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Abstract

Background

Hepatitis C Virus (HCV) infections are a major cause for liver diseases. A large proportion of

these infections remain hidden to care due to its mostly asymptomatic nature. Population-

based screening and screening targeted on behavioural risk groups had not proven to be

effective in revealing these hidden infections. Therefore, more practically applicable

approaches to target screenings are necessary. Geographic Information Systems (GIS)

and spatial epidemiological methods may provide a more feasible basis for screening inter-

ventions through the identification of hotspots as well as demographic and socio-economic

determinants.

Methods

Analysed data included all HCV tests (n = 23,800) performed in the southern area of the

Netherlands between 2002–2008. HCV positivity was defined as a positive immunoblot or

polymerase chain reaction test. Population data were matched to the geocoded HCV test

data. The spatial scan statistic was applied to detect areas with elevated HCV risk. We

applied global regression models to determine associations between population-based

determinants and HCV risk. Geographically weighted Poisson regression models were then

constructed to determine local differences of the association between HCV risk and popula-

tion-based determinants.
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Results

HCV prevalence varied geographically and clustered in urban areas. The main population

at risk were middle-aged males, non-western immigrants and divorced persons. Socio-eco-

nomic determinants consisted of one-person households, persons with low income and

mean property value. However, the association between HCV risk and demographic as well

as socio-economic determinants displayed strong regional and intra-urban differences.

Discussion

The detection of local hotspots in our study may serve as a basis for prioritization of areas

for future targeted interventions. Demographic and socio-economic determinants associ-

ated with HCV risk show regional differences underlining that a one-size-fits-all approach

even within small geographic areas may not be appropriate. Future screening interventions

need to consider the spatially varying association between HCV risk and associated demo-

graphic and socio-economic determinants.

Introduction
Hepatitis C virus (HCV) infections are a major cause of liver diseases and are the leading cause
for liver cirrhosis worldwide [1]. The World Health Organization estimates that 123 million
people globally are infected with HCV [2]. A major challenge for public health response to
HCV is its mostly asymptomatic nature and therefore the limited number of HCV positive
individuals aware of their HCV status. Infected, but undiagnosed persons are an important
source for further transmission [3]. Several studies estimated the proportion of asymptomatic
infections to account for 70% [4,5] to 90% [6] of acute infections, leading to only a small pro-
portion of infected individuals seeking medical attention for symptoms related to HCV infec-
tion [7]. It is estimated that less than one-third of HCV infected individuals are aware of their
HCV status [8–10]. Many infections are either undetected or are detected at a late stage. Highly
effective therapeutic options for HCV are becoming available, [11,12] but logically only to per-
sons, who’s HCV infection is diagnosed.

To provide an opportunity for treatment of HCV positive persons, which are yet undiag-
nosed and therefore currently hidden to care, preventive screening is necessary.

The HCV prevalence and its associated risk factors varies considerable between countries
[13,14]. Past interventions focused on the population in general were not very cost-effective,
especially in countries where the overall HCV prevalence is low. In the Netherlands, the HCV
prevalence in the Dutch adult population is estimated to be relatively low with 0.2%, although
estimates vary between 0.1 and 0.4%, depending largely on the study design and population
studied [15,16]. A meta analysis on the effectiveness of screening interventions suggests that
for low HCV prevalence populations, pre-screening selection criteria should be used to
increase efficiency [17]. The World Health Organisation (WHO) recommends in its new
guidelines to offer HCV tests to people with high risk behaviour and to people from high risk
populations [18]. These target populations include transmission risk groups such as injecting
drug users (IDU) [5,10,11], blood transfusion recipients [3], surgery and dialysis patients [13],
professionals in patient care [5], immigrants from endemic countries [13], persons with low
socio-economic status [5] and HIV positive men who have sex with men (MSM) [3]. However,
screening approaches to target these risk groups have not been shown to be effective in
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revealing the totality of hidden cases as the identification of people who belong to such risk
groups in the first place appeared to be quite challenging. Furthermore, in the Netherlands it
had been shown that a substantial part (25%) of all HCV infections is not attributable to any of
the aforementioned risk groups and is therefore not included in screening interventions tar-
geted at risk groups [16]. Although the prevalence of HCV in the US is higher with an esti-
mated 2% [19], the Center for Disease Control (CDC) similar to the WHO advises screening of
persons in risk groups (IDU, blood transfusion or organ transplant recipients before July 1992,
health care personnel with history of exposure and born to an HCV-positive mother) [20].
However, these criteria appeared also in the US difficult to include in practical screening inter-
ventions [10]. As a result, future screening interventions need to find characteristics of HCV
that are more practically applicable than the risk groups and behavioural factors outlined
above.

Other relevant factors than behavioural and demographic risk factors associated with HCV
are socio-economic characteristics. As for many infectious diseases, including HCV, lower
socio-economic status tends to be associated with higher prevalence [1,13,21,22]. The identifi-
cation of socio-economic determinants provides a more practically applicable basis for screen-
ing interventions [10], as population characteristics are typically available within population
data [23]. The application of Geographic Information Systems (GIS) is essential to display the
spatial heterogeneity of disease risk and to quantify the impact of socio-economic determinants
on the incidence of infectious diseases [22,24].

Exploratory disease mapping and local cluster tests have shown to help identifying areas
with statistically significant high risks (often referred to as hotspots or clusters) for prioritizing
future interventions for Hepatitis C in the mainland of China [25] as well as many other infec-
tious diseases including HIV [26], Chlamydia trachomatis and Neisseria gonorrhea [27].

The increasing availability of a wide range of population-based variables allows a detailed
analysis of demographic and socio-economic determinants of disease risk using spatial regres-
sion models at the ecological level [24,28,29].

With respect to HCV, it has been shown that not only prevalence varies between and within
countries, but also the association between risk factors and HCV prevalence [13], highlighting
the necessity to account for local variation in spatial regression models for HCV.

In settings where strong local variation of the association between disease risk and possible
determinants can be expected, geographically weighted Poisson regression models (GWPR)
have proven to be very effective to measure the spatially varying association between possible
determinants and disease risk. This in turn, often led to the conclusion that the determinants
of a specific disease depend largely where infected populations live, allowing public health pre-
ventions to be targeted directly at those population groups, that are most at risk in a specific
location [30–32].

The aim of this paper is therefore to (i) determine hotspots for future screening interven-
tions using the spatial scan statistic and (ii) to assess demographic and socio-economic deter-
minants of HCV risk within these hotspots using GWPR to facilitate targeted, evidence-based
screening interventions aimed directly at risk-groups.

Data and Methods

Ethics Statement
The medical ethics committee of the Maastricht University Medical Centre (Maastricht, the
Netherlands) approved the study (11-4-136) and waived the need for consent to be collected
from participants. Since retrospective data originated from standard care (in which one can
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opt-out for the use of their data for scientific research) and were analyzed anonymously, no
further informed consent for data analysis was obtained.

Dependent Variable
The dependent variable consisted of the HCV diagnoses that were made in the southern part of
the province Limburg, the Netherlands between January 1st, 2002 and December 31st, 2008,
comprising an adult population of 500,955 in 2008 [10,33]. The diagnoses were retrieved from
HCV test data that were provided by three hospital laboratories, which perform tests on HCV
upon request of nearly all care providers serving the area. In total 23,800 HCV tests were con-
ducted of which 823 unique patients were tested positive. According to screening procedures
in the Netherlands, HCV antibodies were detected with an ELISA. Confirmation was per-
formed with an immunoblot and/or polymerase chain reaction (PCR). When an acute infec-
tion was suspected or when the patient was HIV positive or on hemodialysis, only PCR was
used for screening. In the current study, we defined a positive confirmation test or PCR as a
positive case. Of these 823 unique positive individuals, 781 had valid postal codes assigned and
were included in the analysis. Next to postal code and HCV test result, the laboratory dataset
included sex and age [10].

Explanatory Variables
We assessed several demographic and socio-economic variables for their association with HCV
risk. The data for these variables were downloaded from the Central Bureau for Statistics Neth-
erlands. In this study, we used data and map sources from the Statline database 2009 [33]
(Table 1). The data were available on neighbourhood level and had to be matched to the four-
digits postal codes of the HCV data. A neighbourhood is a part of a municipality with a homog-
enous socio-economic structure [33,34]. Due to privacy restrictions, socio-economic data on
neighbourhood level is only available for neighbourhoods with more than 50 persons, 200 per-
sons, 10 households and 70 households, depending on the respective variable [33]. We

Table 1. Explanatory variables.

Variable Average Min Max

Married (%) 44.7 1.0 62.0

Unmarried (%) 40.9 96.0 15.0

Divorced (%) 3.8 0.0 10.6

Widowed (%) 6.8 0.0 48.0

Non-western immigrants (%) 4.8 0.0 14.2

One-person households (%) 36.4 7.0 71.8

Households w/o children (%) 32.1 20.7 57.0

Social welfare recipients (%) 1.2 0.5 14.6

Average income (in 1000 Euro) 20.5 14.2 29.1

Persons with low income (%) 2.1 0.5 15.5

HH with low purch. power (%) 8.9 0.0 20.0

Households with low income (%) 45.9 17.0 67.0

HH below social minimum (%) 9.3 0.0 22.0

Mean prop. value (in 1000 Euro) 213.6 116.7 433

Males aged 36–45 (%) 6.4 0.0 12.2

Males aged 46–55 (%) 8.2 0.0 11.2

doi:10.1371/journal.pone.0135656.t001
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therefore aggregated to the four-digits postal codes based on those neighbourhoods, for which
socio-economic data was made available.

Demographic variables included stratified population data for 2012 on four-digits postal
code level [10] [16]. The population data was extracted from customised data by Statistics
Netherlands (Extraction date: 20/02/2013).

Socio-economic variables included marital status (proportion of residents that were mar-
ried, unmarried, divorced, or widowed)[35], proportion of non-western immigrants [16], pro-
portion of one-person households, proportion of households without children, average income
[10,36], proportion of persons having low income [36] (defined as an income below 19,200
Euro per year [33]), households having low purchasing power (defined as households having
less than 9,250 Euro available per year [33]), households having low income [36] (defined as
households with an annual income below 25,100 Euro [33]), households below social mini-
mum and mean property value as indicator for potential area deprivation [10,33].

Exploratory Disease Mapping
We calculated the prevalence rate of HCV and the relative risk (RR) for the adult population
aged between 16 and 65.

The RR estimates provide useful information how common HCV infection in a specific
location is as compared to the global baseline [37]. We additionally applied spatial empirical
Bayes smoothing since the population at risk displayed strong regional variation. This leads to
a large variance of the prevalence rate and the relative risk especially in areas where the under-
lying population is small [38]. Due to strong regional variation in the HCV prevalence, we
applied a local smoothing approach. The prevalence rates and the RR were therefore smoothed
towards a local mean where the neighbours were defined as areas sharing a common edge and
a common boundary [39]. The calculation of the spatial empirical Bayes smoothing was carried
out using OpenGeoDa 1.2.0 [40] and the results were then imported in ESRI ArcGIS 10.1.

Global Cluster Detection
To test whether there is spatial autocorrelation of the HCV prevalence, we used Moran`s I.
Moran`s I is a widely used global cluster test, which determines the degree of clustering or dis-
persion within a data set. The resulting values may range from 1 (perfect correlation), 0 (com-
plete spatial randomness) to -1 (perfect dispersed) [41]. For the HCV data, a positive spatial
autocorrelation means that postal code areas with high HCV prevalence are close to other
postal code areas with high HCV prevalence. For this study, we defined adjacency as postal
code areas sharing a common edge or corner. The presence of global clustering justified the
subsequent local cluster analysis. The computation of Moran`s I was carried out in Open-
GeoDa 1.2.0 [40]

Local Cluster Detection
The spatial scan statistic has been widely applied in several spatial-epidemiological studies to
detect local clusters with statistically significant elevated risk of infectious diseases
[22,26,42,43]. The spatial scan statistic is a local cluster test, which identifies the location and
the statistical significance of local clusters [26]. We applied a Poisson purely spatial model
where the number of HCV cases follows an inhomogeneous Poisson process [44]. The input
data for this model consisted of the number of positive individuals per postal code, the number
of adults aged between 16 and 65 and the centroid coordinates for each area. The spatial scan
statistic imposes a circular scanning window, which is flexibly in size and position and gradu-
ally moves over all coordinates, evaluating all potential cluster locations and sizes up to either a
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user-defined maximum radius, a user defined maximum percentage of the population at risk
or the default value of up to 50% of the population at risk [45].

In our study, the purpose of the spatial scan statistic was to detect areas with significantly
elevated risk of diagnosed HCV, which can serve as a basis for the prioritization of future
screening interventions [46,47]. We set the maximum population at risk to not exceed 5% of
the adult population. This was done to detect local clusters as precisely as possible since the
default settings of 50% of the population at risk are more likely to produce clusters of no practi-
cal use [48]. The computation was carried out using the SaTScan software version 9.2 [45].

Spatial Regression
Ordinary Least Squares Regression. To specify a meaningful geographically weighted

Poisson regression model, we conducted several steps: First, we performed a natural log-trans-
formation of the dependent variable. We then used a data-mining tool called Exploratory
Regression in ESRI ArcGIS 10.1. to determine potential candidate explanatory variables. This
tool evaluates all possible variable combinations that form a properly specified ordinary least
squares (OLS) regression model. Exploratory regression is comparable to a step-wise regression
[31]. However, it evaluates all possible variable combinations based on following criteria: (i)
the coefficients are statistically significant, (ii): the explanatory variables are free from multicol-
linearity, (iii): the residuals are normally distributed and (iv): the residuals do not display spa-
tial autocorrelation [31,49,50].

Based on the results of the exploratory regression, we determined overall model significance,
the presence of heteroscedasticity and a wide range of diagnostics by creating an OLS regres-
sion model in OpenGeoDa 1.2.0 [40] with the same dependent and explanatory variables as
suggested by the exploratory regression.

Geographically Weighted Regression. Since the OLS regression is a global regression
model, it estimates the strength of the relationship between the dependent variable and the
explanatory variables averaged over the whole study area. However, the larger the study area,
the more unlikely it is that one single coefficient per explanatory variable reflects the true
underlying spatial relationship between the dependent variable and the explanatory variable
since spatial data tend to vary over space. Global statistics tend to lead to the conclusion that
relationships between variables are equal across the entire study area whereas local statistics
can show the falsity of this assumption by displaying how the relationships vary across space
[51]. The geographically weighted regression (GWR) method is therefore an extension to the
traditional standard regression methodology and estimates a wide range of local parameters
and diagnostics.

The Poisson distribution within the GWR framework is currently the most suitable for dis-
ease data, especially if observed counts of cases are low in specific areas [52–54]. The dependent
variable was specified within the geographically weighted Poisson regression (GWPR) as the
observed number of HCV cases per postal code and the offset variable was specified as the
number of adult persons per postal code. The GWPR model calculates an additional global
Poisson regression model, which can be compared to the results of the global OLS model to
test the hypothesis that a Poisson regression is more suitable for HCV than the traditional OLS
regression. The explanatory variables for the global and local Poisson regression models were
the same variables that were found to be significant as specified by the OLS model. The cen-
troids of each postal code were used as input coordinates. The GWPR model then uses a kernel
and fits for each coordinate a regression equation where the coordinate in the centre of the ker-
nel is the regression point. The data points inside the kernel are weighted from the centre of
the kernel towards the edge of the kernel. Data points outside the kernel receive a weight of
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zero and are not included in the regression equation. For each coordinate, the data points are
weighted differently so that each regression point has a unique regression equation. We used
an adaptive kernel size so that in rural areas where data points are sparse, the kernel bandwidth
will increase in size and will decrease in urban areas where data points are plentiful. The size of
the bandwidth for each kernel and regression point is optimized using Akaike`s Information
Criterion (AIC) [51]. To facilitate interpretation of the regression coefficients of the GWPR,
the coefficients were exponentiated to show an increase or decrease of the relative risk of the
dependent variable per one-unit change in the respective explanatory variable [52]. Statistical
significance for each coefficient per postal code was calculated using pseudo t-values [51]. The
statistic behind the GWPR method is described in detail elsewhere [52]. The computation of
the GWPR was carried out using the GWR4 software [55].

Results

Spatial Distribution of Hepatitis C Prevalence among Adults
The prevalence and the risk estimates between the postal code areas varied widely, ranging
from 0 to 1.02% of the adult population per postal code. The overall prevalence rate among
adults was 0.19% of the total adult population. There was a clear urban-rural divide within the
study area. Areas with higher risks were strongly concentrated within the urban areas of Heer-
len, Maastricht and to a lower extent in Sittard-Geleen (Fig 1). Moran`s I revealed significant
positive global autocorrelation of the HCV prevalence (Moran`s I = 0.43, p<0.001), indicating
that postal codes with higher risks are close to each other.

The spatial scan statistic detected five significant local clusters (Fig 1). These are postal
codes with statistically significant elevated risk of diagnosed HCV. All clusters could be
observed within the three urban areas of the study area (Table 2). In total, these clusters contain
268 (34%) of all observed HCV infections in the study area.

Demographic and Socio-economic Determinants of HCV
As our analysis was exploratory in nature, we were interested in determining variable combina-
tions based on population data that delivered a plausible explanation of HCV risk. We there-
fore identified two models that met all requirements for a properly specified OLS model that
delivered a plausible explanation of the HCV prevalence. The AICc value of both OLS models
differed only by 3, justifying a comparison of both models [56]. The first model consisted of
the following explanatory variables that were overall positively associated with HCV risk: (i)
proportion of divorced persons, (ii) proportion of one-person households, (iii) proportion of
non-western immigrants and (iv) proportion of males aged 36–45. The second model consisted
of the variables (i) average income per person, (ii) one-person households, (iii) mean property
value and (iv) males aged 36–45. Variables for the second model were overall positively associ-
ated with HCV risk except for average income and mean property value, that both showed an
inverse association. The same variables that were found to be significant in the OLS models
were then used for further analysis in the global and local Poisson models.

By comparing model performance in terms of the goodness-of-fit AICc statistic (Table 3),
the model with the lowest AICc value is the model with the best fit [24]. Based on this criterion,
for both Model 1 and Model 2 the AICc value suggests that the global Poisson regression had a
better fit than the OLS regression. However, the local Poisson regression outperformed both
global regression approaches. The local Poisson regression of model 2 was the overall best-fit-
ting regression model in terms of the AICc value as well as the percentage of local deviance
explained.
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Fig 1. Spatial Distribution of HCV prevalence and RR, 2002–2008.

doi:10.1371/journal.pone.0135656.g001
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Results of the Geographically Weighted Poisson Regression
Model 1. The results of the local Poisson model revealed strong local differences of the

regression coefficients within the local clusters of elevated HCV risk (Table 4). The impact of
the proportion of divorced persons on HCV risk was strongest in cluster 3 and 4 in Maastricht
and cluster 5 in the northern part of Sittard-Geleen. In Heerlen, the impact of divorced persons
was lowest (Fig 2). The impact of one-person households displayed intra-urban differences as
well as regional differences. The association between the proportion of one-person households
and HCV risk was strongest in the northern part of Heerlen (cluster 2) and the southern part
of Sittard-Geleen (cluster 5). In cluster 3 and 4 in Maastricht, the impact of one-person house-
holds was overall lower than in the other urban areas and clusters. However, the northern part
of Maastricht displayed a stronger association of one-person households to HCV risk than the
southern part (Fig 2). The association between the proportion of non-western immigrants and
HCV risk was only significant in cluster 3 and 4 in Maastricht and surrounding areas (Fig 2).
Also, the association between the proportion of males aged 36–45 years and HCV risk dis-
played large regional differences; its impact was only significant in cluster 5 in Sittard-Geleen,
followed by clusters 3 and 4 in Maastricht and the rural areas in between (Fig 2).

Model 2. Comparable to the first model, the second model revealed strong local differ-
ences of the coefficients within the HCV clusters (Table 5). The association of HCV risk to
average income was overall negative, indicating that a lower income is associated with a higher
HCV risk. The local coefficients however, revealed that this association is not in the whole
study area significant and negative. Average income is only significant inversely associated
with HCV risk in cluster 5 in Sittard-Geleen and one postal code area in Maastricht (Fig 3).
The proportion of one-person households was positively associated with HCV risk in cluster 5
in Sittard-Geleen and the northern postal codes of Maastricht in cluster 3. This association
decreased in strength towards cluster 1 and 2 in Heerlen (Fig 3). Mean property value was neg-
atively associated to HCV risk in all areas but the association displayed strong regional and
intra-urban differences and was strongest in the southern postal codes of Heerlen in cluster 1

Table 2. Significant clusters with high HCV risk as determined by the spatial scan statistic.

Cluster nr. Location RR Cases P-value

1 Southern part of Heerlen (3 postal codes) 4.30 91 <0.001

2 Northern part of Heerlen (2 postal codes) 2.83 60 <0.001

3 Northern part of Maastricht (1 postal code) 4.03 31 <0.001

4 Centre of Maastricht (3 postal codes) 1.91 71 <0.001

5 Eastern part of Sittard-Geleen (1 postal code) 3.29 15 <0.05

doi:10.1371/journal.pone.0135656.t002

Table 3. Comparison of global and local models.

Model Local Deviance Explained AICc

Model 1

OLS 0.50 495

Global Poisson 0.47 372

Local Poisson 0.53 334

Model 2

OLS 0.50 498

Global Poisson 0.48 360

Local Poisson 0.55 323

doi:10.1371/journal.pone.0135656.t003
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(Fig 3). The association between the proportion of males aged 36–45 and HCV risk displayed a
similar pattern as observed in model 1. The association was only significant in the northern
parts of Maastricht in cluster 3 and 4, the southwestern parts of Sittard-Geleen in cluster 5 and
areas in between (Fig 3).

Discussion
The prevalence of HCV varies geographically within the province of South Limburg and
clusters were located in urban areas. The main population at risk were divorced persons, male
residents aged 36–45 and non-western immigrants residing in the area. Socio-economic deter-
minants associated with HCV risk included one-person households, low income at individual
level and areas with low mean property value. The associations between these determinants
and HCV risk displayed strong regional and intra-urban differences.

The overall prevalence of diagnosed HCV cases was 0.19%, which is in the range of previous
overall estimations of the HCV prevalence within the Dutch population [7,57]. However, the
prevalence showed strong local variations with prevalences ranging between 0 and 1.023%,

Five local clusters of significantly elevated HCV risk were detected. These clusters were
located in the three urban areas in the region. These results suggest that HCV risk is higher in
urban areas than in rural areas and clusters geographically. Thereby, HCV prevalence does not
only vary between countries, as was noted before [13,14] but also on small geographic scales
such as postal code areas. The small-scale variation of HCV prevalence corresponds with find-
ings of another spatial analysis of HCV in a higher prevalence country [58]. Local clustering of
HCV prevalence in urban areas is typical for a wide range of infectious diseases, including HIV
[26], Neisseria gonorrhoea [42] and Chlamydia trachomatis [27]. The detection of local clusters
in our study may serve as a basis for prioritization of areas for future targeted and evidence-
based screening interventions [26,42]. However, it should be noted that only a third of all HCV
cases were detected in these clusters. The other cases showed a more random distribution over
the region.

To what extent would these demographic and socio-economic determinants be of additional
value to focus prevention strategies? When assuming that the population-based determinants

Table 4. Significant (p<0.05) coefficients per HCV cluster for model 1.

HCV Cluster nr. Determinants Coefficient

1 Divorced persons 1.102

One-person households 1.034

2 Divorced persons 1.096

One-person households 1.036

3 Divorced persons 1.161

One-person households 1.035

Non-western immigrants 1.036

Males aged 36–45 1.157

4 Divorced persons 1.164

One-person households 1.034

Non-western immigrants 1.035

Males aged 36–45 1.146

5 Divorced persons 1.159

One-person households 1.036

Males aged 36–45 1.161

doi:10.1371/journal.pone.0135656.t004
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Fig 2. Local coefficients for model 1.

doi:10.1371/journal.pone.0135656.g002
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represent the actual individual-based risk factors, then all determinants revealed here may indi-
cate who are the key populations for HCV. Targeting these risk factors in the areas identified as
clusters could serve as a practically applicable basis for prioritization of future screening
interventions.

While there is a wide range of literature available about the prevalence of HCV infections
and its associated risk factors [13,14], only a local analysis as employed here may help to under-
stand the patterns of HCV infections and its associations to socio-economic determinants to
effectively use available financial resources for targeted screening efforts.

The proportion of residents that were divorced was found to be associated with HCV risk
over the complete study region. Marital status had been previously associated with HCV risk,
yet findings were inconsistent [59–62]. Being divorced could be a proxy for sexual and eco-
nomic instability. The found association between HCV risk and divorced persons may there-
fore serve as basis for future research on the role of marital status and potential high-risk
sexual behaviour on HCV transmission in the study area. Non-western immigrants were iden-
tified as ethnic risk group in our study. Although this association corresponds well to previous
studies focusing on risk factors of HCV in the Netherlands [15,16], the association of non-
western immigrants to HCV risk was only significant in Maastricht. Potentially, in the other
cities, immigrants from eastern-European countries might be more relevant as ethnic risk
group [13,15].

Males aged 36–45 were another main demographic risk group identified in our analysis con-
firming US findings [3]. It is considered unlikely that this association can be for a large part
explained by HIV positive MSM, as they comprise an important but only small part of the
HCV cases in the Netherlands. [63]. However, the association between males aged 36–45 and
HCV risk was only significant in the western part of the study area. One-person households
were identified as a risk factor relating to household size. Although this association to HCV
may not be obvious at first, it is in line with our findings that divorced persons are an overall
risk factor for HCV and could be a potential additional proxy for sexual and economic instabil-
ity. This finding may additionally serve as a basis for future research on the role of one-persons
households and HCV transmission. Mean property value and low income at personal level
were important socio-economic determinants associated with HCV risk [35] and are in line
with other studies showing that low socio-economic status is an important risk factor for HCV

Table 5. Significant (p<0.05) coefficients per HCV cluster for model 2.

HCV Cluster nr. Determinants Coefficient

1 One-person households 1.038

Mean property value -1.009

2 One-person households 1.039

Mean property value -1.008

3 One-person households 1.047

Mean property value -1.006

Males aged 36–45 1.213

4 One-person households 1.045

Mean property value -1.006

Males aged 36–45 1.186

5 Average income per person -1.070

One-person households 1.046

Mean property value -1.006

Males aged 36–45 1.161

doi:10.1371/journal.pone.0135656.t005
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Fig 3. Local coefficients for model 2.

doi:10.1371/journal.pone.0135656.g003
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[10,13,36]. However, our study demonstrated that low income at personal level was only signif-
icant in the urban area of Sittard-Geleen, while mean property value was found to be overall
significant within the study area. Although this corresponds well to previous findings
[10,13,36], it highlights the importance of including several markers for low socio-economic
status on personal, household and area level to understand how these different measures of low
socio-economic status impact the prevalence of HCV infections.

Several determinants were associated with HCV risk in the complete study region while oth-
ers were only associated in certain regions; but all associations showed regional variance. The
strong spatial differences observed suggest that the importance of demographic and socio-eco-
nomic determinants to characterize the HCV key population may depend largely on the area
where the HCV infected individual lives. Our findings are therefore in line with other studies
applying GWR for infectious diseases [24,30,64].

In all clusters, an association was observed between HCV risk and divorced persons, one-
person households and low mean property value. The proportion of middle-aged males were
only associated to HCV in the clusters 3–5, and the proportion of non-western immigrants
were only associated in the clusters 3 and 4. Income at personal level was only inversely associ-
ated in cluster 5. Thus, the impact of demographic and socio-economic determinants differed
across the study area for the identified clusters.

Limitations
First, the spatial analysis of this study was based on the four-digits postal code areas of the
Netherlands. Although this spatial aggregation may be considered as a fine geographic scale
[34], the prevalence rate of HCV follows the potentially arbitrary administrative boundaries of
these postal codes. The results of our analysis might differ if a different level of aggregation had
been chosen. This problem is often referred to as the modifiable areal unit problem (MAUP)
and has not only an impact on the spatial distribution of HCV risk and the location of the
detected clusters, but also on the results of the ecological regression analysis [65]. For our
study, it would have been favourable to use street-level addresses of the HCV positive persons
and underlying population at risk to analyse the spatial distribution of HCV without the limita-
tion of arbitrary administrative boundaries [26]. This would not only allow a precise localiza-
tion of HCV clusters, but could offer the chance to perform a geographically weighted logistic
regression to provide more detailed insights on the spatially varying association between HCV
risk and associated socio-economic and demographic determinants [51]. However, the HCV
laboratory data as well as the population data used in this study were not available on this
scale.

Second, it is unknown whether testing was motivated by the individuals due to symptoms
related to HCV infection or was advised by a general practitioner due to prior knowledge of
potential exposure factors of the tested individual. It is also unknown whether geographical,
demographic or socio-economic determinants may have been associated with access to testing
services (e.g. by distance, lack of knowledge, illiteracy) hence may have influenced the observed
associations. The tested persons might therefore differ from the general population. During the
initial data analysis, we tested the association of tested persons to demographic or socio-eco-
nomic population characteristics through an additional exploratory regression model with the
log-transformed percentage of tested persons as dependent variable. However, the exploratory
regression analysis could not find demographic or socio-economic population characteristics
that delivered a properly specified OLS regression model.

Additionally, we compared the spatial pattern of the ratio of HCV positive persons to tested
persons with the ratio of positive persons to the adult population. Both approaches displayed a
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similar spatial pattern. An additional cluster analysis using a Bernoulli model in SaTScan with
the number of negative tested persons as controls [45] could be used to test whether the loca-
tion of spatial clusters will change when using the negative tested persons as denominator. This
might additionally indicate, whether testing is performed randomly or follows different spatial
patterns that cannot yet be explained by population or demographic characteristics that were
available for this study. However, we applied only a Poisson model as our goal was to compare
the HCV prevalence within our study area to previous estimates of the HCV prevalence in the
Netherlands, which would not be possible when applying a case-control study design.

In our study, we consider the geographical spread of diagnosed HCV as a realistic represen-
tation of the diagnosed HCV prevalence among the adult population since the proportion of
tested persons could not be properly explained by demographic or socio-economic population
characteristics and the two compared ratios displayed a similar spatial pattern.

Third, the demographic and socio-economic determinants examined are practically applica-
ble but are hampered by lack of precision as they are based on population data and not on an
individual level. Population data provide population characteristics per neighbourhood. There-
fore, additional research is needed to study whether the population-based determinants for key
populations actually capture the individuals comprising such key population.

Fourth, we previously estimated that up to 66% of all HCV-positive patients in the study
region were hidden to current screening practices [10]. As a result, cases that were diagnosed
may differ from the cases that were still hidden with respect to the variables studied here.

Given the limitations outlined above, it is unknown to what extent the clusters and the
demographic and socio-economic determinants really reflect the hidden population. A proof-
of-principle intervention targeting postal codes in a detected cluster is currently being set up to
reveal whether the hidden HCV infected individuals are appropriately addressed by our
detected clusters and determinants. Additionally, we may have missed associations of potential
determinants not captured in our analyses, as these were unavailable in the population data-
bases such as educational level.

Also, the population-based determinants used in this study were taken from the Statline
database 2009 as this was the earliest population data to include socio-economic variables and
the customized stratified demographic data on sex and age were only available for 2012 but not
for the years between 2002–2008. Although this might influence the results, it is unlikely that
this has a strong impact as the demographic composition in the Netherlands remained rela-
tively stable within the last few years [66].

The application of a Geographically Weighted Poisson regression clearly demonstrated spa-
tial variability of the coefficients and underlined that future screening interventions for HCV
clearly have to take into account the spatially varying association between demographic and
socio-economic determinants. However, Paéz et al. point out that the use of GWPR delivers
more robust results when applied on large datasets containing more than 160 administrative
units [67]. Therefore, future research applying GWPR for HCV should focus on larger areas
such as whole countries to gain more robust insights on the spatial variation of determinants
for HCV [23,29,30]. The reproducibility of our study would allow a similar analysis for the
whole of the Netherlands.

Conclusions
In this study, we used spatial epidemiological methods to analyse the spatial distribution of
HCV and its associated demographic and socio-economic determinants. Our results revealed
strong regional differences not only of the HCV prevalence but also of the association between
demographic and socio-economic determinants and HCV risk. These findings underline that a
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one-size-fits-all approach is not appropriate and that future screening interventions need to
take into account the spatially varying demographic and socio-economic determinants for
HCV. Our approach may not only be useful for South-Limburg, but may be useful in other
countries as well.
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