
OPINION
published: 24 November 2016

doi: 10.3389/fphys.2016.00561

Frontiers in Physiology | www.frontiersin.org 1 November 2016 | Volume 7 | Article 561

Edited by:

Krasimira Tsaneva-Atanasova,

University of Exeter, UK

Reviewed by:

Pietro Lio,

University of Cambridge, UK

Gustavo Glusman,

Institute for Systems Biology, USA

*Correspondence:

Sherry-Ann Brown

brown.sherryann@mayo.edu

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 31 August 2016

Accepted: 07 November 2016

Published: 24 November 2016

Citation:

Brown S-A (2016) Patient Similarity:

Emerging Concepts in Systems and

Precision Medicine.

Front. Physiol. 7:561.

doi: 10.3389/fphys.2016.00561

Patient Similarity: Emerging
Concepts in Systems and Precision
Medicine
Sherry-Ann Brown*

Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA

Keywords: patient similarity, patient similarity analytics, computational medicine, big data analytics, clinical

decision support

INTRODUCTION

Healthcare data generates a huge volume of information in various formats at high velocity
with sometimes questionable veracity (Barkhordari and Niamanesh, 2015) (4V). As a result, big
data tools such as patient similarity are necessary to facilitate analytics, which reduces costs
(Srinivasan and Arunasalam, 2013) and improves healthcare systems (Jee and Kim, 2013). Patient
similarity investigates distances between a variety of components of patient data, and determines
methods of clustering patients, based on short distances between some of their characteristics.
Although patient similarity is in its early stages, ultimately information about diseases, risk factors,
lifestyle habits, medication use, co-morbidities, molecular and histopathological information,
hospitalizations, or death are compared with laboratory investigations, imaging, and other clinical
data assessing medical evidence of human behavior (Figure 1). Such analytics consist of efficient
computational analyses with patient stratification by multiple co-occurrence statistics, based on
clinical characteristics. Algorithms create subgroups of patients based on similarities among
their electronic avatars. Among electronic avatars found to be similar, subgroups of patients can
be evaluated by further stratification guided by individual diagnoses, risk factors, medications,
and so on. Because of the multiple networks of subgroups of patients, patient similarity can
be considered an application of network medicine, with the output termed “patient similarity
networks.” Thus, data mining extracts clinically relevant information hidden in clinical notes
and embedded in other areas of the electronic health record (EHR) coupled with International
Classification of Disease codes. The result is a systematic individualized analysis of a subset
of patients that can improve outcome prediction and help guide management for a particular
patient currently being cared for by a clinician (Lee et al., 2015). The communication or output
from the algorithms can be used to identify and predict disease correlations and occurrence,
and potentially for clinical decision support at the point of care. Patient similarity analytics are
not restricted to global findings from large clinical trials consisting of somewhat heterogeneous
patient populations (Roque et al., 2011). In this way, patient similarity represents a paradigm
shift that introduces disruptive innovation to optimize personalization of patient care. Some
promising examples are regarding mental and behavioral disorders (Roque et al., 2011), infectious
diseases (Li et al., 2015), cancers (Wu et al., 2005; Teng et al., 2007; Chan et al., 2010, 2015;
Klenk et al., 2010; Cho and Przytycka, 2013; Li et al., 2015; Wang, 2015; Bolouri et al., 2016;
Wang et al., 2016), endocrine (Li et al., 2015; Wang, 2015), and metabolic diseases (Zhang et al.,
2014; Ng et al., 2015). Others involve diseases of the nervous system (Lieberman et al., 2005;
Carreiro et al., 2013; Cho and Przytycka, 2013; Qian et al., 2014; Buske et al., 2015a; Li et al.,
2015; Bolouri et al., 2016; Wang et al., 2016), eyes (Buske et al., 2015a; Li et al., 2015), skin
(Buske et al., 2015a; Li et al., 2015), heart (Wu et al., 2005; Tsymbal et al., 2007; Syed and
Guttag, 2011; Buske et al., 2015a; Li et al., 2015; Panahiazar et al., 2015a,b; Wang, 2015; Björnson
et al., 2016), liver (Chan et al., 2015), intestines (Buske et al., 2015a), musculoskeletal system
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(Buske et al., 2015a), congenital malformations (Buske et al.,
2015a), and various other conditions or factors influencing health
status (Gotz et al., 2012; Subirats et al., 2012; Ng et al., 2015).

PATIENT SIMILARITY IN SYSTEMS
MEDICINE

Patient similarity is just starting to spread its wings and
has the potential to transform Systems Medicine, which is
Systems Biology applied to health care. Systems Biology
studies the characteristics of cells, tissues, organisms, or other
comprehensive biological units as whole systems. Systems
Biology seeks to determine how changes in one part of the
system can affect the behavior of the whole system, and often
focuses on predictive modeling of the system in a perturbed state.
Patient similarity analytics could be developed to bring together
characteristics of the patient as a whole human system, and
compare these to a multitude of similar patients. Accordingly,
patient similarity analytics should in the near future incorporate
genomics, transcriptomics, proteomics, microbiomics, and other
“omics” and diverse components of systems medicine. In
addition, simulation of physiology at the level of the molecule,
cell, tissue, organ, and organism should be consolidated as
a comprehensive similarity feature to give a broader view of
interactions among organ systems. Patient similarity analytics
could provide predictive models of a patient’s outcome in the
setting of disease perturbations or diagnoses relevant to the index
patient. Making adjustments in the query data that serve as input
for the predictive models would allow for assessment of how
new diagnoses or therapies could impact the overall behavior and
phenotype of the whole patient.

Beyond the reasoning above, integrating the majority of
these systems medicine tools into patient similarity analytics
is potentially the next frontier in Systems Medicine, for at
least a few reasons. First, patient similarity analytics embrace
a systems view by assessing a myriad of characteristics for
hundreds or thousands of patients to produce a meaningful and
useful result. Second, patient similarity analytics are analogous
to various “omics” that in part compose Systems Biology.
Just as transcriptomics refers to generation of messenger
RNA expression profiles (Briefing, 1999), one could consider
a term similaromics referring to generation or identification
of patients similar to an index patient. Similaromics is also
akin to phenomics, proteomics, and genomics, among others.
Phenomics refers to cataloging the observable characteristics
conferred by a gene and proteomics describes the generation of
proteins expressed by a cell (Briefing, 1999). One might argue
that patient similarity is not quite analogous to genomics, since
an individual’s genome is thought to be constant throughout
their lifetime. However, this is no longer necessarily the case,
due to the current progress of genome editing tools. Indeed,
patient similarity is analogous to these various omics, all with
the potential to change over the lifetime of the individual. Thus,
just as a genome is the complement of all DNA within a cell, a
similarome is the complement of patients found to be similar
to an index patient. Within the similarome, one can further

FIGURE 1 | The patient similarity analytics loop in systems medicine.

Once a query patient is selected, the patient and clinician (e.g., physician or

other health professional) in partnership can enter the “patient similarity

analytics loop” (step 1), which is iterative as patient characteristics evolve over

time and new patients become available for inclusion in the similarome. In step

2, query information is entered via a clinical decision support tool interface. In

step 3, this information combines with data from the query or index patient’s

EHR to form the data input for the patient similarity algorithms. Each “omic” or

systems medicine data type or tool (Brown, 2015b) functions as a predictor

variable vector, all of which are incorporated into the multidimensional feature

space for the patient. In step 4, the entire available EHR patient populous is

interrogated with a patient similarity network analysis tool; efficient data mining

is completed using patient similarity algorithms. In step 5, similarity data is

arranged, yielding a similarome (cohort of patients most similar to the

query/index patient), with subsimilaromes (subgroups of patients most similar

to the query/index patient based on prioritizing various

comorbidities/medications, etc.). Step 6 involves data collating and

information retrieval. In step 7, the similarome (which includes subsimilaromes)

is presented to the patient-clinician partnership via the clinical decision support

tool interface for clinical decision-making at the point-of-care. C, Clinical

information; G, Genomics; O, Other systems medicine data types or tools;

P, Proteomics; S, Social network data; T, Transcriptomics.

distinguish subgroups of patients that are most similar to an
index patient, based on preferentially assigning preeminence to
comorbidities or medications of most interest or relevance to
the index patient, e.g., during a focused shared decision-making
session with a clinician. Similar to genotyping then, which
determines the presence or absence of a particular gene feature,
simotyping would allocate the presence or absence of a particular
similarity feature, for example, a diagnosis of diabetes. In this
context then, a similarity-wide association study (SiWAS) has the
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goal of discovering clusters of patients similar to an index patient
and identifying similar features that associate with specific
outcomes, such as complications, procedures, hospitalizations,
or death. For example, investigating whether in patients most
similar to an index patient diabetes is more likely to associate
with non-healing leg ulcers, critical limb ischemia, or gangrene
leading to limb amputation.

Third, patient similarity analytics have the potential to
bring together a variety of omics and other systems medicine
tools, if we can do so in a way that is effective, accurate,
consistent, and computationally efficient (Brown, 2015a).
Indeed, several groups have proposed methods of aggregating
omics and monitoring these over time for individual patients,
and perhaps even using comprehensive patient avatars.
Integrating these methods with patient similarity has the
potential to launch systems medicine further into a future
where medicine is even more precisely individualized. Patient
similarity will likely become and persist as a useful tool in systems
medicine.

MATHEMATICS IN PATIENT SIMILARITY
ANALYTICS

For illustration of the utility of patient similarity in medicine,
only briefly presented here are a few selected examples of patient
similarity analytics used for diabetes and cancer, which are
common chronic or terminal diseases, respectively, currently
addressed in public health. In some studies, a patient similarity
metric is determined as follows (Lee et al., 2015; Li et al., 2015).
A patient can be represented by a Euclidean vector. Predictor
variables such as laboratory test results or vital signs can define a
multi-dimensional feature space. The cosine of the angle between
two patients’ vectors can define the associated patient similarity
metric. A dot product can facilitate the calculation. This can
be termed the “cosine similarity,” defining the patient similarity
metric as follows:

PSM (P1, P2) =
P1 · P2

||P1|| ||P2||
,

=

∑n
i=1 P1i × P2i

√

∑n
i=1 P1i

2 ×

√

∑n
i=1 P2i

2

where P1i and P2i represent a single predictor variable vector
for two separate patients, · represents the dot product, and
|| || represents the Euclidean vector magnitude, as shown. Since
the patient similarity metric is an angle cosine, it normalizes
between −1 (considered minimum possible similarity) and 1
(considered maximum possible similarity). As expected, two
predictor variable vectors pointing in the exact opposite direction
to each other would have a 180◦ angle between them, and
would therefore calculate to a patient similarity metric of −1.
Conversely, two perfectly overlapping vectors would have an
angle of 0◦ between them, and would therefore calculate to a
patient similarity metric of 1. Accordingly, before calculating the
total patient similarity metric, the product for each predictor
variable vector would be normalized to the range of−1 to 1 in the

multidimensional feature space, if continuous (Lee et al., 2015).
The product for categorical/binary predictor variable vectors
would be assigned a value of −1 or 1. The patient similarity
metric would be calculated for each patient in a given data set,
relative to an index patient P1. The Nmost similar patients to the
index patient would be utilized as a training data set for testing
in a validation data set, with prediction of prognosis, morbidity,
or mortality. After successful validation, the predictive model
could be used for epidemiologic or clinical studies. For example,
am algorithm using cosine similarity successfully identified three
subgroups of patients with diabetes (Li et al., 2015). The first
subgroup included patients with diabetic nephropathy (diabetes-
related kidney disease) and diabetic retinopathy (diabetes-
related eye disease). The second subgroup included several
patients with cancer and cardiovascular diseases. The third
subgroup included many patients who also had cardiovascular
diseases, along with neurological diseases, allergies, and HIV
infection. Various single nucleotide polymorphisms mapped
to these three subgroups that were confirmed in the EHR,
suggesting clinical relevance for patient similarity in precision
medicine. Jaccard similarity, another metric that can be leveraged
after assigning binary attributes to each patient’s multifeature
vector space, was useful to analyze features underlying deviant
responses to therapeutics in patients with diabetes (Zhang et al.,
2014).

Alternatively, unsupervised clustering of patients based on
their clinical predictor variables could be used to produce a
patient-patient network. The network could be organized using
L-infinity centrality, which is the maximum distance from each
point from any other point in a given data set. L-infinity centrality
produces a detailed and succinct description of any data set
yielding more information than scatter plots (Lum et al., 2013).
Large values for L-infinity centrality correspond to data points at
large distances from the center of the data set (Li et al., 2015).
Other pattern analysis and cluster algorithms (Daemen and De
Moor, 2009; Chan et al., 2010; Liu et al., 2013a; Mabotuwana
et al., 2013; Sundar et al., 2014), or algorithms incorporating
distance metric learning (Wang et al., 2011; Bian and Tao,
2012), locally supervised metric learning (Sun et al., 2012; Ng
et al., 2015), local spline regression (Wang et al., 2012), or
visual analytics (Tsymbal et al., 2009; Ebadollahi et al., 2010;
Gotz et al., 2011; Perer, 2012; Heer and Perer, 2014; Bolouri
et al., 2016; Ozery-Flato et al., 2016), can also be used for
patient similarity to predict diabetes onset, develop treatment
recommendations tailored to each patient, or predict survival
after chemotherapy (Chan et al., 2010; Liu et al., 2013a; Ng
et al., 2015; Ozery-Flato et al., 2016), among other applications.
SNOMED CT and other medical terminology frameworks can
be used to facilitate communication across platforms in various
studies (Melton et al., 2006). There are also algorithms to
incorporate a time series into patient similarity analysis, to
predict trends over time among patients (Wu et al., 2005;
Hartge et al., 2006; Ebadollahi et al., 2010; Carreiro et al.,
2013; Alaa et al., 2016). For example, a patient similarity time
series algorithm has been used to fine-tune radiation treatment
planning for patients with head and neck cancers (Wu et al.,
2005).
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CHALLENGES IN PATIENT SIMILARITY

There are certain challenges in patient similarity, such as network
bottlenecks, low hardware performance (processing power and
memory), and data locality (Osman et al., 2013; Karapiperis
and Verykios, 2014; Barkhordari and Niamanesh, 2015). Given
the observational or retrospective nature of patient similarity,
interpretation of data analysis will be imperfect. Confounder
control and treatment selection bias are inherent limitations
in such studies. However, groups have developed strategies
to manage the potential for confounders, such as restriction,
stratification, matching, inverse probability weighting, and
covariate adjustment (Gallego et al., 2015). Several groups have
also proposed solutions for other challenges that enable large
scale patient indexing and accurate and efficient clinical data
retrieval (Wang, 2015). Some have devised algorithms to address
the complexity of clinical data and limited transparency of
many existing clinical case retrieval decision support systems
(Tsymbal et al., 2009), as well as integration of data from
various heterogeneous omics studies (Wang et al., 2014, 2016;
Gligorijević et al., 2016) and physician input and feedback (Wang
et al., 2011; Sun et al., 2012; Fei and Sun, 2015). Others have
produced algorithms that address scalability and uncertainty,
by requiring parallel or distributed algorithm implementations
built to scale, and enhancing interpretability by conveying
the certainty of results presented (Feldman et al., 2015). One
such algorithm or platform is scalable and distributable patient
similarity (ScaDiPaSi), a dynamic method for investigating
patient similarity that spreads the algorithm over several self-
sufficient hardware nodes to process query data from various
sources of different formats simultaneously (Barkhordari and
Niamanesh, 2015). Another tool, MapReduce, employs several
optimization techniques, such as job scheduling and cascading
work flows over multiple interdependent hardware nodes (Dean
and Ghemawat, 2008). Use of all of these technological solutions
for patient similarity in precision medicine will be facilitated
by bridging gaps among different scientific, technological, and
medical cultures, through interdisciplinary collaborations among
experts in medicine, biology, informatics, engineering, public
health, economics, and the social sciences (Kuhn et al., 2008).

CONCLUSION

Various patient similarity algorithms have been deployed and
have been found beneficial by improving clinical efficiency
(Wang et al., 2015), enabling secure identification of similar
patients and records sharing by clinicians and rare disease
scientists (Buske et al., 2015a,b), predicting patients’ prognosis
or trajectory over time (Ebadollahi et al., 2010; Subirats et al.,
2012; Wang et al., 2012; Gallego et al., 2015), providing clinical
decision support (Daemen et al., 2009; Wang et al., 2011;
Subirats et al., 2012; Sun et al., 2012; Gottlieb et al., 2013;
Liu et al., 2013b; Gallego et al., 2015), tailoring individual
treatments (Zhang et al., 2014), preventing unexpected adverse
drug reactions (Hartge et al., 2006; Yang et al., 2014), flagging
patients deserving more attention due to poor response to
therapies (Zhang et al., 2014; Ozery-Flato et al., 2016), and

pursuing comparative effectiveness studies (Wang et al., 2011),
among other applications. In general, clinical guidelines often
do not supply evidence on risks, secondary therapy effects,
and long-term outcomes (Gallego et al., 2015). In this setting,
patient similarity analytics can provide a cheaper, portable
alternative or in fact adjunct to evidence-based clinical guidelines
and randomized controlled trials, particularly if trial data are
unavailable for conditions or patient characteristics specific to
a query individual (Longhurst et al., 2014; Gallego et al., 2015).
Synthesizing current patient similarity algorithms with systems
medicine tools could provide actionable insights in precision
medicine.
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