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Abstract
Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the

side-chain sequence determines fold in terms of its chemical constitution has been scruti-

nized extensively and verified periodically. However, a focussed investigation on the direc-

tive effect of side-chain geometry may provide important insights supplementing existing

algorithms in mapping the geometrical evolution of protein chains and its structural prefer-

ences. Geometrically, folding of protein structure may be envisaged as the evolution of its

geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and

χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine

with 4 rotors ϕ,ψ, χ1 and χ2, with its evolution to the functional fold is directed by combina-

tions of its rotor directions. We observe that differential rotor motions lead to different sec-

ondary structure formations and the combinatorial pattern is unique and consistent for

particular secondary structure type. Further, we found that combination of rotor geometries

of each amino acid is unique which partly explains how different amino acid sequence com-

binations have unique structural evolution and functional adaptation. Quantification of

these amino acid rotor preferences, resulted in the generation of 3 substitution matrices,

which later on plugged in the BLAST tool, for evaluating their efficiency in aligning

sequences. We have employed BLOSUM62 and PAM30 as standard for primary evalua-

tion. Generation of substitution matrices is a logical extension of the conceptual framework

we attempted to build during the development of this work. Optimization of matrices follow-

ing the conventional routines and possible application with biologically relevant data sets

are beyond the scope of this manuscript, though it is a part of the larger project design.

Introduction

The three dimensional native structure of a protein defies all concepts of aesthetics that nature
generally tend to practice in its creation. However, these folded structures and the guiding prin-
ciples of its construction is an important scientific problem, yet to be completely solved. The
physical folding code, folding mechanism and a perfect algorithm that predicts the fold from
sequence has been a matter of intense scrutiny for more than five decades now [1]. The scien-
tific community has invested significant amount of time and resources in deciphering this
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Protein Folding code, because it is the key factor in the next level of drug discovery initiatives.
Protein folding research community has grown in terms of scientific resources, ever since
Anfinsen’s Thermodynamic hypothesis [2] and Levinthal’s paradox [3] have been established.
Attempts to understand folding of sequences have resulted in two full-fledgeddisciplines in
protein science viz. protein structure prediction and protein design [4]. Competition for Criti-
cal Assessment of protein Structure Prediction (CASP) has completed 11 versions so far, with
varying degrees of success [5, 6] but with steady growth in its technical know-how. De novo
Protein design started with rational design of small peptide segments developed to spontane-
ously self-folding units [7, 8]. In the last two decades, automated designmethods took over,
resulting in further advancement by creating functional units with amino acid sequences [9–
11]. On the other hand, structural genomics initiatives are also gathering pace with entries in
Protein Data Bank increasingmore than ten folds in the last 15 years [12]. Even though signifi-
cant progress has beenmade, structure elucidation of molecular targets for designing novel
drugs is far from complete. Approximate solutions from various protein structure prediction
tools are still verymuch operative and may continue for fewmore years at least.

In simple terms, solution to the protein folding problem is the ability to predict its struc-
ture from sequence. Researchers engaged in structure prediction are attempting this objective
by alignment of amino acid sequences. On the other hand, for protein design, we may require
an optimum sequence solution for a given template. Since the number of distinct folds for
more than hundred thousand structures in PDB is only about 1500, multiple sequence solu-
tions are possible for a given fold. Therefore, protein design is a more tractable problem than
folding. Rotamer libraries by Dunbrack [13], Richardson [14] and studies by Pal et al. [15]
were significant attempts in quantifying side-chain geometries and therefore serve as the
most crucial element in automated design tools. However, mechanistic investigations so far,
have conveniently under-played the specific role of side-chain geometry and its effect on
folding.

Protein folding research was largely concentrating on the thermodynamics of folding in its
early years of research, principally because of the lack of sufficient data to study its kinetics.
Efforts to decipher the sequential events in a typical folding process have gainedmomentum in
last couple of decades [16–18]. Molecular dynamics simulations [19–21], graph based unfold-
ing schemes [22] and various other ‘reductionist’ approaches have contributed to the under-
standing of intermediate structures in the route of evolution of a typical hetero-polymeric
amino-acid chain to a fully functional three dimensional fold [23]. Basically, the only difference
between two proteins is the difference in its length and amino-acid sequence. Amino-acid
sequence is typically its side-chain sequence. Therefore, it is logical to assume that the chemis-
try of side-chain or its combinations determine the fold. Almost all sequence alignment pro-
grams make use of a scoring scheme based on a substitution matrix [24–27]. The similarity or
differences in these matrices are calculated based on odds ratio rooted either on its chemistry
or statistics or both. The general consensus is that intra-molecular interactions and combina-
tions of it in varying degrees, arising from the main-chain and side-chain of an amino-acid
sequence initiate the motion of protein chain, propagation of that motion and its culmination
in a unique fold. One important missing link that may have to decipher is the trace of geomet-
rical events of this protein folding motor. We make an attempt to trace the path of the geome-
try of this motion, by following the dihedral angle distribution during the early events of
protein folding. Other acceptable means for such an investigation would be to employ Molecu-
lar Dynamics Simulation methods generating and ensemble and attempt to map the move-
ments. However, MD simulations can be performed only for a handful of structures and not an
extensive and comprehensive dataset used for this investigation.
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Rotors and Stators of the Folding motor

Structure of a protein chain can be geometricallymapped by its backbone dihedral angles ϕ
and ψ. Side-chain dihedral angles χ1 and χ2 and their contributions were more a concern for
protein designers and crystallographers,while they optimize side-chain packing of a given fold.
Allowed regions of ϕ and ψ combinations in a Ramachandran plot is very limited, and there-
fore structural diversity of protein secondary structure is also limited to α-helices, β-sheets and
connecting segments. In 2009, Cole and Bystroff proposed the phone cord model for helix for-
mation and favouring of right handed helices over left handed ones in the crossovers of βαβ
super-secondary structures [28]. Phone cord model highlights the creation of a torque on two
ends of the helix during its formation, which may either be relieved by the rotation of one end
of the chain or by its pivoting. Protein polymeric chain does not behave like a random flight
chain with un-restricted freedomof movement, instead is a stiff chain mainly due to the geo-
metric restrictions of its dihedral angle rotations. Chain stiffness is a general term used to
describe the degree of angular correlation between neighbouring bonds, and is often mea-
sured in terms of characteristic ratio. Characteristic ratio of a random flight chain is 1. Char-
acteristic ratio calculated by P.J. Flory for polypeptide chains ranges between 9.0 and 9.5,
mainly due to the poly L (or hypothetically poly R) stereochemistry of polypeptide chain
[29]. This indicates that the folding of this stiff protein chain is a directedmotorized process,
with the motive force generated through non-bonded interactions and dispensed through
dihedral angle motions.

A self-folding polypeptide chain may hence be assumed as a motor with four rotors ϕ, ψ, χ1,
χ2, (Fig 1A) and all other elements being stators. The motive force in either direction of folding
or unfolding, may come from the mutual dispensation of enthalpic and entropic forces within
the chain, subject to reaction conditions. The necessary torque required to fold a polypeptide
chain, may come from within, and thermodynamics of folding has already been studied exten-
sively. We were curious to find out how this torque is manifested sequentially such that the
chain can move into helix and sheets and eventually assume a unique fold for a given sequence.
It is safe to assume that this torque is manifested through dihedral angle movements. There-
fore, we attempted to map the sequential geometric events of folding by following the move-
ments of four dihedral angles during secondary structure formation and breaking. A post-
secondary structuremotion of this motorized process culminating in a fold, is unique for a
given sequence and hence cannot be brought to a common platform.

Materials and Methods

Our statistical analysis is based on a 22,997 strong non-redundant protein dataset available on
the PISCES server [30], consisting of 14,556,807 amino acid residues, altogether forming
406,799 helices and 576,240 β-sheets. The set of non-redundant protein structures as provided
in the PISCES serverwere downloaded from PDB and dihedral angles were calculated in the
given structures. The output was segregated into three groups: β-sheets, α-helices and others as
per their main chain dihedral angle distributions. To these groups, we also added the flanking
amino acids of each secondary structure, stretching to three amino acids on either side. Fur-
ther, each of these lists were reduced into a 37 X 37 residue frequencymatrix with each value in
the matrix representing the number of amino acids present in a 100 by 100 angle grid, as per
the value of their dihedral angles. Such matrices were constructed for every flanking region and
secondary structure positions for various combinations of dihedral angles. After the construc-
tion of such matrices, we plotted them as contour maps in order to analyse the quantitative dis-
tribution of amino acid main and side chain dihedrals in protein structures.
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Fig 1. Functional rotors involved in structure formation: a) The four rotors representing four dihedral angles of an amino acid residue

in a polypeptide chain. b) Orientation of four rotor motions during formation and breaking of helix and sheet with positive sign

indicating right handed or clockwise direction and negative sign indicating left handed or counter clockwise direction. c) Rotational

Mapping the Geometric Evolution of Protein Folding Motor

PLOS ONE | DOI:10.1371/journal.pone.0163993 October 7, 2016 4 / 16



Results

Dataset

Our logical deductions are based on the statistical analysis of a non-redundant protein data set
of about 23,000 protein structures from Dunbrack’s library [30]. We extended the broad con-
clusions of this study by generating three substitution matrices for protein sequence alignment.
These matrices were compared with the standard ones and their relative performances are elab-
orated in the latter sections of this manuscript.

In an attempt to map the early events of folding and understanding the driving force
responsible for the sequential events, we have classified the dihedral angles of amino acids pre-
ceding and succeeding the basic secondary structure elements—helices and sheets. Therefore,
we have separately classified amino acids at H-3, H-2, H-1, H, H+1, H+2 and H+3 positions
each getting into and leaving the helical structures. Similarly, we have S-3, S-2, S-1, S, S+1, S+2
and S+3 for sheets.We have taken the whole sheet segment and not just a strand for better clar-
ity and precision of data.

Relative motions of secondary structure forming dihedral angle rotors

We follow themotions of dihedral angles by mapping the dihedral angle basins of three residues
going into the secondary structure, and three residues leaving it as described in the previous para-
graph.We observe that, the behaviour of polypeptide chain dihedral angle rotors are analogous to
an enigmamachine with the information regarding targeted secondary structure is enciphered in
it. Rotor orientations are distinctly different for different secondary structures.We observed that
helix formation is a result of concertedmotion of main chain and side-chain rotors, in varying
degree of participation and differential mode of rotations (Fig 1A).We first evaluated the orienta-
tion of χ1 and χ2 dihedral angles, because they are successive rotors of the same branch.We had
an interesting observation that χ1 and χ2 dihedral angles are counter-rotating while formation
and breaking of secondary structures under all conditions (Fig 1B). A more interesting observa-
tion is that χ1 is also counter-rotating with ϕ while formation and breaking of the helix. Therefore,
folding-unfoldingmachine has these three rotors counter-rotating, while forming any secondary
structure. The next important observation is that ψ dihedral angle rotor is always left handed in
its orientation except while breaking of sheet. This further indicates that ψ dihedral angle do not
have a decisive role in the evolution and choice of secondary structure formation (Fig 1B–1D).

Helix formation and breaking. Helix is formed when χ1 rotor rotates to the left. ϕ dihe-
dral angle rotor complements in counter direction by rotating to the right by 80°. While helix
breaking, χ1 and ϕ rotors assumes reverse orientation. χ2 dihedral angle maintains its mandate
of counter-rotation with χ1 rotor, during formation and breaking. The ψ dihedral rotor main-
tains a right handed rotation during both helix formation and breaking (Fig 2).

Sheet formation and breaking. Sheet or a beta strand is formed when χ1 rotor rotates
(clock-wise) to the right unlike helix. ϕ dihedral angle rotor complements in counter rotating
direction by rotating to the left full circle 3600 (Fig 3). χ2 dihedral angle maintains its mandate
of counter-rotation with χ1 rotor, during formation and breaking of sheet as well. Both ϕ and ψ
rotate in counter directionwhile breaking. Rotations of ϕ in counter directions, while forma-
tion and breaking is hence, a common feature for both helices and sheets.

Therefore, trace of dihedral angle geometry tells us an interesting story, untold so far to the
best of our knowledge, which can be summarized as follows: i) Geometric evolution of helix

patterns of rotors during helix formation (green) and helix breaking (red) are shown d) Orientation of rotors resulting in the formation

and breaking of sheeted structures.

doi:10.1371/journal.pone.0163993.g001
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and sheet are distinctly different and in most cases opposite; ii) Rotor motions, through which
these differential evolution patterns are orchestrated are unique for a given secondary struc-
ture; and (iii) the resultant secondary structure formation is a result of this differential rotor
motions (Figs 1, 2 and 3 and Figures A1-A4 in S1 File), though the constitution of differential
driving forces for these secondary structures are still unclear.

Dihedral angle rotor patterns and amino-acid choices

From the above analysis, we may conclude that there are two distinctly different rotor motions
operative for helix and sheet formation. A perturbation to this rotor motion will result in a
sequence segment of coil that connects between successive secondary structure elements. In
this general scenario, it would be interesting to see whether amino-acids will respond differ-
ently to specific secondary structures, while rotor motions are executed by the chain. This is of
a very significant importance, in light of the fundamental question of sequence–structure rela-
tionship in the protein folding problem. Main chain of any protein sequence is a constant, but
the side-chain is believed to influence its evolution to a complete functional fold. So far, studies
along these lines, were biased to focus on the chemistry, polarity, β-branching, hydrophobicity,
aromaticity, size etc. Our significant lead from the first part of this investigation is that the rota-
tion patterns of side-chain rotors directly influencemain chain rotor motions, which will even-
tually decide the structure. Based on the standard parameters, Gln, Ile, Pro, Trp, Tyr and Val
were selected as representative residues initially, to evaluate our objective to investigate side-
chain geometric influences on main chain structure evolution. The dihedral angle distributions
were calculated and plotted as described in the previous section for each of the amino acids
and classified as helices and sheets. The residue-wise data thus generated, was similar not only
to the cumulative dataset presented in the previous sections, but also brought out new insights
into our perspective (Fig 4, Figure A5 in S1 File). The Linear side chains, both light (Gln) and
bulky (Trp & Tyr) side-chains showed similar dihedral angle rotations. The χ1 for Pro, like ϕ
wasn’t allowedmuch conformations as compared to others, but was present in two continuous
basins viz. (-150)-(-180) and (130)-(180) (Figure A6-A25 in S1 File). The left handed helix con-
formation was also seen at flanking positions in most of the residues with more prominence in
Gln and Lys, while completely missing in Ile, Val and Pro (A26-A39 in S1 File). This observa-
tion is in concordance with the observations by Kleywegt et al. [31].

In our earlier analysis, we found that χ1 and χ2 are counter-rotating while secondary structure
formation, and direction of χ1 rotor is the most critical factor influencingϕ rotor. Therefore, we
mapped χ1 vs χ2 and ϕ vs χ1, basins during secondary structure formation and breaking (Fig 4,
Figures A6-A17 in S1 File). Interestingly, all seven amino acids we choose are distinctly different
in their basin distribution profiles (Figures A6-A44 in S1 File). This partially answers how struc-
ture of a sequence is unique, owing to the observation that the side-chain and main chain-rotor
that directs their structural evolution and pathway, are distinctly different and unique.

Translation of rotor preferences to substitution matrices: MIDMAT

Series

The data generated had information about dihedral angle distribution for amino acids in pro-
tein structure.We decided to extend the study to all amino acids and test it on a sequence

Fig 2. Helical structure formation and its breaking. H-3 to H basin shifts indicate formation of helix as a

result of left handed rotation of the χ1 rotor and right handed rotation of ϕ by 80˚ while helix breaking the

rotors assume reverse orientations. Theψ rotor maintains its right handed rotation throughout helix

formation and breaking. See also Figures A1-A4 in S1 File.

doi:10.1371/journal.pone.0163993.g002
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alignment platform. Hence, a methodologywas developed to convert this distribution data
into three possible substitution matrices. The majority of the scoringmatrices are based on the
evolution of the protein sequence, whereas our scoringmatrices are derived from the experi-
mental structural data. To construct the matrices, the geometrical arrangements of dihedral
angles were distributed into four basins from +150 to -150 (via ±180), -150 to -50, -50 to +50
and +50 to +150 degrees in the rotational plane. The frequency of appearance of each amino
acid was calculated for each basin and the basin energy for each reference basin was calculated

Fig 3. Formation of extended sheeted structures and their breaking. S-3 to S basin shifts indicates

formation of sheet as a result of right handed movement of the χ1 rotor and complimenting counter rotation of

ϕ;ψ rotor moves in the counter-direction of the ϕ rotor throughout formation and breaking of sheet. See also

Figures A1-A4 in S1 File.

doi:10.1371/journal.pone.0163993.g003

Fig 4. Differential distribution of side-chain and main-chain rotors among representative amino acid sets. Dissimilar ϕ vs χ1 basins in

protein structures for various amino acid types. Differential basin preferences for different amino-acids are calculated from the entire database of

22,977 non-redundant structures. Localization for the χ1 and ϕ dihedral rotors in protein structures are evident.

doi:10.1371/journal.pone.0163993.g004
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as per the following equation:

DG ¼ � RTln
Nx

B
ð1Þ

Where, ΔG is the energy of the basin, R is the Universal Gas Constant, T is temperature
(kept constant at 25°C),Nx is the number of basin entries, and B is the variable which was com-
puted in three different ways for three different matrices proposed.

For each of the matrices, B represents the following; i) the sum of hits in remaining basins,
ii) average of remaining basins and iii) average over all the four basins. Thus, to generate these
three values of B for the first basin (Basin1), we used the following set of equations for each
matrix

MIDMAT1 :Bi ¼
Xn

i¼1
bi

� �
� bi ð2Þ

MIDMAT2 :Bi ¼

Pn
i¼1

bi

� �
� bi

� �

n � 1
ð3Þ

MIDMAT3 :Bi ¼

Pn
i¼1

bi

� �

n
ð4Þ

where, Bi is the value of B for ith basin and bi is the sum of total number of entries in ith basin
The basin energies for each amino acid were thus calculated for the four rotors (ϕ, ψ, χ1 and

χ2). Comparative estimates of corresponding basins for any given amino acid pair was mea-
sured based on the Euclidean distance calculation as per the following equation.

Dxy ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fix � Fiy

� �2

þ Cix � Ciy

� �2

þ w1ix � w1iy

� �2

þ w2ix � w2iy

� �2
r

ð5Þ

where, Dxy is the distance (indicates the dissimilarity between the rotor preferences of two
amino acids) from amino acid x to amino acid y, and ϕi, ψi, χ1i, χ2i represent the basin energies
for the ith basin for ϕ, ψ, χ1 and χ2 dihedral distributions for the amino acids x and y.

The distances value calculated for all amino acid pairs has the very nature and physical
meaning of a typical substitution matrix. The values of this distance matrix were then normal-
ized by dividing all the values by a common denominator, 1000.

The values thus generated in the distance matrix were further processed to calculate substi-
tution values between each pair of two amino acids x and y (SVxy) by subtracting each of them
with the median value of the distance matrix and multiplying with a normalization factor of
0.5 as illustrated below.

SVxy ¼ 0:5� Median Dx1y1

� �
Dx1y2

� �
:: Dxnyn

� �� �
� Dxy

� �
ð6Þ

To calculate the substitution value of an amino acid with itself (e.g. ala with ala), we took the
maximum substitution value (SV) from the substitution matrix and added it to the existing
maximum substitution value of the same amino acid.

SVxx ¼ Max SVx1y1 SVx1y2 . . . SVxnyn

� �
þMax SVx1y1 SVx1y2 . . . SVx1yn

� �
ð7Þ

The values were then rounded off to the nearest decimal point to give the final substitution
score required for the construction of three substitution matrices, MIDMAT1 MIDMAT2 and
MIDMAT3 (Tables 1, 2 and 3).
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Table 1. MIDMAT 1 substitution matrix. MIDMAT 1 substitution matrix values are calculated based on basin statistics derived from the rotor combinations

of amino acids in the structural dataset of 22,997 non-redundant structures from PISCES server. The amino acids are represented as their single letter

codes.

A R N D C Q E G H I L K M F P S T W Y V

A 9 -2 -1 0 1 -2 -2 -1 -1 -3 -4 -3 -2 -1 -5 2 1 -1 -1 0

R -2 15 -1 -1 -1 6 6 -6 2 3 2 7 6 0 -9 -1 -1 0 0 -2

N -1 -1 13 6 3 0 -1 -2 3 -3 -2 -1 0 3 -9 2 1 3 3 -1

D 0 -1 6 13 3 0 -1 -3 3 -3 -2 -1 0 3 -8 3 2 4 2 0

C 1 -1 3 3 13 0 -1 -2 3 -1 -2 -1 0 2 -7 5 5 3 2 3

Q -2 6 0 0 0 14 7 -5 3 3 2 7 6 1 -8 0 -1 1 1 -1

E -2 6 -1 -1 -1 7 14 -6 2 3 2 6 6 1 -8 -1 -1 0 1 -2

G -1 -6 -2 -3 -2 -5 -6 6 -4 -8 -8 -6 -6 -5 -10 -2 -4 -5 -5 -6

H -1 2 3 3 3 3 2 -4 12 0 -1 2 3 5 -9 2 1 4 5 0

I -3 3 -3 -3 -1 3 3 -8 0 11 1 3 4 0 -9 -2 -1 -1 0 -2

L -4 2 -2 -2 -2 2 2 -8 -1 2 10 2 2 -1 -9 -3 -3 -2 -2 -2

K -3 7 -1 -1 -1 7 6 -6 2 3 3 14 6 0 -9 -1 -2 0 0 -2

M -2 6 0 0 0 6 6 -6 3 4 3 6 14 2 -8 0 0 1 2 -1

F -1 0 3 3 3 1 0 -5 5 0 -1 0 2 15 -8 1 1 6 7 1

P -4 -9 -9 -8 -7 -8 -8 -10 -9 -9 -9 -9 -8 -8 3 -7 -7 -7 -8 -6

S 2 -1 2 3 5 0 -1 -2 2 -2 -3 -1 0 2 -7 13 5 2 1 2

T 1 -1 1 2 5 -1 -1 -4 1 -1 -2 -2 0 1 -7 5 12 2 1 2

W 0 0 3 4 3 1 0 -5 4 -1 -2 0 1 6 -7 2 2 13 6 1

Y -1 0 3 2 2 1 0 -5 5 0 -2 0 2 7 -8 1 1 6 15 1

V 0 -2 -1 0 3 -1 -1 -6 0 -2 -2 -2 -1 2 -6 2 2 2 1 10

doi:10.1371/journal.pone.0163993.t001

Table 2. MIDMAT 2 substitution matrix. MIDMAT 2 substitution matrix constructed using a different approach than MIDMAT1 as discussed in results sec-

tion, from the same set of 22,997 non-redundant structures from PISCES server. The amino acids are represented as single letter codes.

A R N D C Q E G H I L K M F P S T W Y V

A 10 -3 -1 -1 1 -2 -2 -2 -1 -4 -5 -3 -2 -2 -5 2 1 -1 -2 0

R -1 14 -1 -1 -1 6 6 -6 2 2 2 7 5 0 -9 -1 -2 -1 0 -2

N 1 -1 13 5 3 0 -1 -3 3 -3 -2 -1 0 3 -9 2 1 3 2 -1

D 1 -1 5 12 3 -1 -1 -3 2 -3 -2 -1 -1 2 -8 2 1 3 2 0

C 2 0 4 4 12 0 -1 -3 2 -2 -2 -1 0 2 -8 5 4 2 2 2

Q 0 6 0 -1 1 13 6 -6 3 2 2 6 6 1 -9 -1 -1 0 1 -2

E 0 6 -1 -1 1 6 13 -6 2 3 2 6 6 0 -8 -1 -2 0 0 -2

G -2 -4 -1 -2 -2 -4 -5 6 -4 -9 -9 -6 -6 -6 -11 -2 -4 -5 -6 -6

H 1 2 3 2 4 3 2 -3 12 0 -1 2 3 5 -9 1 1 4 5 0

I -2 2 -3 -3 -1 2 3 -8 0 10 1 2 3 -1 -9 -3 -1 -1 -1 -2

L -2 2 -2 -2 -1 2 2 -7 -1 1 9 2 2 -2 -9 -3 -3 -2 -2 -2

K -1 7 -1 -1 1 6 6 -4 2 2 2 14 6 0 -9 -1 -2 -1 0 -2

M 0 5 0 -1 1 6 6 -5 3 3 2 6 13 1 -9 -1 -1 1 1 -1

F 0 0 3 2 4 1 0 -4 5 -1 -2 0 1 14 -9 1 1 6 7 1

P -4 -9 -9 -8 -8 -9 -8 -10 -9 -9 -9 -9 -9 -8 2 -7 -7 -7 -9 -6

S 3 0 3 3 5 1 0 -1 3 -1 -2 0 1 2 -7 12 4 2 1 1

T 2 -1 2 2 4 0 0 -3 2 0 -2 -1 0 2 -7 4 12 2 1 1

W 1 -1 3 3 4 0 0 -4 4 -1 -2 -1 1 6 -7 3 3 13 6 1

Y 0 0 2 2 3 1 0 -4 5 -1 -2 0 1 7 -8 2 2 6 14 1

V 1 -1 0 0 2 0 -1 -6 1 -1 -1 -1 0 2 -6 1 1 2 2 9

doi:10.1371/journal.pone.0163993.t002
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Evaluation of MIDMAT1, MIDMAT2 and MIDMAT3

The constructedmatrices, MIDMAT1, MIDMAT2 and MIDMAT3 were tested for their effi-
cacy as substitution scoringmatrices by employing them in the BLAST program. CASP11 data
set was used as a test set, becausemajority of proteins in CASP11 have minimal sequence simi-
larity with the structures available in PDB at the time of submission. All three matrices were
successful in aligning the sequences from CASP11 dataset with their respective PDB IDs, now
available in PDB. The results were promising for the MIDMATs and MIDMAT3 consistently
produced a better score and E-value for the best matching alignment than MIDMAT1 and
MIDMAT2. This, however, is a simple qualitative demonstration highlighting the utility of
three matrices generated solely on the basis of dihedral angle geometries of representative pro-
tein dataset. We have employed BLOSUM62 (25) and PAM30 (24) as standards. For a set of 67
proteins used for CASP11, the number of common and unique hits is represented by the Venn
diagrams for MIDMATs, BLOSUM62 and PAM30 (Fig 4). As is evident from Fig 5, MID-
MAT1 showed most similar results to PAM30, a matrix used for aligning highly similar
sequences of a significantly small length, usually less than 50. MIDMAT3 is the most promising
among all MIDMAT matrices in terms of scores and E-values. This, however, is a simple sug-
gestive demonstration highlighting the utility of three matrices generated solely on the basis of
dihedral angle geometries of representative protein dataset.

Discussion

Folding of a protein moleculemay be envisaged as an evolution of a given polypeptide chain
from random to fixed geometry;with geometrical fixation of the final fold is decided by its
amino acid sequence. Polypeptide chain has a characteristic ratio approximately 9 times more
than a random flight chain indicating the constraint in the chain due to peptide bond, poly L

Table 3. MIDMAT 3 substitution matrix. MIDMAT3 substitution matrix constructed by following the third strategy (results section) for calculation of Bi,

from the identical data set of 22,997 non-redundant structures from PISCES server.

A R N D C Q E G H I L K M F P S T W Y V

A 9 -1 1 1 2 0 0 -2 1 -1 -1 -1 0 1 -3 3 2 1 1 1

R -1 12 -1 -1 1 5 5 -4 2 2 1 6 5 0 -7 0 0 0 1 -1

N 1 -1 11 5 3 0 -1 -1 3 -3 -1 0 0 2 -7 3 1 2 2 0

D 1 -1 5 11 4 0 -1 -2 3 -3 -1 -1 0 3 -6 3 2 3 2 0

C 2 1 3 4 11 1 1 -2 4 -1 0 1 1 3 -5 5 4 4 3 2

Q 0 5 0 0 1 12 6 -4 3 2 2 6 5 1 -6 1 0 0 1 0

E 0 5 -1 -1 1 6 12 -4 2 2 1 5 5 1 -6 0 0 0 1 0

G -2 -4 -1 -2 -2 -4 -4 5 -3 -7 -6 -4 -4 -4 -8 -1 -3 -4 -4 -5

H 1 2 3 3 4 3 2 -3 10 0 0 2 3 4 -6 3 2 3 4 1

I -1 2 -3 -3 -1 2 2 -7 0 9 1 2 3 0 -6 -1 0 -1 0 0

L -1 1 -1 -1 0 2 1 -6 0 1 8 2 2 0 -6 -1 -1 0 0 0

K -1 6 0 -1 1 6 5 -4 2 2 2 12 5 1 -7 0 0 0 1 0

M 0 5 0 0 1 5 5 -4 3 3 2 5 12 2 -6 1 1 1 2 1

F 1 0 2 3 3 1 1 -4 4 0 0 1 2 12 -6 2 2 5 6 2

P -3 -7 -7 -6 -5 -6 -6 -8 -6 -6 -6 -7 -6 -6 3 -5 -4 -4 -6 -3

S 3 0 3 3 5 1 0 -1 3 -1 -1 0 1 2 -5 11 4 3 2 1

T 2 0 1 2 4 0 0 -3 2 0 -1 0 1 2 -4 4 10 3 2 2

W 1 0 2 3 4 0 0 -4 3 -1 0 0 1 5 -4 3 3 11 5 2

Y 1 1 2 2 3 1 1 -4 4 0 0 1 2 6 -6 2 2 5 12 2

V 1 -1 0 0 2 0 0 -5 1 0 0 0 1 2 -3 1 2 2 2 9

doi:10.1371/journal.pone.0163993.t003
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stereochemistry and steric interaction. Practically, hugely restricted combinations of ϕ and ψ
dihedral angles of main chain and χ1, χ2 etc. dihedral angles of side chain are the only variables
in this complex process. Since main chain is a constant for all the chains, we made an assump-
tion that the side chain geometrical variables χ1 and χ2 are guidingmain chain geometrical var-
iables ϕ and ψ. The results obtained were rather surprising with secondary structure elements
showing distinctly different geometrical rotation patterns while formation and breaking.We
modelled the protein molecule as an ‘enigma machine’ with the directive of its geometrical evo-
lution encoded in its sequence. The four geometrical variables are modelled as four rotors of
this molecularmachine. Amino acid sequence is essentially its side chain sequence and there-
fore, we could logically assume that side chain rotors χ1 and χ2 are directingmain chain rotors.
We could show that their differential motions differentiate secondary structure formations. We
further examined seven amino acids of diverse side chain type to evaluate their rotor motion.
The observations that all seven were distinctly different in their side chain and main chain
rotor combinations further strengthened our belief that side chain geometry controls main
chain geometries of a poly-peptide chain. We further extended the study to all amino acids by
calculating free energy of each dihedral angle combination basins from their population statis-
tics. All amino acids are compared against each other and quantified in the form of 3 substitu-
tion matrices. Their performances are compared by plugging in a BLAST engine. The results of
these comparative analysis with standard substitution matrices like BLOSUM62 and PAM30
further underlies the efficacy of these substitution matrices in sequence alignment tools. How-
ever, a detailed study on their relative efficacywhen compared to other scoringmatrices (BLO-
SUM62 and PAM) is beyond the scope of this paper, hence not attempted.

We believe that our study is throwing light on the following fundamental aspects of protein
folding. i) How an amino acid sequence choose a secondary structure. ii) How side chain
geometries and its combination with main chain geometries directs the evolution of a random
chain to its prescribed fold and iii) How different sequences generally end up in different fold.
The emphasis on ‘How’ rather than ‘why’ in our investigation may perhaps helped us in

Fig 5. Similar and unique hits for MIDMATs compared to BLOSUM62 and PAM30: The number of total, common and unique hits scored by

MIDMATs (MIDMAT 1, MIDMAT 2 and MIDMAT 3), against BLOSUM62 and PAM30 matrices when plugged into a BLAST program against PDB,

using the CASP11 database as a query set, while maintaining the default parameters of BLAST.

doi:10.1371/journal.pone.0163993.g005
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proposing some important observations and a model, though they are of suggestive nature
than that of a conclusive one.
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