
COMPUTATIONAL NEUROSCIENCE

Sporns, 2010). The power of network analysis derives from its appli-
cability to brain connectivity data from different spatial scales, as 
well as networks derived from anatomical or physiological observa-
tions. At the time of writing, virtually all network studies carried 
out on neural data sets from a variety of species and neural systems 
have revealed characteristic non-random attributes. The ubiquity 
of non-random connectivity raises important questions about the 
origin and functional importance of non-random patterns.

This review focuses mainly on non-random aspects in the organ-
ization of mammalian cortex, mapped at the large scale of brain 
regions and pathways. While most examples are drawn from studies 
of anatomical connectivity, the relation of anatomical to functional 
networks will also be addressed. First, after a brief explanation of 
key terms in graph theory and network analysis, we will turn to 
a discussion of the meaning of randomness in networks and its 
manifestation in models and empirical studies of neural circuits. 
The next two sections are devoted to a survey of various non-
random network attributes encountered at the large scale of brain 
regions and pathways, primarily within the mammalian cortex, and 
to the putative origin of non-random patterns in brain networks. 
After discussing the role of non-random connectivity in generating 
complex neural dynamics, we turn to a brief overview of distur-
bances of connectivity in brain disease and examine the hypothesis 
that several common brain disorders are associated with increased 
randomness in structural and functional brain networks.

Brain networks and Graph theory
Brain connectivity refers not only to a set of anatomical (axonal, 
synaptic) connections, but also to patterns of dynamic interac-
tions that accompany spontaneous or evoked neural responses 
(Horwitz, 2003). Anatomical or structural connectivity describes 

introduction
The development of advanced techniques for mapping connectivity 
in neural circuits and systems, in combination with new computa-
tional approaches to network analysis and modeling, is beginning 
to reveal the architecture and dynamics of brain networks in ever 
greater detail (Sporns, 2011). Significant progress in electron and 
light microscopy (Helmstaedter et al., 2008; Lichtman et al., 2008; 
Arenkiel and Ehlers, 2009), coupled with advanced reconstruction 
techniques (Anderson et al., 2009; Lu et al., 2009; Jain et al., 2010), 
will likely yield cellular connection maps of significant portions of 
a nervous system in the near future. In parallel, advances in classical 
histology and neuroanatomy (e.g., Palm et al., 2010), as well as the 
application of non-invasive neuroimaging as a new tool for map-
ping connections in the living human brain (Johansen-Berg and 
Behrens, 2009; Raichle, 2009; Hagmann et al., 2010), deliver increas-
ingly detailed maps of neural connectivity at the large scale of brain 
regions and inter-regional pathways. Jointly, these developments 
in microscopy and imaging have revived the long-standing goal of 
charting detailed anatomical maps of neural circuits and systems, 
including those of the human brain (Sporns et al., 2005).

In parallel to these technological developments, a broad range 
of new methods for characterizing and modeling network data 
sets has become available (Brandes and Erlebach, 2005; Newman, 
2010). Building on the well-established mathematical framework 
of graph theory, modern network analysis methods are beginning 
to be widely applied to structural and functional brain connectivity 
data sets (Sporns et al., 2004; Reijneveld et al., 2007; Bullmore and 
Sporns, 2009). For example, such methods allow the extraction of 
global metrics that capture various aspects of the network’s topo-
logical organization, as well as measures for the local contributions 
of individual nodes and edges to network function (Rubinov and 
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the  physical arrangement of connections between circuit elements, 
be they neurons or brain regions. Functional connectivity cap-
tures patterns of statistical dependence between neural elements, 
measured for example as cross-correlation, covariance, or mutual 
information. Clearly, structural and functional connectivity have 
very different spatiotemporal characteristics. Functional con-
nectivity is inherently dynamic and variable, changing on time 
scales of milliseconds and in ways that reflect changing patterns of 
endogenous or stimulus-driven processing. Structural connectiv-
ity, on the other hand, changes on longer time scales as a result of 
growth processes, connectional maturation, or plasticity. Structural 
connections are generally sparse and form a network of directed 
relationships, while functional connections are often significantly 
denser and undirected.

Both structural and functional connectivity can be described 
as a graph or network, essentially a set of nodes and edges, with 
nodes representing neural elements and edges their structural 
or functional relations. The construction of such networks from 
empirical data generally proceeds along several steps (Bullmore 
and Sporns, 2009), beginning with the definition of nodes and the 
estimation of a (usually continuous) measure of their pair-wise 
relationships. At the microscale, nodes may be taken to correspond 
to individual neurons, while nodes in large-scale networks may be 

harder to define, requiring sophisticated parcellation strategies to 
extract functionally coherent brain regions from a continuous brain 
volume or surface (Cohen et al., 2008; Nelson et al., 2010).

Once a network description has been derived, analytic tools 
and measures can be used to quantify local and global aspects of 
the network’s topological organization (Figure 1). Three main 
classes of metrics are of particular importance in a neurobiologi-
cal context, assessing the local segregation and global integration 
of the network, and the relative influence of individual network 
elements. Measures of segregation capture, for example, the degree 
to which network elements form distinct clusters or modules. Such 
modules may correspond to groups of elements that carry out 
common functions, share information, or engage in coherent 
neural processing. Measures of integration express the degree to 
which network nodes can cooperate or transmit information, for 
example by recording the lengths of the shortest paths that link 
each node pair. Finally, measures of influence quantify how indi-
vidual elements are embedded in the network as a whole. Nodes 
and edges can participate in peripheral or more central roles, 
depending on their degree of connectedness, or their placement 
within or between modules. The number of edges attached to each 
node, the degree, is one of the simplest measures of its influence 
or centrality.

Figure 1 | Key graph measures and their definitions. The measures are 
illustrated in a rendering of a simple undirected graph with 12 nodes and 23 
edges. (A) Node degree corresponds to the number of edges attached to a given 
node, shown here for a highly connected node (left) and a peripheral node (right). 
(B) The clustering coefficient is shown here for a central node and its six 
neighbors. These neighbors maintain 8 out of 15 possible edges, for a clustering 

coefficient of 0.53. (C) Each network can be decomposed into subgraphs of 
motifs. The plot shows two examples of two different classes of three-node 
motifs. (D) The distance between two nodes is the length of the shortest path. 
Nodes A and B connect in three steps, through two intermediate nodes (shown 
in gray). The average of the finite distances for all node pairs is the graph’s path 
length. (e) The network forms two modules interconnected by a single hub node.
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more complex structural parameters can be computed analytically. 
Importantly, the Erdös–Rényi random graph model is only one 
among many possible random models. Following the definition 
of Newman (2010), random graphs are graphs for which some 
specific sets of parameters take on fixed values, while other graph 
characteristics are unconstrained and, in this sense, “random”. For 
example, in the Erdös–Rényi model, only the number of nodes 
and the edge probability are fixed, while all other graph metrics 
can vary. Given the variety of random graph models there is no 
single network metric or attribute that identifies random graphs 
as “random.”

It has long been recognized that the Erdös–Rényi random graph 
model is not a very accurate model of real-world networks. Most 
real networks deviate in numerous ways from this rather simple 
random graph model. For example, their nodes often maintain 
highly clustered connections, and node degrees do not follow a 
Poisson distribution. Going beyond the particular example of 
the Erdös–Rényi random graph, it is possible to construct other 
random graph models that are characterized by non-Poissonian 
degree distributions or by desired levels of clustering. These types 
of random graphs form ensembles or populations that can be stud-
ied with statistical or computational approaches. Depending on 
which parameters are fixed, the resulting populations will show, 
on average, characteristic structural features that are specific for a 
particular class of random model.

In most cases, empirically derived brain networks are naturally 
represented as weighted graphs, i.e., the associations between nodes 
are measured on a continuous scale. While older studies gener-
ally relied on graph methods that require binary edges, modern 
developments in network science now provide graph metrics 
that assess network topology in weighted networks (Rubinov and 
Sporns, 2010). Such weighted network metrics can eliminate the 
need to apply thresholds or binarize the original empirical data 
sets, which discards important information about graded interac-
tions. If binary graph metrics are to be used, a range of thresholds 
should be applied in order to ensure that the resulting graph metrics 
are robust.

A further distinction, which was alluded to above, is that between 
directed and undirected graphs. In directed graphs, all edges express 
a directed relationship between a source and a target, and these 
types of edges are encountered in networks describing axonal or 
synaptic connections as well as in networks composed of linkages 
expressing causal relations between nodes. Undirected networks 
are found where the empirical measurement of the association 
between edges does not provide directional information – this is 
the case for structural networks derived from diffusion imaging 
or for functional networks derived from cross-correlations among 
time series. Mathematical definitions of graph metrics often vary 
for directed versus undirected networks, and some aspects of graph 
topology, for example hierarchical arrangements of network nodes, 
may only be accessible if the direction of edges is known.

A network architecture that has received an extraordinary 
amount of attention over the past decade and is particularly rel-
evant for the brain is the so-called “small world” (Bassett and 
Bullmore, 2006; Figure 2). Originally investigated empirically in 
the social sciences, it refers to a type of network that combines high 
clustering of connections with a short overall path length (Watts 
and Strogatz, 1998). Clustering expresses the “cliquishness” of local 
neighborhoods, or the extent to which connected nodes share com-
mon neighbors. The path length of the network is computed as 
the average length of the shortest path between any two nodes. 
Small-world networks are found in many social, technological, and 
biological systems, and their non-random attributes are of central 
importance in neural systems as well. In the brain, small-world 
architectures arise because of characteristic non-random features of 
the connection topology, specifically the existence of modules and 
hubs. Before we turn to a more detailed discussion of these aspects 
of the small-world architecture of the brain, we need to clarify the 
terms “random” and “non-random” as they are commonly used in 
graph theory and neural models.

random Graphs
Random networks are a central concept in classical graph theory. 
In one of the simplest random graph models, extensively studied 
by Erdös and Rényi (1960), the graph consists of a given number 
of nodes n and (undirected single) edges are assigned to node pairs 
with a fixed probability p. Clearly, for any given value of n and 
p a great number of different graphs can be constructed. These 
graphs form an ensemble of random graphs that contain, on aver-
age, p(n2 − n)/2 edges, with node degrees that follow a Poisson 
distribution and a mean degree given by (n − 1)p. The appeal of 
this simple model derives from the fact that many of the graph’s 

Figure 2 | The Watts–Strogatz model of the small world. The network at 
the upper left hand corner represents a ring lattice with circular boundary 
conditions. Starting from this configuration connections are randomly rewired 
with a given rewiring probability p. For p = 0 (no rewiring), the network retains 
its regular lattice topology. For p = 1 the network is completely random and all 
lattice-like features have disappeared. Intermediate values of p result in 
networks that consist of a mixture of random and regular connections. The 
plot at the bottom shows the clustering coefficient Cp and the path length Lp, 
both normalized by their values for the regular network (P0, L0). Note that there 
is a broad range for the rewiring probability p where networks have clustering 
that is similar to that of the regular network, and a path length that is similar to 
that of the random network. Within this range, networks exhibit small-world 
attributes. Data computed following the procedure described in Watts and 
Strogatz (1998), with networks consisting of 1,000 nodes and 10,000 edges 
(data points represent averages of 400 rewiring steps).
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circuits incorporated random or stochastic mechanisms. Various 
types of statistical neuroanatomical models were constructed from 
available experimental data on the number, density, and spatial dis-
tribution of neuronal cell types; the projections and arborizations 
of axons; the orientation and branching of dendrites; and from the 
probabilities and densities of synapses linking specific cell types.

Anatomical studies carried out in the 1950s suggested that neu-
rons in the cerebral cortex and other parts of the brain, including 
the cerebellum, established synaptic connections following statisti-
cal rules that depended on spatial proximity and distance. Empirical 
work by Sholl (1953, 1955) and statistical analyses by Uttley (1955) 
provided important early insights into the important role of physi-
cal distance for determining connection probabilities. Building 
on this work, Beurle (1956) constructed mathematical models 
of population activity arising from “random masses” of neurons. 
Beurle contrasted the notion of specified wiring, as might be found 
for instance in a computer, with the apparently large role of ran-
domness in establishing connections in neural tissue. Despite their 
microscopically random construction, Beurle’s models were capable 
of producing macroscopically organized spatiotemporal patterns 
such as traveling waves. In a similar vein, Grenander and Silverstein 
(1977) constructed large models of randomly connected neural 
networks and demonstrated that, as network size increased, global 
network structure followed a “law of large numbers.” According to 
the model, microscopic variations in a population of organisms 
due to random neural connectivity did not impact global network 
measures, for example the spectrum of eigenvalues characterizing 
the connectivity matrix. These models represent early example of 
how a set of stochastic generating mechanisms can yield networks 
and network dynamics with characteristic global attributes.

More recent studies of anatomical patterns and physiological 
interactions of different neuronal cell types in neocortex have helped 
to define statistical models of canonical microcircuits (Binzegger 
et al., 2004, 2009). The circuits are based on empirical data on cell 
type compositions and densities in cortical layers and their mutual 
connection probabilities. Thus, they describe characteristic pat-
terns of “average connectivity” that can inform dynamic models of 
local (Kremkow et al., 2007) or large-scale cortical dynamics (e.g., 
Izhikevich and Edelman, 2008). Canonical microcircuit models 
combine non-random attributes related to cell layers and types 
with random connectivity governed by local connection prob-
abilities. Their statistical description serves as a blueprint for a 
common computational “module” that is iterated over much of 
neocortex, possibly replacing the older notion of anatomically dis-
crete cortical columns (Da Costa and Martin, 2010). Their linkage 
through long-range projections into large-scale systems gives rise 
to additional non-random topological features and more complex 
computational capacities.

non-random attriButes of LarGe-scaLe networks
Early analyses of comprehensive maps of mammalian cortical regions 
and their interconnections revealed a number of non- random 
attributes, including high proportions of reciprocal pathways and 
a propensity for neighboring cortical regions to be anatomically 
connected (Felleman and van Essen, 1991; Young, 1992). Thus, the 
spatial profile of large-scale inter-regional pathways is reminiscent of 
the distance-dependent distribution of synaptic contacts in  neuronal 

Another important class of graph models is defined by a set of 
generative mechanisms for “growing” the network. These genera-
tive mechanisms often consist of a series of random or stochastic 
steps, and the growth process itself can have an impact on network 
properties (Callaway et al., 2001). For example, consider a network 
that is grown by the gradual addition of one node at a time. Let 
this node establish edges to already existing nodes with a prob-
ability that is proportional to their degree. Put differently, new 
nodes preferentially connect to already highly connected nodes 
in the network. This model of “preferential attachment” (Barabási 
and Albert, 1999) gives rise to power-law degree distributions, fre-
quently encountered in real-world networks. Importantly in our 
context, generative graph models can incorporate stochastic growth 
rules and yet yield specific (aggregate) network properties.

Random graph models are of importance in most standard graph 
analyses, including those of brain networks, as they provide “null 
models” against which hypotheses about non-random structures 
can be tested. In real-world networks absolute values of most net-
work metrics can vary widely, depending on the size and density of 
the graph. To determine their statistical significance, network met-
rics obtained from an empirical or real-world network should be 
compared to an appropriately constructed random graph (“null”) 
model. In one of the most widely used null models, the number of 
nodes and edges as well as the degrees of each node are preserved 
and all other graph characteristics, most importantly all aspects of 
global topology, are free to vary. One way to construct such a graph 
is by using a Markovian switching algorithm that randomizes edges 
while preserving node degrees (Maslov and Sneppen, 2002). This 
random graph model exactly preserves a given number of edges 
and thus differs from the previously discussed Erdös–Rényi model. 
In what follows we will refer to graph features as “non-random” if 
they deviate significantly from those of appropriately constructed 
populations of random or randomized graphs.

As even this very brief survey of random graph models shows, 
random graphs (in their most general formulation) do not consti-
tute a single uniform population, nor are they featureless constructs 
that lack distinctive attributes. Rather, their attributes are specific 
for each random model, defined by fixing specific graph parameters 
and letting others vary freely, or by growing graphs in a stochastic 
process that follows specific generative rules. Thus, in the present 
context it might be more appropriate to define the term “random 
graphs” in relation to their mode of construction, since the term 
is associated less clearly with any particular structural attribute or 
lack of attribute. This realization is important as we consider the 
concept of “random graphs” in neurobiology.

random modeLs of neuraL circuits
The idea that at least some aspects of the synaptic connectivity of 
the brain result from random or stochastic processes has a long 
history in neuroscience (e.g., Tuckwell, 1989). A set of ideas that 
became influential around the middle of the twentieth century 
(e.g., Turing, 1948) placed great importance on learning processes 
to sculpt adaptive and efficient cognitive architectures from an 
essentially random substrate of neural connectivity. Neural con-
nections were taken to form “random graphs,” with learning and 
experience carrying the burden of carving patterns corresponding 
to mental representations. Consequently, many models of neural 
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the network into non-overlapping modules, the metric expresses 
the difference between the density of within-module edges that 
is actually observed and the density expected by chance. The 
modularity of a network is defined by the partition that maxi-
mizes the modularity metric. Several efficient search algorithms 
for identifying an optimal module partition using the Newman 
metric have been described (e.g., Blondel et al., 2008). It is worth 
noting that the Newman metric can exhibit different degrees of 
sensitivity at different levels of edge density and module sizes 
(Fortunato and Barthelemy, 2007), and that numerous other 
modularity metrics and algorithms exist (Fortunato, 2010). A 
variant of the Newman metric that operates on fully connected 
and weighted networks, including negative edges, has recently 
been proposed.

The existence of modules is generally associated with numerous 
other non-random network features – high clustering and short 
path length (jointly representing the two main ingredients of the 
small-world architecture), high efficiency, an overabundance of 
specific classes of network motifs, and the appearance of special-
ized classes of nodes constituting network hubs. Graph analyses of 
the wiring diagram of the worm Caenorhabditis elegans revealed 
small-world features (Watts and Strogatz, 1998) as well as non-
random distributions of three-node motifs (Milo et al., 2002). 
Similar analyses performed on connectivity matrices for macaque 
and cat cortex also showed high clustering and short path length 
(Hilgetag et al., 2000; Sporns et al., 2000; Figure 3), characteristic 
motif frequencies (Sporns and Kötter, 2004) and the existence of 
highly connected and highly central hub regions (Sporns et al., 
2007). In several cases, these non-random structural features could 

microcircuits. But spatial distance alone does not account for the 
observed pattern of inter-regional pathways. Scannell et al. (1995) 
found that patterns of cat cortical connectivity generated on the basis 
of simple nearest-neighbor and next-door-but-one models could 
only account for a fraction of the existing pathways. These initial 
results suggested that network attributes other than spatial distance 
significantly contribute to the distinct topological features of large-
scale structural networks. This point was reinforced by Costa et al. 
(2007) who confirmed that spatial distance alone was insufficient 
to reconstruct the connection pattern of the primate cerebral cortex 
and demonstrated that, instead, similarities in topological features 
provided more accurate prediction.

Mounting evidence points to modularity as one of the most 
consistent non-random attributes of large-scale structural and 
functional networks (for a recent review see Meunier et al., 2010). 
Modularity refers to the existence of clusters or “network communi-
ties” whose constituent brain regions are more densely connected 
to each other than to regions in other modules. It is important 
to underscore that modular networks constitute a subset of net-
works with spatially non-uniform connectivity profiles that reflect 
increased proportions of short connections. For example, lattice-
like or “regular” networks contain short connections (and have 
high clustering) but are non-modular. The Watts–Strogatz small-
world model (Watts and Strogatz, 1998) arises from an interpola-
tion between fully random and fully regular networks but does not 
contain distinct modules or communities (see Figure 2).

Most extant studies of brain networks have employed a variant 
of a topological modularity metric developed by Mark Newman 
(Newman and Girvan, 2004; Newman, 2006). Given a partition of 

Figure 3 | The small-world topology of the macaque neocortex. (A) A 
structural connectivity matrix of 47 regions of macaque visual and somatomotor 
cortex, described in detail elsewhere (Sporns et al., 2007). Connections that are 
present are shown as black squares, absent connections are shown as white 
squares. (B) A sample of eight random networks with equal number of nodes 
and edges, and preserved node degrees. These networks were constructed by 
thoroughly randomizing the network shown in (A) using a random switching 

algorithm (Maslov and Sneppen, 2002). (C) Clustering coefficient and path 
length for a population of 250 random networks as well as the real macaque 
cortex. Networks along the dotted line would have clustering and path length 
exactly proportional to the random population, and therefore a small-world index 
of 1 (“no small world”). Networks that fall into the region to the lower right have 
far greater clustering than path lengths, relative to the random population, and 
thus a small-world index that is much greater than 1 (“small world”).
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distributed but highly interconnected set of hub regions (Zamora-
Lopez et al., 2010). These regions form an integrated central module 
whose topological position also plays an important role in corti-
cal synchronization (Gomes-Gardenes et al., 2010). The authors 
suggest that this central module may perform important func-
tions in the integration of multisensory information and higher-
order processing.

Much additional insight into the modularity of the human 
brain is delivered by functional imaging, particularly of spontane-
ous resting-state neural activity, where at least some modules have 
been found to correspond to subnetworks that have differential 
involvement in different cognitive functions (e.g., Nelson et al., 
2010). An in-depth review of functional modules and their spatial 
distribution is beyond the scope of the current article (see instead 
Meunier et al., 2010). We note that while structural and functional 
connectivity refer to two very different aspects of brain networks, 
they are related in that structural connections shape and constrain 
patterns of functional interactions and dynamic coupling (Honey 
et al., 2010). Because of this close relationship between structure 
and function in brain networks the distribution and integration 
of specialized information across the brain is crucially dependent 
on the non-random topology of anatomical connections, a point 
to which we will return shortly.

spatiaL emBeddinG and wirinG economy
The existence of non-random structural attributes of brain 
networks raises the question of their origin and functional sig-
nificance. This section attempts to address this question in the 
context of spatial embedding and wiring economy. The idea that 
the structure of neurons and neuronal circuitry is shaped by the 
conservation of resources such as space and material was already 
clearly articulated by Ramon y Cajal in 1891 (Cajal, 1995) and has 
since received much empirical support. A broad range of factors 
contribute to the cost of neuronal communication (Laughlin and 
Sejnowski, 2003), including wiring length and/or volume, axonal 
conduction delays and the timing of signal propagation, myelina-
tion, and the metabolic cost of neural activity and spike propa-
gation. In general, communication cost increases with increasing 
spatial separation between neuronal elements. Another important 
aspect concerns the cost incurred by developmental mechanisms 
needed to build a nervous system, including the establishment of 
physical connectivity through growth mechanisms. Along any of 
these dimensions of neuronal economy, random networks of the 
Erdös–Rényi type discussed earlier carry extremely high cost, since 
their topology is completely unrelated to physical space. Hence, 
they are all but impossible to physically wire within the spatial and 
metabolic constraints of real nervous systems, and they cannot 
be generated during development given the way morphological 
processes unfold in space and time (and thus they cannot evolve). 
This realization suggests the hypothesis that at least some of the 
non-random attributes of brain connectivity currently realized in 
biological nervous systems trace their origins to insurmountable 
constraints of development or evolution.

Spatial embedding was recognized long ago as a major ingredient 
for determining neural wiring. Anatomical data on neurons in the 
mammalian neocortex show that connection densities generally fall 
off with distance or, put differently, the probability of two neurons 

be related to functional or physiological aspects. For example, struc-
tural modules in macaque visual cortex (Hilgetag et al., 2000) and 
cat cortex (Hilgetag and Kaiser, 2004) were found to correspond 
closely to known groupings of functionally related brain regions. 
Hub nodes identified on the basis of graph analysis (Sporns et al., 
2007) were previously described as multimodal or transmodal asso-
ciation regions, a functional classification that is congruent with 
their topological centrality.

The use of non-invasive magnetic resonance imaging now 
allows graph analysis to be carried out on structural brain net-
works recorded in the living human brain. Small-world attributes 
(He et al., 2007) and distinct structural modules (Chen et al., 2008) 
were demonstrated in a group-averaged regional connection matrix 
derived from gray matter thickness correlations. Structural mod-
ules largely corresponded to functionally specialized clusters of 
regions in distinct sensory and motor domains. The use of diffusion 
imaging and tractography has allowed more extensive studies of 
human brain networks at multiple spatial scales and in individual 
participants (Hagmann et al., 2010). Diffusion imaging reliably 
detects major white matter pathways (Schmahmann et al., 2007) 
but also suffers from limited sensitivity, particularly in regions with 
complex fiber architecture, and an inability to infer the direction 
of axonal projections. Iturria-Medina et al. (2007, 2008) reported 
numerous non-random features including robust small-world 
attributes, non-random motif distributions, and the existence of 
highly central hub regions in a cohort of healthy volunteers. Hub 
regions included the precuneus, the insula, as well as the superior 
parietal and superior frontal cortex, all of which represent multi-
modal association regions of the cerebral cortex. Several of these 
regions were also identified in other studies employing diffusion 
imaging and graph analysis (e.g., Gong et al., 2009).

Hagmann et al. (2008), in an analysis of fully weighted struc-
tural connectivity sampled at high spatial resolution, confirmed 
numerous non-random attributes of human cortical networks, 
including high clustering and short path length, and the existence 
of modules and hub regions. In addition, the study reported positive 
assortativity indicating that high-degree nodes had a tendency to 
cluster together. Consonant with this observation, further analysis 
revealed a core of highly central and mutually interconnected corti-
cal nodes located in the posterior cingulate cortex and precuneus. 
These hub nodes linked to several distinct structural modules com-
prising frontal, temporoparietal, and medial cortical regions. The 
positive assortativity found in human cortical networks confers 
a degree of resilience as it is more difficult to disintegrate such a 
network by attacking individual highly connected hub nodes. The 
finding of positive assortativity in cortex contrasts with the negative 
assortativity reported earlier in C. elegans (Newman, 2002), a dif-
ference that may reflect differences in scale (areas versus neurons) 
or topological organization.

Highly interconnected hub nodes are also found in other large-
scale data sets. Support for the idea of a highly central “associa-
tion module” comes from analyses of macaque cortex where global 
connector hubs in parietal and prefrontal cortex were found to be 
more strongly interconnected than predicted by chance (Sporns 
et al., 2007). A detailed series of analyses carried out on the large-
scale connection matrix of cat cortex originally collated by Scannell 
et al. (1999) provides additional evidence for the presence of a 
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sets from C. elegans and human cortex suggest that these networks 
are embedded in physical space in a manner that is “cost-efficient” 
(Bassett et al., 2010). Cost-efficiency refers to an organization char-
acterized by economically arranged modules while preserving a 
highly efficient global connection topology. Bassett et al. (2010) 
also provided evidence that structural brain networks, including 
that of the human cerebral cortex (Hagmann et al., 2008), contain 
multiple levels of modules that are hierarchically arranged.

In addition to constraints on economy and efficiency, a host of 
other factors may have played an additional role in the appearance 
of non-random network attributes. As discussed earlier, the exist-
ence of modules in structural brain networks represents an impor-
tant topological feature that has consequences for other aspects 
of topology, including clustering and motifs. More generally, the 
modular organization of many biological systems may also sup-
port their robustness and their capacity for evolutionary adapta-
tion and innovation (Kirschner and Gerhart, 2005; Wagner et al., 
2007). Furthermore, modularity of control architectures appears 
to be favored in the presence of a variable and partly unpredictable 
environment (Lipson et al., 2002; Kashtan and Alon, 2005). Finally, 
allometric scaling relations between components of an evolving 
nervous system, for example the relation between gray and white 
matter volume in brains of different sizes (Zhang and Sejnowski, 
2000), place additional demands and constraints on patterns of 
connectivity that are likely associated with and, according to Bassett 
et al. (2010) may be explainable by, its non-random topology.

It is perhaps surprising to realize the extent to which the structure 
of brain connectivity is influenced by considerations of neuronal 
economy and cost, the spatial arrangement of neuronal elements, 
and the simple requirement that functioning nervous systems must 
be able to develop and evolve. Random networks whose topology 
does not make reference to physical space, incurs excessive cost, or 
precludes development or evolvability, simply cannot exist as part 
of biological organisms. While the non-random nature of brain 
networks is currently best documented at the large scale, the con-
servation of space, material, and energy likely plays a role across 
all scales of neuronal organization.

non-random networks and compLex neuraL 
dynamics
While economy is a central constraint for network topology, it 
must be reconciled with high functional performance, including 
high efficiency of information integration and the capacity for sus-
taining diverse and complex dynamic states. We already noted the 
importance of non-random network attributes such as modules 
and hubs for shaping the functional organization of the mammalian 
cortex. In this section, we expand upon this idea and argue that 
the non-random (small-world) architecture of anatomical brain 
networks plays a crucial role in constraining patterns of neuronal 
interactions, and in enabling diverse neural dynamics and high 
complexity. The term “complexity” is used here to indicate a type 
of neural dynamics that combines spontaneous variation with some 
degree of regularity – recurrent and diverse patterns that are shaped 
by the underlying neural architecture.

Numerous anatomical and physiological studies of the visual 
cortex have revealed the existence of functionally specialized 
domains, organized as distinct neuronal populations at the level 

to be synaptically connected decreases with their spatial separation 
(Braitenberg and Schüz, 1998; Hellwig, 2000). The important role 
of physical distance for non-random features of cortical synaptic 
connectivity has since been documented in a great number of ana-
tomical and physiological studies. Network analysis was deployed in 
recent physiological recordings of cell pairs in mouse cortex (Song 
et al., 2005). These recordings confirmed the distance-dependence 
of connectivity and added important additional information about 
non-random distributions of synaptic weights. While these distance-
dependent effects have strong experimental support, more recent 
physiological studies of microcircuits also suggest that distance alone 
is insufficient to explain the interactions of cortical neurons. Instead, 
it appears that cells are organized into spatially interleaved and func-
tionally specialized subnetworks (Ohki et al., 2005; Yoshimura et al., 
2005). First results from dense EM reconstructions of neural tissue 
also indicate that statistical descriptions based on cell types and 
distances do not fully account for observed patterns of synaptic 
connectivity (Mishchenko et al., 2010).

The neuronal layout and wiring of C. elegans has been closely 
examined in the context of neuronal economy. Even non-
 quantitative examination of the physical arrangement of neurons 
and connections suggested that spatial proximity is a major factor 
in determining synaptic connectivity (White, 1985), an idea that 
was pursued further in several studies aiming to relate physical 
placement of circuit elements and wiring minimization (Cherniak, 
1995). A detailed analysis at the level of individual neurons and con-
nections (Chen et al., 2006) revealed that the actual layout of the C. 
elegans nervous system indeed approximates an optimal layout that 
maintains connection topology while minimizing neuronal wiring. 
This supports the notion that wiring minimization can account 
for much (though not all) of the physical arrangement of neurons 
and connection in C. elegans. Interestingly, places in the connec-
tion matrix where wiring minimization is violated can be shown 
to relate to important functional demands, such as the presence of 
long-range connections that connect remote regions of the worm’s 
nervous system (Ahn et al., 2006; Chen et al., 2006).

This last point was examined in more detail by Kaiser and 
Hilgetag (2006) in a re-analysis of neuronal wiring data from C. 
elegans as well as large-scale connectivity of macaque cortex. Both 
networks could be spatially rearranged (while maintaining con-
nection topology) such that the total cost of wiring decreased sig-
nificantly below their actually observed values. Most of the excess 
wiring cost was due to the existence of long-range connections that 
are essential for maintaining functional integration, as measured 
by short path length or high efficiency. These results suggest that 
wiring appears to be conserved but that wiring economy alone is 
insufficient to explain observed patterns of brain connectivity. In 
addition to conserving neuronal communication cost, the topology 
of brain networks incorporates important non-random attributes 
such as small-world organization that ensure its computational 
efficiency and functional integration (Figure 4).

Modularity contributes to wiring economy. Topologically defined 
modules often comprise neural elements that are spatially close, 
e.g., brain regions that occupy adjacent territory on the cortical 
surface. Consequently, intra-module connections tend to be short, 
while connections linking modules to each other often extend over 
longer distances. Recent analyses of structural connectivity data 
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 emergent network dynamics (Wang, 2010). The central role of con-
nection topology in determining synchronization has been exten-
sively investigated in computational studies (e.g., Arenas et al., 2006; 
Zhou et al., 2007; Müller-Linow et al., 2008). Of particular interest is 
the role of non-random connectivity in creating “limited sustained 
activity” within and across modules (Kaiser and Hilgetag, 2010). 
Such activity consists of spontaneous or evoked network dynamics 
that neither dies out too quickly nor spreads explosively across the 
entire brain, and its generation is facilitated by connection topolo-
gies that incorporate hierarchical modularity.

Non-random features of local circuits such as clustering or 
motifs are likely to impact on the variety and diversity of neural 
dynamics. An attractive hypothesis suggests that dynamics in local 
circuits gives rise to a “computational reservoir” that can be molded 
by synaptic plasticity and support a variety of functional outcomes 
(Maass et al., 2002). Computational explorations of this idea sug-
gest that the capacity of such a system to encode rich input–output 
relationships depends on the diversity of its intrinsic dynamics, and 
may become maximal in a dynamic regime that is poised between 
randomness and regularity (Bertschinger and Natschläger, 2004). In 
this regime, the network is able to respond uniquely to new inputs, 

of columns or minicolumns (Mountcastle, 1997; but see Da Costa 
and Martin, 2010). For example, patchy distributions of anatomi-
cal intra-regional connections extending over several millimeters 
correlate with populations of cells that exhibit similar physiological 
specificity (e.g., Bosking et al., 1997). These specific anatomical 
connections likely shape spontaneous and evoked activity, during 
which communities of neurons that share similar feature selectivity 
tend to become coherently active (Kenet et al., 2003). The dynamic 
efficacy of anatomical connections and their capacity to induce co-
operativity among neurons can be modified on short time scales, 
for example by adjusting levels of inhibition and firing thresh-
olds (Binzegger et al., 2009). This raises the interesting possibility 
that the non-random topology of canonical microcircuits can be 
dynamically adapted to different processing demands, for example 
by tuning the balance between strong and weak connections, which 
in turn affects small-world attributes such a local clustering.

Numerous empirical and computational studies have examined 
the role of anatomical connections in neuronal synchronization. 
Local and long-range synchrony depends critically on the pattern-
ing of corresponding axonal connections (Buzsáki et al., 2004), 
and the topology of neural circuits plays a major role in  shaping 

Figure 4 | Small-world topology and wiring cost in the human cerebral 
cortex. Connection matrices at the top correspond to the empirically 
determined connection topology of the right hemisphere of the human cerebral 
cortex, as reported in Hagmann et al. (2008). The anatomical position of the 
nodes on the cortical surface is indicated by a gray scale at the left of the matrix. 
The plot at the right shows an example of a randomized network with equal 
number of nodes, edges, and equal node degrees. The plot at the bottom shows 
the small-world index and the wiring cost for the empirical network and a 

population of 100 randomized networks. Only the empirical network has a 
small-world index that is much greater than 1, due to high clustering and a path 
length that is approximately equal to the random case. Progressive 
randomization (curve) reduces the small-world index while at the same time 
incurring greater wiring cost. Wiring cost is approximated as the sum of all the 
Euclidean distances between connected brain nodes. The small-world index is 
the ratio of the normalized clustering coefficient and the normalized path length 
(both relative to randomized networks).
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These fluctuations in dynamic couplings greatly increase 
the dynamic repertoire of neuronal states. A large repertoire of 
diverse states may be beneficial to an organism as it contributes 
to its capacity to process signals from an environment that can 
only be partially predicted. The relationship between structural 
connectivity and rich and diverse neural dynamics continues to 
be relatively unexplored. Some computational studies suggest 
that non- random attributes of structural connectivity discussed 
earlier, such as modularity and small-world architecture, give rise 
to complex patterns of neural dynamics (Tononi et al., 1994). 
For example, the combination of high clustering and short path 
length encountered in small-world networks promotes the coexist-
ence of segregation and integration of neural information, a key 
ingredient of neural complexity (Tononi et al., 1994; Sporns et al., 
2000; Figure 5). Segregation and integration jointly capture dif-
ferent aspects of the way neural information is distributed and 
integrated in a network. High segregation involves the existence of 
many specialized communities that maintain coherence amongst 
their members, but relative independence between groups. High 
integration involves the flow if information between all elements of 
the network, both within and between communities. Viewed from 
a network perspective, the small-world attributes of clustering and 
efficiency, embodied in the brain’s module/hub architecture, jointly 
enable information specialization and integration. Non-random 
attributes of the structural connectivity of the human brain may 
thus have significant impact on the distribution and flow of infor-
mation in neural circuits.

LarGe-scaLe networks in Brain disease: increased 
randomization?
What happens if the balance between functional segregation and 
integration is perturbed? There is mounting evidence that brain dis-
orders are associated with characteristic disturbances of large-scale 
structural and/or functional connections. In the past, these distur-
bances have been described as localized changes in the functioning 
of individual brain regions, or in the altered integrity, connection 
strength or efficacy of specific pathways. However, in an integrated 
network such as the brain, local disturbances do not remain isolated 
from the rest of the system. Increasingly, brain connectivity stud-
ies report distributed system-wide effects on the global topology 
of brain networks associated with specific disease states. Network 
approaches are beginning to reveal consistent patterns of abnormal 
network organization in patient populations (Bassett and Bullmore, 
2009), for example in people with Alzheimer’s disease (AD), autism, 
or schizophrenia. Many of these studies use resting-state functional 
connectivity to chart patterns of dynamic correlations among brain 
regions (Fox and Greicius, 2010). While the nature of network dis-
turbances varies between conditions, a number of reports indicate 
that brain disorders are associated with changes in the balance 
between randomness and regularity in large-scale topology.

A common neurodegenerative disorder, AD manifests itself in 
severe dementia and profound loss of memory. Several studies have 
reported disturbances of large-scale connection patterns associated 
with the condition. Magnetoencephalographic recordings of spon-
taneous brain activity in people with AD and in healthy controls 
revealed characteristic differences in local and global functional 
network topology (Stam et al., 2007, 2009). Resting-state fMRI 

while at the same time maintaining a degree of memory for recent 
stimulation history. Similar to the concept of limited sustained 
activity mentioned earlier, a diverse response repertoire is seen as an 
important ingredient of flexible and adaptive neural computation, 
possibly indicative of “critical” brain dynamics (Chialvo, 2010).

Highly structured non-random patterns of neural activity are 
encountered not only among individual neurons, but also at the 
level of the large-scale dynamics of the human brain. The covari-
ance structure of spontaneous neuronal activity displays character-
istic patterns, for example in the inter-regional cross-correlations 
of fluctuations in the blood-oxygenation-level-dependent (BOLD) 
response recorded during the brain’s “resting-state” (Raichle et al., 
2001; Greicius et al., 2003; Fox et al., 2005). Several studies have 
shown that these patterns of resting-state functional connectiv-
ity are related to underlying patterns of structural connectivity 
(Koch et al., 2002; Vincent et al., 2007; Hagmann et al., 2008; 
Damoiseaux and Greicius, 2009; Honey et al., 2009). Recording 
structural and functional connections in the same cohort of par-
ticipants allows direct comparison of their corresponding network 
representations (Honey et al., 2009). The presence and strength of 
a structural connection between two nodes was highly predictive 
of the presence and strength of functional connections at the same 
node pair. However, because functional connections are statistical 
constructs and can take on significant positive or negative values 
among nodes linked by indirect structural connections, the reverse 
prediction (of structural from functional connections) was found 
to be impractical.

Several computational studies of resting-state brain dynamics 
have demonstrated how large-scale non-random pattern of struc-
tural connections can generate functional connectivity (Honey 
et al., 2007; Ghosh et al., 2008; Deco et al., 2009). All studies point 
to the importance of structural connectivity for shaping functional 
relationships. While the distinctive community structure of the 
brain is reflected both in anatomy and dynamics, it is important to 
note that structural and functional modules do not always exactly 
correspond – functional connectivity is inherently statistical and 
time- as well as state-dependent in nature and therefore should 
not be expected to conform to the relatively stable “skeleton” of 
anatomical pathways. Dynamic modulations of the efficacy of ana-
tomical pathways or exogenous perturbations of sensory inputs 
induce different functional networks to become active in different 
contexts. A comparison of task-evoked and resting-state regional 
co-activations suggests that both types of brain dynamics can be 
decomposed into a common repertoire of functional networks 
(Smith et al., 2009).

Recording and analysis of BOLD fluctuations at increasing time 
resolution is beginning to reveal the fine temporal structure of 
spontaneous brain dynamics. Resting-state functional connectiv-
ity, often represented as a single and static pattern of correlations, 
exhibits non-stationary fluctuations that reflect a temporal sequence 
of subpatterns (Chang and Glover, 2010). As a result functional cor-
relations between brain regions exhibit rapid variations across time. 
Such variations are also observed in computational models (Honey 
et al., 2007) where they are partially driven by fluctuating metastable 
synchronization among regions due to cooperative dynamic inter-
actions. How rapid fluctuations arise in the spontaneous dynamics 
of the human brain is as yet unknown.
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2010). One such study showed disruptions of the global organiza-
tion of functional connectivity in children with ADHD (Wang et al., 
2009), with some regions exhibiting significant alterations in their 
local and/or nodal efficiency. Interestingly, Wang et al. propose that 
the observed patterns suggest a shift, not toward increased random-
ness, but rather increased regularity in the global network.

It has long been hypothesized that schizophrenia is associated 
with a disconnection (or dysconnection) of long-range pathways 
and neurocognitive networks (e.g., Friston and Frith, 1995; Tononi 
and Edelman, 2000). Network analysis of resting-state functional 
connectivity revealed diminished levels of connectivity across many 
parts of the brain as well as specific alterations in small-world meas-
ures associated with the severity of the clinical condition (Zhou 
et al., 2007; Liu et al., 2008). These alterations result in a less inte-
grated pattern of functional connectivity, bound together by hub 
regions that are less highly connected and less central than those 
of healthy participants (Lynall et al., 2010), a pattern also seen in 
structural brain networks (Van den Heuvel et al., 2010). Within 
the default mode network, functional connectivity was found to 
be increased, with the degree of hyperconnectivity in individual 
patients being highly predictive of the severity of their psycho-
pathology (Whitfield-Gabrieli et al., 2009). Electrophysiological 
recordings support the view that schizophrenia is associated with 
disturbed small-world connectivity. Rubinov et al. (2009) suggested 
that schizophrenia is characterized by a randomization of con-
nections, an alteration of the brain’s community structure that 
results in an imbalance of segregation and integration and reduced 
centrality of cortical hubs.

In summary, converging evidence suggests that several brain 
disorders are associated with specific changes to large-scale struc-
tural and functional connectivity that result in a disease-specific 

recordings also showed that the small-world structure of functional 
brain networks was altered in people with AD. AD patients exhibited 
network attributes such as significantly reduced clustering (Supekar 
et al., 2008) that are consistent with an overall increase in random-
ness. The altered pattern of functional connectivity appeared to 
primarily result from specific disruptions of connectivity at highly 
connected hub nodes rather than random node failure (Stam et al., 
2009). The latter point is consonant with the observation that the 
locations of cortical hubs and areas of high amyloid deposition in 
AD are highly correlated (Buckner et al., 2009).

Autism is a neurodevelopmental disorder characterized by 
abnormal social interactions and communication patterns, as well 
as a tendency toward stereotypic behavior. Several lines of evi-
dence, including the application of diffusion imaging approaches 
(Keller et al., 2007) and functional connectivity studies (Just et al., 
2007), suggest that autism is associated with disorganized white 
matter pathways. A recent study of resting-state functional con-
nectivity suggested that autism was associated with a shift toward 
randomness in the temporal patterns of endogenous fluctuations 
in the BOLD signal (Lai et al., 2010). This shift was estimated by 
computing the Hurst exponent, a measure of the temporal order-
ing and randomness of time series data, and exhibited regionally 
specific patterns of disruption, with particularly strong differences 
in default mode and hub regions of the brain.

Resting-state fMRI studies in people with attention-deficit/hyper-
activity disorder (ADHD) have demonstrated reduced functional 
connectivity among regions of the default mode network, particu-
larly among regions along the cortical midline including the anterior 
and posterior cingulate cortex (Castellanos et al., 2008). More global 
network-wide effects of ADHD are beginning to be explored through 
network analyses of functional connectivity (Konrad and Eickhoff, 

Figure 5 | graph evolution for neural complexity. The initial population of 
graphs in generation 1 consisted of 10 randomized graphs similar to the ones 
shown in Figure 3B, with 47 nodes and 505 edges. Simple linear dynamics 
(Galán, 2008) was run on these graphs and the graph generating the highest 
neural complexity (Tononi et al., 1994) was selected and copied forward to 
the next generation, as described in Sporns et al. (2000). Then, small random 

“mutations” were introduced in the graph’s “offspring” and the process of 
selecting for complex dynamics was continued for a total of 50,000 
generations. (A) Plots show the increase in complexity and a parallel 
increase in modularity. (B) Examples of graphs obtained at the end of the 
simulations exhibit non-random topologies, including high modularity and 
hub nodes.
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particularly the existence of network communities interlinked 
by hub regions. The modular small world of brain networks 
simultaneously promotes their economy and efficiency, by ena-
bling their physical realization at low cost of wiring volume 
and metabolic energy, while also allowing efficient information 
flow. Non-random structure leads to the emergence of complex 
dynamics, generating a diverse repertoire of brain states that are 
differentially engaged during ongoing neural activity as well as 
in response to stimulation and task demands. Future studies, 
informed by increasingly refined network mapping and analy-
sis, will likely reveal additional non-random attributes of brain 
networks and thus further expand our understanding of how 
the non-randomness of the brain supports robust and flexible 
neural computation.
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“mis-wiring diagram.” At least for some of these disorders mis-
wiring of connections might result in an increased randomization 
of the overall network topology. If the emerging view of common 
brain disorders as “network diseases” turns out to be correct, it 
might offer new opportunities for the objective diagnosis of these 
disorders, and potentially even for future therapeutic intervention. 
Network metrics may represent candidate “biomarkers” that allow 
a new objective classification of disorders, and a basis for charting 
disease progression and prognosis.

concLusion
Random networks have played an important role in the history of 
graph theory, and they have contributed deep conceptual insights 
across diverse scientific disciplines.

However, modern circuit mapping and neural recording stud-
ies unequivocally show that the brain is not a random network. 
Instead, at different levels of scale, network studies have iden-
tified a number of specific non-random structural attributes, 
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