obtain 
predictions of ACovPs’ inhibitory activity, which can reduce the time 
and resource investment in drug discovery for coronavirus-induced 
diseases and improve the initial screening efficiency of potential drug 
candidates for these diseases.

Table 4 
Comparison of our model with AVP-IC50Pred.

Method Function Training dataset Features Machine learning methods
Performance (Pearson 
correlation coefficient)a

AVP-IC50Pred

Predict the inhibitory activity of 
antiviral peptides in terms of IC50 values 
(μM).

Antiviral peptides (683)

AAC, 
DPC, 
C8 Bin, 
N8 Bin, 
Physico, 
SA, 
SS

SVM, 
RF, 
IBk, 
K*

0.3942 (p > 0.05)

Our model 
(ACVPICPred)

(1) Predict the inhibitory activity of 
ACovPs in terms of IC50, IC90 and EC50. 
(2) Predict the target of ACovPs.

ACovPs (388 after data 
augmentation)

AAC, 
DPC, 
CKSAAGP, 
PAAC, 
Physico, 
SS, 
ASA, 
avg_rASA

hybrid model based on 
convolutional and fully connected 
layers

0.8836 (p < 0.05)

a Performance on the same independent testing dataset. ACovPs: anti-coronavirus peptides; IC50: half-maximal inhibitory concentration; IC90: 90 % inhibitory con
centration; EC50: half-maximal effective concentration; AAC: amino acid composition; DPC: dipeptide composition; C8 Bin: C8 Binary profile; N8 Bin: N8 Binary 
profile; CKSAAGP: composition of k-spaced amino acid group pairs; PAAC: pseudo amino acid composition; Physico: physicochemical properties; SA: solvent 
accessibility; SS: secondary structure; ASA: solvent-accessible surface area; avg_rASA: average relative solvent-accessible surface area; SVM: support vector machine; 
RF: random forest; IBk: instance-based classifier; K* : KStar.
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