RESEARCH ARTICLE

Telemedicine and Pediatric Care in Rural and Remote Areas of Middleand-Low-Income Countries: Narrative Review

Yossef Alnasser^{1,2,3} · Alvaro Proaño⁴ · Christine Loock⁵ · John Chuo⁴ · Robert H. Gilman⁶

Received: 4 November 2023 / Accepted: 24 February 2024 / Published online: 13 March 2024 © The Author(s) 2024

Abstract

Objectives Caring for children in low- and middle-income countries (LMIC) can be challenging. This review article aims to explore role of telemedicine in supporting pediatric care in LMIC.

Methodology A narrative review of existing English and Spanish literature was conducted to assess role of telemedicine to support pediatric care in LMIC.

Results Beside medical education and direct pediatric care, telemedicine can provide sub-specialties consultations without extra burden on families. Additionally, telemedicine can help in lowering under-5 mortality by supporting neonatal care, infectious illnesses, and non-communicable diseases (NCDs). Telemedicine can be a gate for universal coverage for all children at a lower cost. For over a decade, it has been implemented successfully and sustained in a few LMIC. However, challenges in implementing telemedicine are enormous. Still, opportunities arise by using simpler technology, low-width band internet, smartphones, instant messaging applications and solar energy. COVID-19 pandemic facilitated acceptance and applicability of telemedicine worldwide including LMIC. Nevertheless, governments must regulate telemedicine by issuing policies and ensuring employment of local experts when possible to meet local resources and cultural competency. Conclusion Telemedicine has proven successful in improving pediatrics care. Many LMIC should take advantage of this innovation to promote equity and access to high quality pediatric care.

Keywords Telemedicine · Pediatric · LMIC · Rural Areas · Under-5 Mortality and Neonatology

Abbreviations

LMIC Low and Middle-Income Countries NCD Non Communicable Diseases

ICT Information and communication technologies

WHO World Health Organization

mHealth mobile Health
IM Instant Messaging

NCD Non Communicable Diseases

- ☑ Yossef Alnasser yossef.alnasser@gmail.com
- Milken Institute of Public Health, George Washington University, Washington, DC, USA
- Pediatric Department, King Saud University, Riyadh, Saudi Arabia
- ³ Pediatric Department, BronxCare Health System, Bronx, NY, USA
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- ⁵ British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
- International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

1 Introduction

Delivering child and youth healthcare to rural communities can be challenging, especially as it involves specialized care [1, 2]. Members of these communities often need to relocate in order to access pediatric specialized care. Such movements are burdensome financially, physically psychosocially, and emotionally [3]. While this is a global health problem affecting all income countries, developing and poor countries with scarce resources are most impacted. Innovative and creative new care models of pediatric healthcare using telemedicine may overcome access barriers in remote and rural areas [4, 5].

In many low-and middle-income countries (LMICs) the healthcare model promotes primary care in rural areas. Many LMICs depend on new medical graduates or non-physician-clinicians (NPCs) in rural and hard-to-reach areas [4, 5]. The providers taking care of pediatric patients are not always trained in general pediatrics or its subspecialities, requiring the families to relocate for healthcare access. With high poverty rates, many families must make the difficult choice between high financial burden of relocating or remaining closer to home, hoping that their child gets better on their own [6].

Information and communication technologies (ICT) are reshaping healthcare in many ways [7]. Telemedicine is one form of ICT that has an evolving definition and manifesting in various forms [8]. Since it was first described, in 1970, it has advanced with new technologies that have brought medicine closer to the community [9]. The World Health Organization (WHO) defined telemedicine as "the delivery of health care services, where distance is a critical factor, by all health care professionals using information and communication technologies for the exchange of valid information for diagnosis, treatment and prevention of disease and injuries, research and evaluation, and for the continuing education of health care providers, all in the interests of advancing the health of individuals and their communities" [10]. Telemedicine has been implemented in developed countries for decades [11]. It has the potential to have a higher impact in developing countries where resources are scarce, and cost of care is a major determinant of health [12] Many LMICs around the globe adopted different forms of telemedicine which was accelerated by the COVID-19 pandemic [13].

1.1 Why is Telemedicine Needed in Rural and Hard-to-Reach Areas of LMIC?

Telemedicine can improve child and youth healthcare access in remote and rural areas [14]. This can decrease the burden of disease on children and their families while improving their quality of life. This is very important in Sub-Saharan Africa as 40% of populations reside in rural communities while most hospitals and specialists are in big cities [15]. Cost and lack of proper medical transport system make telemedicine sometimes the only option for rural children and their families [16]. This is a major difference between telemedicine in high-income countries and LMIC. It runs concurrently to traditional healthcare models in high-income countries while it might be the only alternative in LMIC [17].

With successful implementation of telemedicine programs in developing countries, it seems to be an appealing healthcare model to improve heath equity and equality [18, 19]. However, disparity still exists even within telemedicine. Gender disparity persisted among telemedicine beneficiaries as documented by Rahman et al. [20]. Gender disparity is the difference of gaining basic human rights based on gender [21]. Fewer female children accessing healthcare is a true example of gender disparity and a known global public health concern [22]. Unfortunately, telemedicine has not been able to close the gender gap in accessing healthcare so far. Another gap that might influence lower telemedicine access is poor health literacy [23]. Still, some forms of telemedicine can be employed for health promotion to augment better health literacy and higher access to care [24]. Regardless of health literacy level, digital divide can add more disparities into childcare [25]. Lack of access to modern tele-communication devices or having a device without internet coverage are true examples of digital divide in many LMICs. With high penetration of smartphones in many low-income countries, focusing on phone-based intervention (e.g. mobile health [mHealth]) can overcome digital disparity and has been already used by many providers in LMIC [26–28]. With modernization and the advancement of technology, the digital divide will narrow in the future. Phone-based telemedicine and telemedicine in general can reach technology-savvy groups like adolescents. It has been proven to reach more youths and improve their access to care [29]. However, confidentiality and privacy should be highly respected when delivering telemedicine to serve adolescents [30]. Overall, telemedicine can be a vehicle of change to lower health disparities among children and youths in LMIC as was evident in Brazil's experience [31].

1.3 What are the Challenges in Implementing and Maintaining Pediatric Telemedicine in LMIC?

Challenges in implementing pediatric telemedicine in developing countries and rural areas are enormous [18, 32, 33]. Network, lack of policy, digital divide and other inadequate infrastructures are the biggest challenges [34]. Low bandwidth telemedicine has been proven effective in overcoming poor network connectivity in Cambodia, Uzbekistan, and Kosovo [16]. However, low bandwidth Internet might make it hard to run certain software and applications. To overcome some of these challenges, simplifying the use of technology and investing in already used applications can be a good alternative. Investing in commercially available multidimensional instant messaging (IM) application

as telemedicine platform was successful [35]. Concerns of confidentially with IM can be addressed by adding more privacy safeguards [36]. With the ever-increasing prevalence of smartphones in many LMIC, phone-based telemedicine strategies might be a practical and digitally equitable solutions that could also be cheaper than computer-based alternatives [37]. Phone based applications can provide variable platforms for telemedicine including written consultations, audio or video consults. Choosing audio over video-based telemedicine services can be dictated by insurance type, ethnicity, patients' income, and level of education as documented in United States [38]. Furthermore, connectivity in low-income countries requires basic technical infrastructure including reliable electricity, mobile coverage and/or internet access, and energy sources. Using solar system can be a cheaper and an ecologically friendly alternative [39].

Identifying providers with pediatric and child-youth health specialty training and understanding the challenges in under-resourced settings is another challenge. The recruitment of international specialists can potentially contribute to harm when lacking understanding of culture, colonialism and other historical traumas, in addition to lack of awareness of the variability of locally available resources [40]. In developed countries, reimbursement and billing is a recurring dilemma with respect to telemedicine [11]. Reimbursement of pediatric providers for telemedicine services in low-income countries might be a future challenge. Currently, most low-income countries depend on volunteering specialists [16]. This can make the service less sustainable. However, there are hopeful examples from LMIC where a telemedicine project was sustained for longer than a decade [41].

Another challenge includes how intrusive telemedicine can be to both traditional medicine and workflow [33]. This can add a burden on rural providers where healthcare worker capacity is already overstretched due to overwhelming provider-to-patient ratios. To incorporate telemedicine in busy clinics with shortage of providers and high patient volume, it has to be adaptable. Asynchronous (store and forward) telemedicine provides more flexibility than realtime telemedicine and can be suitable to non-urgent and primary care cases [42]. Still, real-time (synchronous) telemedicine platforms can help in emergency and critical care pediatric cases for urgent decision-making [43].

1.4 How can Telemedicine Support LMIC Pediatric Providers?

Pediatricians are generally the "cornerstones" of child healthcare [44]. Telemedicine is currently playing a big role in improving care. In the United States the top 5 services of pediatric care via telemedicine include neurology, psychiatry, cardiology, neonatology and critical care [45, 46]. On the other side, primary and specialized pediatric care delivery cannot be centered on pediatricians in LMIC. With fewer primary care doctors and pediatric specialists per capita, new modules of care are needed. An alternative has been in place for several years in Sub-Saharan Africa [47]. NPCs have been delivering primary care in rural areas in many sub-Saharan countries [48]. Their potential has been expanded and scaled up to serve their local public [49] Telemedicine can be a tool to train NPCs and improve their quality of care for all children. COVID-19 has expanded incorporation of telemedicine in medical education [13, 34]. With continuity of care and interaction with experts, NPCs can build their pediatric clinical skills and enhance their knowledge [50]. Telemedicine has many applications to support pediatric care in LMIC. It can enhance neonatal care in low-income countries as neonatal causes are the leading etiologies of under-five mortality [51, 52]. Scope of telemedicine in neonatal-perinatal medicine can be expanded [51] to include resuscitation of newborns via programs such as the Neonatal Resuscitation Program (NRP) or Helping Baby Breathe [53, 54]. In the Neonatal Intensive Care Unit (NICU) it has also been used for 'tele-rounding', where the neonatologist does not need to be physically present in the unit, but rounds via a remotely controlled robot, this can be used to help staff and manage neonatal units around the world [55]. Another important aspect of managing preterm newborns includes screening for retinopathy of prematurity, and there are reports that show that telemedicine can be used for this screening [56]. In general, telemedicine has been shown to decrease the need for transferring neonates and children to other institutions, and increases quality of local care that ultimately helps keeps families together in their own communities [57]. Additionally, it can also be used to help improving maternal and antenatal care by improving access and quality of care [58–60].

Beyond the neonatal period, telemedicine can enhance pediatric care and improve decision-making [61]. From radiology support to infectious diseases, the potential of telemedicine extended to support many practitioners in LMIC [62, 63]. Many non-communicable diseases (NCDs) are expected to grow with epidemiological shift in many LMIC [64]. Skills and capacity to care for NCDs, like pediatric cardiology and pediatric oncology, have been enhanced by telemedicine in developed and developing countries [65– 67]. Furthermore, telemedicine can be used as tool for digital medical education to boost capacity building and task shifting to improve care and access at a lower cost [68, 69]. Besides lowering costs, telemedicine can promote antibiotic stewardship to suppress multidrug resistant organisms: a real threat for global health [70]. Through telemedicine, unnecessary use of antibiotics can be avoided along with

tailoring choice of antibiotics when possible. Furthermore, telemedicine can be a tool for equity besides improving pediatric care. Telemedicine has been used to overcome language barriers and provide interpreter support [71]. Ideally, telemedicine can be a step forward toward universal health coverage for all children [72].

1.5 Can Telemedicine Lower the Cost of Pediatric Care in LMIC?

Despite the challenges in implementing telemedicine in LMIC, it can provide cheaper and cost-effective healthcare models [73, 74]. Telemedicine can overcome shortage of specialized pediatricians and allow higher access of children to specialized service without increasing cost [75]. It can lower direct medical cost in comparison to specialized in-person care by 31% by achieving higher net-savings by higher volume of consultations [76]. Furthermore, cost saving provided by telemedicine comes with gains in quality adjusted life years (QALYs) [75]. Indirect cost savings were documented to include travel costs and potential loss of productivity due to direct medical visits in a high-income country [77]. Those savings might be more meaningful in low-income countries with scarce resources and limited transportation options. With lower cost and ease of access, fear of overutilization of telemedicine is a potential concern to drive healthcare cost higher and overwhelm the healthcare system [78]. However, overutilization by underserved populations should not be a primary concern at this stage and can be easily regulated in the future if proven to be true.

1.6 How has the COVID-19 Pandemic Impacted Pediatric Telemedicine?

COVID-19 pandemic has played a role in expanding telemedicine globally [13]. However, the added impact of COVID - 19 pandemic and its aftermath have disproportionally affected equity-deserving populations globally [79]. Telemedicine can be used as a tool for change, to build back better. Furthermore, COVID-19 pandemic has provided an opportunity to witness potentials of telemedicine [13]. In developed and developing countries, COVID-19 pandemic increased telemedicine acceptability and removed many barriers [80]. The ability to scale up this innovative solution to advance pediatric access of care, improve quality of pediatric care and equity around the globe were evident during the pandemic [81]. Likewise, telemedicine during COVID-19 pandemic provided a good example of how healthcare can adjust to deal with catastrophic events. It can be a tool to increase preparedness and capacity to deal with any disaster.

1.7 Who should Lead in Implementing and Sustaining this Innovative Solution for Many Pediatric Issues?

Governments of many low-income countries might find telemedicine as an appealing model, but bureaucracy and poor infrastructure might be huge barriers [82]. Instantaneously, the success of telemedicine and high demands were encouraging for many global and public health entrepreneurs [83]. The growing global market size of telemedicine is expected to maintain projected annual growth between 13 and 27% worldwide [84]. With lucrative contract to implement telemedicine, entrepreneurs and startups might have different goals and intentions [85]. COVID-19 has paved the way for friendlier regulatory environment for telemedicine around the globe [86]. To hold all entrepreneurs and startups to high ethical standards, telemedicine policies and regulating bodies need to be established in LMIC [87]. The WHO issued guidelines for telemedicine, which can be adopted by many LMICs [88]. Nevertheless, entrepreneurs and startups are needed to advance innovations and overcome many challenges of pediatric telemedicine in many LMIC now and in the future.

1.8 Can Pediatric Telemedicine Cause Harm and be Unethical?

Despite all potentials of telemedicine to improve pediatric care in rural and urban areas of LMIC, it does not come without potential harm. Miscommunication may occur and lead to incorrect diagnoses [89]. The risk of miscommunication might double with international providers offering teleconsults without fully understanding cultural sensitivity and existing resources [90]. When malpractice happens as a product of telemedicine, liability becomes a huge dilemma [91]. Additionally, lack of informed consent of obtaining teleconsultation or using telemedicine might impinge on patients' autonomy and cause harm [92]. Another possible harm of telemedicine is anticipated to negatively affect continuity of care and provider-patient relationship [93]. Data privacy and breach of confidentially are other major concerns of harm especially for sensitive ages like adolescents [94]. It is worth noting that telemedicine might not be suitable for all pediatric care. Breaking bad news and endof-life-care requires more human and in-person communication [95]. Overall, telemedicine has many advantages and a few disadvantages to support pediatric care in LMIC that need to be calculated for every unique child and every unique community.

2 Conclusion

Telemedicine has the potential to advance pediatric care in rural and remote areas of many LMIC. It offers an additional avenue for providing low-cost universal health coverage for all children. Telemedicine can play a role in lowering underfive mortality by supporting neonatal care, infectious diseases, and NCDs therapies. The quality of pediatric care can be augmented through telemedicine with radiology support, antibiotic stewardship, capacity building and task shifting. Furthermore, it can be scaled up to meet the needs of the children and youths of today and tomorrow. Despite enormous challenges of implementing and sustaining telemedicine in LMIC, existing solutions including low-width band internet, smartphones, instant messaging applications and solar energy can provide new opportunities.

Furthermore, COVID-19 pandemic amplified feasibility, acceptability and accessibility of telemedicine opening a new global market. This global market will attract many entrepreneurs and startups who can advance innovations and increase affordability of telemedicine for many LMIC. At the same time, governments of LMIC need to establish policies and regulating bodies to ensure high quality services and fair access. Telemedicine is here to stay and grow: LMIC should take advantage of this innovation to improve pediatric care and promote equity within their countries.

Author Contributions YA Study concept, study design, literature review, writing manuscript, reviewing and editing. AP literature review, writing manuscript, reviewing and editing. CL study design, literature review, reviewing and editing. JC literature review, writing manuscript, reviewing and editing. RHG study design, reviewing and editing.

Funding Authors confirm lack of funding or financial support from any governmental, not-for-profit or for-profit organizations.

Data Availability All data used to prepare this manuscript were cited and included in this article.

Declarations

Ethics Approval and Consent to Participate This review article did not include any direct human or animal studies and was exempt from ethical committee review.

Consent for Publication All authors reviewed and approved this submission and article for publication.

Competing Interests All authors confirm lack of any conflicts of interest associated to this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- McGrail MR, Humphreys JS. The index of rural access: an innovative integrated approach for measuring primary care access. BMC Health Serv Res. 2009;9.
- Mayer ML, Asheley ‡; Skinner C, Slifkin RT. Unmet Need for Routine and Specialty Care: Data From the National Survey of Children With Special Health Care Needs. 2004; Available from: http://www.pediatrics.org/cgi/content/full/113/2/e109.
- 3. Strasser R, Kam SM, Regalado SM. Rural Health Care Access and Policy in developing countries. Annu Rev Public Health. 2016;37:395–412.
- Mullan F, Frehywot S. Non-physician clinicians in 47 sub-saharan African countries. Lancet. 2007;370:2058–163. Available from: www.thelancet.com.
- Mbindyo P, Blaauw D, English M. The role of clinical officers in the Kenyan health system: a question of perspective. Hum Resour Health. 2013;11(1).
- Chuma J, Gilson L, Molyneux C. Treatment-seeking behaviour, cost burdens and coping strategies among rural and urban households in Coastal Kenya: an equity analysis. Trop Med Int Health. 2007;12(5):673–86.
- Burney SMA, Nadeem M, Abbas Z. Information and Communication Technology in Healthcare Management Systems: prospects for developing countries. Int J Comput Appl. 2010;4(2):27–32.
- Kvedar J, Coye MJ, Everett W. Connected health: a review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Aff. 2014;33(2):194–9.
- 9. Minh CD, Shimizu S, Antoku Y, Torata N, Kudo K, Okamura K et al. Emerging technologies for telemedicine. Korean J Radiology: Official J Korean Radiological Soc. 2012;13 Suppl 1.
- World Health Organization. Telemedicine: opportunities and developments in member states: report on the second global survey on eHealth. World Health Organization; 2010.
- Adler-Milstein J, Kvedar J, Bates DW. Telehealth among US hospitals: several factors, including state reimbursement and licensure policies, influence adoption. Health Aff. 2014;33(2):207–15.
- 12. Edworthy SM. Telemedicine in developing countries. BMJ. 2001;323(7312):524–5.
- Bhaskar S, Bradley S, Chattu VK, Adisesh A, Nurtazina A, Kyrykbayeva S et al. Telemedicine across the Globe-position paper from the COVID-19 Pandemic Health System Resilience PROGRAM (REPROGRAM) International Consortium (Part 1). Front Public Health. 2020;8.
- Charrier N, Zarca K, Durand-Zaleski I, Calinaud C. Efficacy and cost effectiveness of telemedicine for improving access to care in the Paris region: study protocols for eight trials Organization, structure and delivery of healthcare. BMC Health Serv Res. 2016;16(1).
- 15. Strasser R. Rural health around the world: challenges and solutions. Fam Pract. 2003;20(4):457–63.
- Combi C, Pozzani G, Pozzi G. Telemedicine for developing countries: a survey and some design issues. Appl Clin Inf. 2016;7(4):1025–50.
- Vinekar A, Gilbert C, Dogra M, Kurian M, Shainesh G, Shetty B et al. The KIDROP model of combining strategies for providing

- retinopathy of prematurity screening in underserved areas in India using wide-field imaging, tele-medicine, non-physician graders and smart phone reporting. In: Indian J Ophthalmol. 2014. p. 41–9.
- Sood S. Implementing telemedicine technology: lessons from India. World Hospitals and Health Services. 2004;40(3):29–30. Available from: https://www.researchgate.net/publication/8161765.
- Fry MW, Saidi S, Musa A, Kithyoma V, Kumar P. Even though I am alone, I feel that we are many - an appreciative inquiry study of asynchronous, provider-to-provider teleconsultations in Turkana, Kenya. PLoS ONE. 2020;15(9 September).
- Rahman S, Amit S, Kafy A. Gender disparity in telehealth usage in Bangladesh during COVID-19. SSM - Mental Health. 2022;2:100054.
- Dahal P, Joshi SK, Swahnberg K. A qualitative study on gender inequality and gender-based violence in Nepal. BMC Public Health. 2022;22(1).
- 22. Vlassoff C. Gender Differences in Determinants and Consequences of Health and Illness. J Health Popul Nutr. 2007;25(1):47–61.
- 23. Coleman C. Health Literacy and clear Communication Best practices for Telemedicine. Health Lit Res Pract. 2020;4(4):e224–9.
- Mathur P, Srivastava S, Lalchandani A, Mehta JL. Evolving role of Telemedicine in Health Care Delivery in India. Prim Health Care. 2017;07(01).
- Samuels-Kalow M, Jaffe T, Zachrison K. Digital disparities: Designing telemedicine systems with a health equity aim. Emerg Med J. 2021;38(6):474–6.
- Morris C, Scott RE, Mars M. A survey of Telemedicine use by doctors in District hospitals in KwaZulu-Natal, South Africa. Int J Environ Res Public Health. 2022;19(20).
- Anstey Watkins JOT, Goudge J, Gómez-Olivé FX, Griffiths F. Mobile phone use among patients and health workers to enhance primary healthcare: a qualitative study in rural South Africa. Soc Sci Med. 2018;198:139–47.
- Ruiz EF, Proaño Á, Ponce OJ, Curioso WH, TECNOLOGÍAS MÓVILES PARA LA, SALUD PÚBLICA EN EL PERÚ: LEC-CIONES APRENDIDAS. Rev Peru Med Exp Salud Publica. 2015;32(2):364–72.
- Harris B, Ajisola M, Alam RM, Watkins JA, Arvanitis TN, Bakibinga P et al. Mobile consulting as an option for delivering health-care services in low-resource settings in low- and middle-income countries: a mixed-methods study. Digit Health. 2021;7.
- Evans YN, Golub S, Sequeira GM, Eisenstein E, North S. Using telemedicine to Reach adolescents during the COVID-19 pandemic. J Adolesc Health. 2020;67(4):469–71.
- Eisenstein E, Kopacek C, Cavalcante SS, Neves AC, Fraga GP, Messina LA. Telemedicine: a Bridge over Knowledge gaps in Healthcare. Curr Pediatr Rep. 2020;8(3):93–8.
- 32. Zachrison KS, Boggs KM, Hayden EM, Espinola JA, Camargo CA. Understanding barriers to Telemedicine Implementation in Rural Emergency Departments. Annals of Emergency Medicine. Mosby Inc.; 2020. pp. 392–9.
- 33. Brophy PD. Overview on the challenges and benefits of using Telehealth Tools in a Pediatric Population. Adv Chronic Kidney Dis. 2017;24(1):17–21.
- Mbunge E, Muchemwa B, Batani J. Are we there yet? Unbundling the potential adoption and integration of telemedicine to improve virtual healthcare services in African health systems. Sens Int. 2022;3.
- Barayev E, Shental O, Yaari D, Zloczower E, Shemesh I, Shapiro M et al. WhatsApp Tele-Medicine – usage patterns and physicians views on the platform. Isr J Health Policy Res. 2021;10(1).
- Hydar S, Hatton R, Tolley K, Hillier J. What's wrong with WhatsApp? BMJ Innov. 2019.

- 37. Holst C, Sukums F, Radovanovic D, Ngowi B, Noll J, Winkler AS. Sub-saharan Africa—the new breeding ground for global digital health. Lancet Digit Health. 2020;2(4):e160–2.
- Karimi M, Lee EC, Couture SJ, Gonzales A, Grigorescu V, Smith SR et al. National Survey trends in Telehealth Use in 2021: disparities in utilization and Audio vs. Video Serv. 2021.
- Foroudastan SD, Dees O. Solar Power and Sustainability in Developing Countries. 2006.
- Weiss B, Pollack AA. Barriers to global health development: an international quantitative survey. PLoS ONE. 2017;12(10).
- 41. Soriano Marcolino M, Minelli Figueira R, Pereira Afonso Dos Santos J, Silva Cardoso C, Luiz Ribeiro A, Alkmim MB. The experience of a sustainable large scale Brazilian Telehealth Network. Telemedicine e-Health. 2016;22(11):899–908.
- Ting DS, Gunasekeran DV, Wickham L, Wong TY. Next generation telemedicine platforms to screen and triage. Br J Ophthalmol. 2020;104(3):299–300.
- Curfman AL, Marcin JP. Pediatric Emergency and Critical Care Telehealth. 2018.
- Committee on Pediatric Worforce. Scope of Practice Issues in the Delivery of Pediatric Health Care. 2003; Available from: http://www.aapa.org/gandp/pediatrics.html.
- Olsen CA, McSaiwn SD, Curfman AL, Chuo J. The current Pediatric Telehealth Landscape. Pediatrics. 2018;141(3).
- 46. Jackson LE, Bishop CE, Vats KR, Azzuqa AA. Meeting families where they are: institution, evaluation, and sustainability of telemedicine prenatal neonatology consultation in the COVID-19 pandemic health emergency. Seminars in Perinatology. W.B. Saunders; 2021.
- 47. Eyal N, Cancedda C, Kyamanywa P, Hurst SA. Non-physician clinicians in Sub-saharan Africa and the evolving role of physicians. Int J Health Policy Manag. 2016;5(3):149–53.
- 48. Bello K, de Lepeleire J, Kabinda JM, Bosongo S, Dossou JP, Waweru E et al. The expanding movement of primary care physicians operating at the first line of healthcare delivery systems in sub-saharan Africa: a scoping review. PLoS ONE. 2021;16(10 October).
- Nyamtema AS, Scott H, Kweyamba E, Bulemela J, Shayo A, Mtey G, et al. Improving access, quality and safety of caesarean section services in underserved rural tanzania: the impact of knowledge translation strategies. Afr J Reprod Health. 2021;25(3 Special Issue):74–83.
- Maia MR, Castela E, Pires A, Lapão LV. How to develop a sustainable telemedicine service? A Pediatric Telecardiology Service 20 years on-An exploratory study. BMC Health Serv Res. 2019;19(1).
- Chuo J, Makkar A, Machut K, Zenge J, Jagarapu J, Azzuqa A et al. Telemedicine across the continuum of neonatal-perinatal care. Semin Fetal Neonatal Med. 2022;27(5).
- 52. Li Z, Karlsson O, Kim R, Subramanian SV. Distribution of under-5 deaths in the neonatal, postneonatal, and childhood periods: a multicountry analysis in 64 low- and middle-income countries. Int J Equity Health. 2021;20(1).
- 53. Pinheiro JMB. Leveraging telemedicine to spread expertise in neonatal resuscitation. Children. 2022;9(3).
- Donohue LT, Hoffman KR, Marcin JP. Use of telemedicine to improve neonatal resuscitation. Children. 2019;6(4).
- 55. Garingo A, Friedlich P, Chavez T, Tesoriero L, Patil S, Jackson P, et al. Tele-rounding with a remotely controlled mobile robot in the neonatal intensive care unit. J Telemed Telecare. 2016;22(2):132–8.
- 56. Brady CJ, D'amico S, Campbell JP. Telemedicine for Retinopathy of Prematurity. Telemedicine e-Health. 2020;26(4):556-64.
- Maddox LJ, Albritton J, Morse J, Latendresse G, Meek P, Minton S. Implementation and outcomes of a Telehealth Neonatology Program in a single Healthcare System. Front Pediatr. 2021;9.

- Bilal W, Mohanan P, Rahmat ZS, Ahmed Gangat S, Islam Z, Essar MY, et al. Improving access to maternal care in Africa through telemedicine and digital health. Int J Health Plann Manage. 2022;37(4):2494–500.
- 59. Palmer KR, Tanner M, Davies-Tuck M, Rindt A, Papacostas K, Giles ML, et al. Widespread implementation of a low-cost tele-health service in the delivery of antenatal care during the COVID-19 pandemic: an interrupted time-series analysis. www Thelancet com. 2021;398:41. Available from: www.thelancet.com.
- Makkar A, Michael Siatkowski R, Szyld E, Ganguly A, Sekar K. Scope of telemedicine in neonatology. Chin J Contemp Pediatr. 2020;22(5):396–408.
- Curfman A, Hackell JM, Herendeen NE, Alexander J, Marcin JP, Moskowitz WB et al. Telehealth: Opportunities to Improve Access, Quality, and Cost in Pediatric Care. Available from: http://publications.aap.org/pediatrics/article-pdf/149/3/e2021056035/1440334/peds 2021056035.pdf.
- Andronikou S. Pediatric teleradiology in low-income settings and the areas for future research in teleradiology. Front Public Health. 2014;2(AUG).
- 63. Pappalardo M, Fanelli U, Chiné V, Neglia C, Gramegna A, Argentiero A et al. Telemedicine in pediatric infectious diseases. Children. 2021;8(4).
- McKeown RE. The epidemiologic transition: changing patterns of Mortality and Population dynamics. Am J Lifestyle Med. 2009;3(1suppl):19S-26S.
- Sable CA, Cummings SD, Pearson GD, Schratz LM, Cross RC, Quivers ES et al. Impact of Telemedicine on the Practice of Pediatric Cardiology in Community Hospitals. Vol. 109. 2002. Available from: http://www.pediatrics.org/cgi/content/full/109/1/http://publications.aap.org/pediatrics/article-pdf/109/1/e3/986901/e3.pdf.
- Sanyahumbi A, Mery CM. Beyond Our Borders: Global Health in Pediatric Heart Disease – From Africa to Latin America - American College of Cardiology. 2017.
- Qaddoumi I, Mansour A, Musharbash A, Drake J, Swaidan M, Tihan T, et al. Impact of telemedicine on pediatric neuro-oncology in a developing country: the jordanian-canadian experience. Pediatr Blood Cancer. 2007;48(1):39–43.
- Randriambelonoro M, Bagayoko CO, Geissbuhler A. Telemedicine as a tool for digital medical education: a 15-year journey inside the RAFT network. Ann N Y Acad Sci. 2018;1434(1):333–41.
- 69. Goel NA, Alam AA, Eggert EMR, Acharya S. Design and development of a customizable telemedicine platform for improving access to healthcare for underserved populations. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Society. EMBS. Institute of Electrical and Electronics Engineers Inc.; 2017. p. 2658–61.
- Ceradini J, Tozzi AE, D'Argenio P, Bernaschi P, Manuri L, Brusco C et al. Telemedicine as an effective intervention to improve antibiotic appropriateness prescription and to reduce costs in pediatrics. Ital J Pediatr. 2017;43(1).
- Masland MC, Lou C, Snowden L. Use of communication technologies to cost-effectively increase the availability of interpretation services in healthcare settings. Telemedicine e-Health. 2010;16(6):739–45.
- Shiferaw F, Zolfo M. The role of information communication technology (ICT) towards universal health coverage: the first steps of a telemedicine project in Ethiopia. Glob Health Action. 2012;5(1):15.
- Bickton FM, Chisati E, Rylance J, Morton B. An improvised Pulmonary Telerehabilitation Program for Postacute COVID-19 patients would be feasible and acceptable in a low-resource setting. Am J Phys Med Rehabil. 2021;100(3):209–12.

- Agarwal N, Jain P, Pathak R, Gupta R. Telemedicine in India: a tool for transforming health care in the era of COVID-19 pandemic. J Educ Health Promot. 2020;9(1).
- Mistry H, Gardiner HM. The cost-effectiveness of prenatal detection for congenital heart disease using telemedicine screening. J Telemed Telecare. 2013;19(4):190–6.
- Xu CQ, Smith AC, Scuffham PA, Wootton R. A cost minimisation analysis of a telepaediatric otolaryngology service. BMC Health Serv Res. 2008;8.
- Patel KB, Turner K, Alishahi Tabriz A, Gonzalez BD, Oswald LB, Nguyen OT, et al. Estimated indirect cost savings of using Telehealth among nonelderly patients with Cancer. JAMA Netw Open. 2023;6(1):e2250211.
- 78. Dayal P, Chang CH, Benko WS, Pollock BH, Crossen SS, Kissee J et al. Hospital utilization among rural children served by Pediatric Neurology Telemedicine clinics. JAMA Netw Open. 2019;2(8).
- Shadmi E, Chen Y, Dourado I, Faran-Perach I, Furler J, Hangoma P, et al. Health equity and COVID-19: global perspectives. International Journal for Equity in Health. Volume 19. BioMed Central; 2020.
- Severini R, da SG, Oliveira PC, Couto TB, Simon Junior H, de Andrade APM, Nanbu DY, et al. Fast, cheap and feasible: implementation of pediatric telemedicine in a public hospital during the Covid-19 pandemic. J Pediatr (Rio J). 2022;98(2):183–9.
- Curfman A, McSwain SD, Chuo J, Yeager-McSwain B, Schinasi DA, Marcin J et al. Pediatric telehealth in the COVID-19 pandemic era and beyond. Pediatrics. 2021;148(3).
- Reis FJJ, Fernandes LG, Saragiotto BT. Telehealth in low- and middle-income countries: bridging the gap or exposing health disparities? Health Policy and Technology. Volume 10. Elsevier B.V.; 2021.
- Mishra SK, Singh IP, Chand ED. Current Status of Telemedicine Network in India and Future Perspective. Proceedings of the Asia-Pacific Advanced Network. 2011;32(0):151.
- Waller M, Stotler C. Telemedicine: a primer. Curr Allergy Asthma Rep. 2018;18(10).
- Visconti RM, The valuation of e-health and, telemedicine startups. In: Startup Valuation. 2021. p. 341–61. Available from: www.morovisconti.com.
- Wang B, Snyder G, Mehrotra A, Telemedicine. What Should the Post-Pandemic Regulatory and Payment Landscape Look Like? Issue Brief. 2020 Aug.
- 87. Velayati F, Ayatollahi H, Hemmat M, Dehghan R. Key components and critical factors for developing a telehealth business framework: a qualitative study. BMC Med Inf Decis Mak. 2021;21(1).
- 88. World Health Organization (WHO). Consolidated telemedicine implementation guide. 2022.
- Gogia SB, Maeder A, Mars M, Hartvigsen G, Basu A, Abbott P. Unintended consequences of Tele Health and their Possible Solutions. Contribution of the IMIA Working Group on Telehealth. Yearb Med Inf. 2016;(1):41–6.
- Scott R, Mars M. Telehealth in the developing world: current status and future prospects. Smart Homecare Technol Telehealth. 2015;25.
- Ateriya N, Saraf A, Meshram VP, Setia P. Telemedicine and virtual consultation: the Indian perspective. Natl Med J India. 2018;31(4):215–018.
- Ricci G, Gibelli F, Bailo P, Caraffa AM, Nittari G, Sirignano A. Informed consent in Paediatric Telemedicine: challenge or opportunity? Scoping Rev Healthc (Switzerland). 2023;11(10).
- Gajarawala SN, Pelkowski JN. Telehealth benefits and barriers. J Nurse Practitioners. 2021;17(2):218–21.
- Rankine J, Kidd KM, Sequeira GM, Miller E, Ray KN. Adolescent perspectives on the Use of Telemedicine for Confidential

- Health Care: an exploratory mixed-methods study. J Adolesc Health. 2023.
- 95. Humbyrd CJ. Virtue Ethics in a value-driven world: ethical telemedicine. Clin Orthop Relat Res. 2019;477(12):2639–41.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

