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Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated
by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase
activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one
of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic
patients, it is defined as a clinical condition of abnormal myocardial structure and
performance in diabetic patients without other cardiac risk factors, such as
hypertension, significant valvular disease, etc. There are no specific drugs in treating
DCM despite decades of basic and clinical investigations. Although the relationship
between DCM and pyroptosis is not well established yet, current studies provided the
impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize
the recent literature addressing the role of pyroptosis and the inflammasome in the
development of DCM and summary the potential use of approaches targeting this
pathway which may be future anti-DCM strategies.
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1 INTRODUCTION

Diabetes mellitus (DM) is a significant public health issue all over the world (Kim, 2018; Rendra et al.,
2019). Diabetic complications remain the main cause of morbidity and mortality in diabetic patients,
with cardiovascular disease being the leading cause of death. Diabetic cardiomyopathy (DCM) is
phenotypically defined as the structural or functional changes of the heart occurring in a diabetic
patient independent of other comorbidities such as hypertension, coronary disease, and valvular
disease as well as independent of other conventional cardiovascular risk factors, resulting in either
the systolic or diastolic dysfunction (Rubler et al., 1972), causing a substantial detriment to the
patient’s quality of life (Yap et al., 2019). There are growing lines of evidence indicating myocardial
inflammation as a key process in DCM development (Boudina and Abel, 2007; Mann, 2015; Prabhu
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and Frangogiannis, 2016). Hyperglycemia-induced reactive
oxygen species (ROS) generation is considered to be
responsible for the progression and development of DCM
(Cai, 2006; Cai et al., 2006). The increased ROS could induce
many cytokines and inflammatory factors, such as nuclear factor-
kB (NF-kB), thioredoxin interacting/inhibiting protein (TXNIP),
and inflammasome (Bryant and Fitzgerald, 2009; Devi et al., 2012;
Tsai et al., 2012). Although inflammasome was shown to be
involved in the pathogenic mechanisms of diabetes and its
complications, the potential role and regulatory mechanism of
the inflammasome in DCM has remained largely unexplored.

Pyroptosis, an emerging type of programmed cell death (Man
et al., 2017; Wang et al., 2018a), is associated with the
inflammatory response and is activated by bacteria, pathogens,
or their endotoxins, leading to the subsequent activation of the
caspase family, accompanied by cell swelling, cell membrane pore
formation, cell membrane rupture, inflammasome activation, as
well as the release of cell contents and inflammatory mediators,
resulting in a robust inflammatory response. In recent years,
pyroptosis has gradually become a very important therapeutic
target for inflammation. DCM is closely related to chronic
inflammation, and accumulating evidence implicated
pyroptosis as a critical contributor to myocardial inflammation
in DCM (Li et al., 2014; Luo et al., 2014; Luo et al., 2017; Yang
et al., 2018a; Yang et al., 2018b). This review focuses on the
molecular and pathophysiological mechanisms of the pyroptosis-
related inflammasomes pathway in the development of DCM are
summarized. With this review, we attempted to provide new
insights for researchers regarding the development of potential
therapies for DCM.

2 PYROPTOSIS: A NEWLY DISCOVERED
TYPE OF PROGRAMMED CELL DEATH
2.1 The Relationship Between Cell Death
and Pyroptosis
Cell death is a ubiquitous life phenomenon that is mainly divided
into cell necrosis and programmed death, of which programmed
death includes apoptosis, autophagy, pyroptosis, and other modes
(Soengas et al., 1999; Levine et al., 2011; Strowig et al., 2012;
Pasparakis and Vandenabeele, 2015; Wallach et al., 2016).
Pyroptosis is a newly discovered type of programmed cell
death associated with inflammatory responses. Compared with
apoptosis, pyroptosis is characterized by cell swelling,
perforation, lysis, and release of cell contents. Pyroptosis
occurs in many cell lines including endothelial cells, smooth
muscle cells, and cardiac myocytes, and it is widely involved in the
pathophysiological processes of various diseases (Pan et al., 2018;
Yu et al., 2018). Pyroptosis is mediated by numerous
inflammasomes that can detect exogenous or endogenous
danger signals and is characterized by activation of nod-like
receptor protein-3 (NLRP3) inflammasome and caspase and
the release of interleukin (IL)-1β and IL-18 (Xia et al., 2019;
Yu et al., 2020), thereby playing a critical role in multiple
inflammatory and immune-mediated diseases (Yang et al.,
2014; Wang et al., 2018b; Johnson et al., 2018; Wu et al.,

2019). Interestingly, pyroptosis is like a “double-edged sword”
in cell function. On one hand, it rapidly eliminates intracellular
pathogens by coordinating antimicrobial host defenses
(Kleinbongard et al., 2018) and helps protect multicellular
organisms from bacterial infection. On the other hand,
uncontrolled pyroptosis will result in a severe impact on
cellular environmental homeostasis through pathological and
inflammatory cascades (Shi et al., 2017), finally leading to
chronic low-grade inflammation. This contradiction may be
attributed to differences in the virulence strategies used and
the cell types targeted by different pathogens (Miao et al., 2010).

In 2015, two studies published in Nature identified gasdermin
D (GSDMD) as a substrate for inflammatory caspases and
showed that it was essential for inflammatory caspases-
dependent pyroptosis and IL-1β secretion (Kayagaki et al.,
2015; Shi et al., 2015). In 2018, the Nomenclature Committee
on Cell Death redefined pyroptosis as a programmed death of
plasma membrane pores formed by GSDM protein family
members, which is an inflammatory reaction, often (but not
always) as a consequence of inflammatory caspase activation
(Galluzzi et al., 2018). recent studies have shown that proteolytic
activation of GSDME, GSDMB, and GSDMC by certain caspases
and granzymes can lead to pyroptosis (Rogers et al., 2017; Wang
et al., 2017; Broz et al., 2020; Hou et al., 2020; Zhang et al., 2020;
Zhou et al., 2020). GSDMmembers can be cleaved by a variety of
proteases that are activated or inactivated, and most of the
proteases that induce pyroptosis can also induce apoptosis in
the absence of the corresponding GSDM protein, which means
that GDSM can convert apoptosis into pyroptosis (Table 1).

2.2 Types and Processes of Pyroptosis
Inflammatory caspases cleave the GSDM protein to trigger
pyroptosis and result in pore formation in the membrane, the
release of proinflammatory cytokines, and, finally, programmed
cell death (Yuan et al., 2016). Currently, pyroptosis can be divided
into four types (Figure 1) according to different initiate activation
modes, namely classical pyroptosis pathway, nonclassical
pyroptosis pathway, caspase-3-dependent pyroptosis pathway,
and caspase-8-dependent pyroptosis pathway. Notably, in
humans, GSDM family members are composed of six
members: GSDMA, B, C, D, E, and Pejvakin, and all have a
highly conserved N-terminal domain that induces pyroptosis
when expressed ectopically, except for PJVKNT (Broz et al.,
2020). For example,caspase-3 and caspase-8 can induce
pyroptosis via the cleavage of GSDME and GSDMD,
respectively (Kayagaki et al., 2015; Jorgensen et al., 2017;
Wang et al., 2017). Although these four types have their
characteristics, they are related to each other. In addition, they
share a common endpoint event which is to process IL-18 and IL-
1β, activate the perforating protein GSDMD, and eventually cause
the cell membrane to break and release IL-18 and IL-1β (Ding
et al., 2016; Kovacs and Miao, 2017).

2.2.1 Canonical Inflammasome Pathway Associated
With Pyroptosis
Under the stimulation of dangerous signals, cysteinyl aspartate
specific protease-1 (caspase-1) is activated by the assembled and
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activated inflammasome complex; this induces further cell
membrane degradation, leading to cell death and release of
mature IL-1β and mature IL-18 (Russo et al., 2016;
Błażejewski et al., 2017). This caspase-1-dependent pyroptosis
is known as the canonical inflammasome pathway. The specific
steps are as follows:

The cells activate their respective inflammasomes,
including NLRP3, absent in melanoma 2, or pyrin through
the action of pathogen-associated molecular patterns and
danger-associated molecular patterns under the stimulation
of various external factors, such as hyperglycemia,

inflammation, and hyperlipidemia. The activation of
NLRP3 initiates pro-caspase-1 self-cleavage to form a
caspase-1 mature body. On the one hand, activated
caspase-1 recognizes inactive IL-β and IL-18 precursors
and converts them into mature inflammatory cytokines.
On the other hand, caspase-1 cleaves GSDMD that
mediate the formation of membrane pores. The formation
of membrane pores promotes the release of inflammatory
factors, cell swelling, and finally, pyroptosis (Afonina et al.,
2017; Man et al., 2017).

2.2.2 Non-Canonical Inflammasome Pathways
Associated With Pyroptosis
In 2011, Kayagaki et al. (2011) discovered non-canonical
pyroptotic pathways. In contrast to canonical pyroptotic
pathways, the cell wall LPS of Gram-negative bacteria bypasses
TLR4 and directly combines with the pro-caspase (-4 and -5 in
humans and -11 in murine) to form activated caspase-4/5/11, and
then cleaves the 53-kDa precursor form of GSDMD (pro-
GSDMD) to generate N-terminal of mature GSDMD p30
fragment (Kayagaki et al., 2015), which further causes
membrane pore formation, the release of IL-1b and IL-18 in
the cell and induces pyroptosis (Hagar et al., 2013; Shi et al., 2014;
Shi et al., 2017). This pathway does not involve caspase-1; in the
absence of caspase-1, human caspase-4/5 and murine caspase-11
can also induce pyroptosis with all associated morphological
characteristics (Broz et al., 2020). Although the activation
pathways are different, the downstream signaling pathways are
all activated caspases that cleave GSDMD and release the
N-terminal domain to form membrane pores, eventually
leading to pyroptosis. In other words, GSDMD is a necessary
downstream component of both the canonical and non-canonical
inflammasome pathways associated with pyroptosis (Kayagaki
et al., 2015; Shi et al., 2015; Aglietti et al., 2016; Liu et al., 2016;
Sborgi et al., 2016). However, the current understanding of the
noncanonical caspase-11/4/5 pathway mainly focuses on its role

FIGURE 1 | Four types of pyroptosis: 1) Non-canonical Inflammasome Pathways Associated With Pyroptosis. 2) canonical Inflammasome Pathways Associated
With Pyroptosis. 3) Caspase-8-dependent pyroptosis pathway. 4) Caspase-3-dependent pyroptosis pathway.

FIGURE 2 | The main activation mechanisms of various caspase families
currently involved in pyroptosis: (A) TLR4/NF-kB Inflammasome/NLRP3
Inflammasome Signaling Pathway. (B) AMPK/ROS/Thioredoxin-Interacting
Protein (TXNIP)/NLRP3 Inflammasome Signaling Pathway. (C) AMPK/
SIRT1/Nrf2/HO-1/NF-kB Inflammasome Signaling Pathway.
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in infectious diseases (Shi et al., 2014; Yi, 2017). The role of
caspase-11/4/5 in cardiovascular disease is rarely reported; this
may be a research direction in the future cardiovascular field.

2.2.3 Caspase-3-Dependent Pyroptosis Pathway
Caspase-3 is traditionally only induced apoptosis, however,
recent studies have shown that caspase-3 also plays an
important role in pyroptosis. Due to the presence of a natural
caspase-3 cleavage site in the N- terminal and C- terminal
structural domains of GSDME, activated caspase-3 is capable
of cleaving a specific site of GSDME to release an active N-
terminal domain and perforating the plasmamembrane to induce
pyroptosis (Rogers et al., 2017). Another study has recently also
reported that GSDME has the same function as GSDMD, and can
also activate the intrinsic pathway downstream of inflammasome
activation (Rogers et al., 2019). Briefly, GSDME is activated by
caspase-3 to further generate the GSDME-N fragments and then
cause the pore-forming effect of the cell membrane to mediate
pyroptosis. However, the study of caspase-3 induced pyroptosis is
still very limited, and future studies should focus on the
mechanism of caspase-3 induced pyroptosis.

2.2.4 Caspase-8-Dependent Pyroptosis Pathway
As mentioned above, the cleavage of GSDMD and membrane
pore formation is key to pyroptosis, a recent study by Orning
et al. showed that recombinant mouse GSDMD is cleaved by
purified active caspase-8 (Orning et al., 2018), although it was
less efficient at GSDMD processing in comparison with
caspase-1, its activity was sufficient to trigger pyroptotic cell
death in murine macrophages. In recent years, many
independent studies have revealed synchronicity between
caspase-8 activity and GSDMD-mediated pyroptosis in
multiple scenarios. In Chen/Demarco (Chen et al., 2019)
et al.’s study, they found that the Caspase-8 activity led to
cleavage at position D276, the cleavage site used by caspase-1
generating the p30 fragment, which means that caspase-8
generated the same pyroptosis-mediating p30 fragment as
caspase-1. Various signs suggest that there may be a close
relationship between caspase-8 and pyroptosis, but given
that not enough attention has been paid to caspase-8 by
scholars, the mechanism by which caspase-8 induced
pyroptosis needs to be further explored.

2.3 Diabetes and Pyroptosis
Although the pathogenesis of type 1 diabetes (T1DM) and type 2
diabetes (T2DM) is differentiated, studies have found that they
are each closely related to pyroptosis. Generating a T1DMmodel
is to induce pancreatic damage using streptozotocin (STZ) while
the most usual approach to developing a T2DM model is to feed
animals with a high-fat diet (HFD). Previously, it was believed
that the pathogenesis of T1DM involved adaptive immunity
mediated by T cells. However, an increasing number of studies
have shown that the Toll-like receptor (TLR)-mediated innate
immune system also plays an important role in the pathogenesis
of T1DM (Needell and Zipris, 2017). Carlos et al. confirmed that
NLRP3-dependent IL-1 β production mediated by mDNA leads
to T1DM. The important pathological features of T2DM are
insulin resistance and impaired insulin secretion from pancreatic
β-cells. Insulin resistance is closely associated with inflammation.
Numerous evidence suggests elevated expression of
inflammasome components (NLRP3 caspase-1 and ASC) in
untreated T2DM patients (Joya-Galeana et al., 2011; Lee et al.,
2013). And the secretion of IL-1β and IL-18, caused by activation
of the NLRP3 inflammasome, is emerging as a powerful
determinant of metabolic inflammation and insulin resistance
in T2DM patients (Stienstra et al., 2010; Wen et al., 2011).
Consistent with these findings, higher serum levels of IL-1β
and IL-18 have been reported in drug-naïve T2DM patients
compared with healthy subjects (Lee et al., 2013). Under a
hyperglycemic environment, ROS activates the NLRP3
inflammasome in β cells, elevating caspase-1-dependent IL-1β
secretion; this mediates dysfunction of β-cell insulin secretion
and promotes obesity and insulin resistance, finally leading to
pyroptosis and the development of T2DM.

2.4 Pyroptosis and Diabetic
Cardiomyopathy
Pyroptosis is triggered by various pathological stimuli, such as
oxidative stress, hyperglycemia, inflammation, and it is crucial for
controlling microbial infections. It was first identified in the
macrophage in 1992, which presented rapid lysis after
infection with Shigella flexneri, (Cookson and Brennan, 2001)
and the name was coined in 2001 (Cookson and Brennan, 2001).
Pyroptosis is a highly regulated cell death process, and it plays a

TABLE 1 | Discrimination between apoptosis and pyroptosis.

Apoptosis Pyroptosis

Common point Programmed cell death
Characteristic Cell shrinkage Cell enlarging

Membrane blebbing Membrane broken
Nuclear DNA fragmentation Organelles deforming
Nuclear condensation DNA randomly degraded
— Chromatin condensation

Dependence on caspases Transformation to apoptosis and pyroptosis Caspase 3, 6, 7, 8,9, 10 Caspase 1, 3, 4, 5, 11
caspases that activate GSDM members: ①GSDMC by caspase-8 Watabe
et al. (2001); ②GSDMD by caspase-1, and to a lesser extent, by caspase-8
Orning et al. (2018), Sarhan et al. (2018); ③GSDME by caspase-3 Rogers
et al. (2017), Wang et al. (2017)
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pivotal role in the pathogenesis of various cardiovascular diseases
(CVDs) such as myocardial infarction (Gonzalez-Pacheco et al.,
2017; Yang et al., 2017),hypertension (Bruder-Nascimento et al.,
2016; Zhu et al., 2017), and cardiomyopathy (Pereira et al., 2018),
and involves endothelial cells (Zhang et al., 2018a), VSMCs (Pan
et al., 2018) and so on. Therefore, this process is a potential target
for therapeutic intervention to prevent CVDs.

Today, increasing evidence suggests that pyroptosis is involved
in the pathogenesis of cardiomyocyte injury, especially in DCM
(Qiu et al., 2017). DCM, a complication of diabetes, is characterized
by myocardial fibrosis, left ventricular hypertrophy, and damaged
left ventricular systolic and diastolic function (Jia et al., 2018a).
Inflammation is implicated in the pathogenesis of diabetic
cardiomyopathy (Zhang et al., 2017). Oxidative stress, coupled
with the activation of downstream pro-inflammatory and cell-
death pathways, induces DCM-associated pathological changes
(Althunibat et al., 2019). Therefore, anti-inflammatories may be
useful for the prevention and treatment of diabetic complications.
In recent years, the role of the NLRP3 inflammasome in diabetic
cardiomyopathy has drawnmuch attention. AndNLRP3 also plays
an important role in the development of pyroptosis. By activating
NLRP3, stimulates the production of IL-1β and IL-18 (Zeng et al.,
2017; Ge et al., 2018), triggers pyroptosis, and ultimately leads to
the development of diabetic cardiomyopathy.

Due to the different modeling methods of T1DM and T2DM,
the pathophysiological mechanism of DCM caused by them will
also change accordingly (Hölscher et al., 2016). Insulin may be
one of the reasons for this difference. Insulin signaling in two
types of diabetes is very different. T1DM is characterized by
insulin deficiency, and T2DM is characterized by insulin
resistance. However, recent studies have shown that no matter
what type of diabetic cardiomyopathy leads to diabetes, the final
manifestation is cardiac diastolic dysfunction (Hölscher et al.,
2016). Although the etiology of these two types of diabetes is
different, there are still some common molecular changes in the
myocardium (Hölscher et al., 2016). In both two types of diabetes,
proper glycemic control (Salvatore et al., 2021) is a key factor to
prevent DCM progression from heart failure.

What’s more, In the diabetic heart, the NLRP3 inflammasome
responds to hyperglycemia-induced toxicity and initiates the
progression of pyroptosis (Luo et al., 2014; Luo et al., 2017; Zhou
et al., 2018). In recent years, a growing body of evidence suggests that
inhibition of the NLRP3 inflammasome may slow pyroptosis in
diabetes and associated complications (Yang et al., 2018b; Wu et al.,
2018; Song et al., 2019). But there remain some problems, thoughDCM
is a common clinical complication in patients with diabetes, there are
few studies about the mechanism between DCM and pyroptosis, and
the mechanism of how to activate NLRP3 is still not clear too.

3 SIGNALING PATHWAYS RELATED TO
THE PYROPTOSIS OF DIABETIC
CARDIOMYOPATHY
Mitochondrial ROS have a central role in NLRP3 inflammasome
activation (Zhou et al., 2011; Zhong et al., 2013). One study
demonstrated that the production of intracellular ROS induces

NLRP3 translocation to the cytoplasm from the nucleus in LPS
treated neonatal rat cardiomyocytes. And NLRP3 cytoplasmic
translocation can be prevented by the elimination of ROS (Li
et al., 2019a). And the accelerated ROS production induced by
high glucose plays a key role in the progression of diabetic
cardiovascular disease and cardiomyocyte pyroptosis (Chen
et al., 2017). A recent study showed that Gypenosides, a
traditional Chinese medicine, can reduce activation of the
NLRP3 inflammasome by inhibiting ROS production, and this
can improve damage to the myocardium induced by high glucose
(Zhang et al., 2018b). And GSDMD cleavage occurs downstream
of ROS release. In conclusion, excessive generation of ROS and
NLRP3 inflammasome activation trigger inflammation and
pyroptosis in diabetes. But the specific mechanism by which
NLRP3 triggers anxiety in DCM is still unclear.

3.1 TLR4/NF-kB/NLRP3 Inflammasome
Signaling Pathway
Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88
(MyD88), and nuclear factor kappa-light-chain- enhancer of
activated B cells (NF-κB) pathway contribute to NLRP3
inflammasome activation (Bauernfeind et al., 2009). NF-κB is
closely associated with NLRP3 and plays a crucial part in the
regulation of genes involved in immunity and inflammation (Sun,
2017). On the one hand, NF-κB binds to the NLRP3 promoter region
and affects transcriptional regulation of NLRP3 (Qiao et al., 2012). On
the other hand, blockage of NF-κB exacerbates the activation of the
NLRP3-dependent inflammasome (Afonina et al., 2017). Then,
NLRP3 inflammasome forms a complex with its adaptor
apoptosis-associated speck-like protein containing a CARD (ASC)
which leads to the enhancement of pro-caspase-1 and the formation
of an active caspase-1 (Latz et al., 2013). The activated caspase-1
converts pro-IL-1β and IL-18 into its mature forms and then induces
pyroptosis (Shi et al., 2015; Youm et al., 2015; Sanchez-Lopez et al.,
2019). This process has a protective effect during the initial
inflammation. Nevertheless, when IL-1β and IL-18 are continually
released and accumulated in the cell, they induce pyroptosis, tissue
damage, and organ dysfunction (Green et al., 2018). The above idea
was demonstrated in the rat model of Hepatic ischemia/reperfusion
injury by Alaa El-Din El-Sayed (El-Sisi et al.,2021; Zhang et al., 2021)
and in the premature ovarian failure model made by Cairong Zhang
et al. (2021). Moreover, Wang Y. et al. found that chemical GSDMD-
related pyroptosis of tubular cells in diabetic kidney disease is
dependent on the TLR4/NF-kB signaling pathway (Wang et al.,
2019). In summary, we speculate that pyroptosis can be associated
with DCM through the TLR4/NF-kB/NLRP3 Inflammasome
Signaling Pathway, but there are very few scholars studying this
pathway in DCM, and future directions can focus on the
understanding of this pathway.

3.2 AMPK/ROS/Thioredoxin-Interacting
Protein (TXNIP)/NLRP3 Inflammasome
Signaling Pathway
In recent years, TXNIP has been recognized as a central
contributor to diabetic vascular complications (Li et al., 2017;
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Lu et al., 2018; Gu et al., 2019). TXNIP levels will be increased in
hyperglycemic cultured cells as well as in peripheral blood and
tissues of diabetic animals (Li et al., 2017; Gu et al., 2019). The
TXNIP/NLRP3 pathway was activated due to increased ROS
production induced by high glucose. All NLRP3 agonists
trigger the production of ROS, which leads to activation of the
NLRP3 inflammasome via the ROS-sensitive TXNIP protein
(Schroder et al., 2010). Mitochondrial dysfunction can produce
a large number of reactive oxygen species (ROS), and this, in turn,
induces dissociation of TXNIP and thioredoxin. TXNIP then
binds to NLRP3 through the leucine-rich repeat domain,
prompting activation of the NLRP3 inflammasome (Strowig
et al., 2012; Qiu and Tang, 2016; Han et al., 2018).

TNXIP is a potential regulator involved in high glucose-
induced cardiomyocytes. A recent study showed that glucose-
treated H9c2 cardiomyocytes produced excessive ROS in a
concentration-dependent manner, and the level of TXNIP
showed a similar expression pattern in response to glucose
(Bauer et al., 2014). Recently, the role of AMPK on TNXIP
has also gradually attracted attention. The activation of AMPK is
driven by oxidative stress via ROS-dependent phosphorylation
(Mungai et al., 2011). Previous studies revealed that AMPK is a
key regulator of energy metabolism and inflammation in DCM
(Jia et al., 2018a; Jia et al., 2018b). In high glucose-treated
cardiomyocytes, a slight increase in phosphorylated AMPK
was observed. Activated AMPK degenerates TXNIP to
manipulate the activity of the NLRP3 inflammasome (Wu
et al., 2013). What’s more, in experiments by Wei H et al.,
they also confirmed an anti-pyroptotic pathway mediated by
the ROS-AMPK-TXNIP pathway, which regulates the activity of
inflammasome and caspase-1 in diabetic cardiomyocytes. In
summary, the ROS-AMPK-TXNIP pathway can serve as a link
between oxidative stress and cardiac inflammation in various
CVDs (Wei et al., 2019).

3.3 AMPK/SIRT1/Nrf2/HO-1/NF-kB
Inflammasome Signaling Pathway
SIRT1 is a member of the sirtuin family, which is involved in
many diseases and bioprocesses such as cancer development,
oxidative stress, and pyroptosis (Simic et al., 2013; Ma et al., 2016;
Qu et al., 2017; Chen et al., 2018). The AMPK/SIRT1 pathway
could modulate the function of vascular endothelial cells in
diversiform ways, for instance, activating PGC-1α, Nrf2, and
FoxO3 and inhibiting the activity of various inflammation-related
proteins such as p38MAPK and NF-κB pathway. Endothelial
dysfunction is closely related to DCM, so we supposed that the
AMPK/SIRT1 pathway plays an important role in the
pathological progress of DCM.

As one of the most essential transcription factors, nuclear
factor erythroid 2-related factor 2 (Nrf2) exerts antioxidant, anti-
apoptotic, and anti-inflammatory effects by interacting with
multiple signaling pathways (Loboda et al., 2016; Hao et al.,
2019), with an important role in cytoprotection, is activated
under stress conditions when excessive ROS is detected
(Tsushima et al., 2019; Ungvari et al., 2019). Many studies are
showing that SIRT1/PGC-1α/Nrf2 signaling can regulate both

pyroptosis and oxidative stress in different situations such as
cancer or liver oxidative stress (Do et al., 2014; Zhao et al., 2019).
The Nrf2/HO-1 pathway has garnered increased interest
(Wardyn et al., 2015). Importantly, in Hao Li et al.’s research,
they found that in diabetic cardiomyopathy, piceatannol
alleviates inflammation and oxidative stress by activating the
Nrf2/HO-1 pathway while inhibiting NF-κB activation in Rat
H9C2 cardiac myoblasts. The same phenomenon was found in
human umbilical vein endothelial cells by Tang, Qian et al.
Knockdown of Nrf2 suppressed enhancement of HO-1
expression and abolished the anti-inflammatory effects
(Wardyn et al., 2015). Nrf2 is one of the upstream targets of
inflammation induced by NF-κB. Besides, studies also showed
that activating the Nrf2 signaling pathway could inhibit
NLRP3 inflammasome-dependent pyroptosis in vascular
endothelial cells (Li et al., 2019b). Nrf2 is one of the upstream
targets of inflammation induced by NF-κB. Therefore, it is not
difficult for us to deduce that AMPK/SIRT1/Nrf2/HO-1/NF-kB
Inflammasome Signaling Pathway plays an important role in the
anxiety process of diabetic cardiomyopathy.

3.4 Other Signaling Pathways
In recent years, some other pathways related to the pyroptosis of
DCM. have been discovered. 1) FoxO3a/ARC/caspase-1
Signaling Pathway: FoxO3a has been reported to inhibit cell
death by targeting its downstream protein ARC in glucose-
treated cardiomyocytes (Li et al., 2014). 2) AMPK/mTOR/
autophagy pathway: Yang F et al. demonstrated that
metformin can suppress the NLRP3 inflammasome through
the AMPK/mTOR/autophagy pathway (Yang et al., 2019a). 3)
Kcnq1ot1/miR-214-3p/caspase-1 pathway: The long non-coding
RNA Kcnq1ot1 was overexpressed in the serum of diabetic
patients, as well as in HG-treated cardiac fibroblasts and
cardiac tissue of diabetic mice. Kcnq1ot1 targeted caspase-1
and regulated the expression of NLRP3 and its downstream
inflammatory cytokines by sponging miR-214-3p. Silencing
Kcnq1ot1 inhibited the miR-214-3p/caspase-1 pathway to
relieve pyroptosis in DCM models, and ameliorate cardiac
function and fibrosis in vivo (Yang et al., 2018b). Interestingly,
a novel circular RNA, named caspase-1-associated circRNA
(CACR), also promotes caspase-1 expression by targeting miR-
214-3p, thus inducing pyroptosis in HG-treated cardiomyocytes
(Yang et al., 2019b). However, there are few studies on the above
pathways in diabetic cardiomyopathy, and the specific
mechanism needs to be further explored.

4 DISCUSSION

Pyroptosis is a new mode of programmed death, which is closely
related to the inflammatory response and has been a research
hotspot in recent years. Previous studies have focused on
demonstrating the relationship between pyroptosis and various
diseases, but there is a lack of research on specific mechanisms,
and even if there are specific mechanisms of research, few
researchers integrate these mechanisms, which is the original
intention of our writing of this paper. As mentioned above,
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pyroptosis is closely related to the inflammatory response, and
DCM can be classified as a type of chronic inflammatory disease,
and the current study also shows that there is a close link between
DCM and pyroptosis. So, it will be of interest if the relationship
between DCM and pyroptosis can be studied in-depth and the
development of DCM can be inhibited by regulating some of
these molecular mechanisms.

In this review, we describe in detail the four ways to trigger
pyroptosis, which were previously three, and now with the
deepening of research, new mechanisms have emerged, and
perhaps in the future, we will find more mechanisms to
trigger pyroptosis. Then we summarized three main signaling
pathways that currently trigger diabetic cardiomyopathy (Figure
2): 1) TLR4/NF-kB Inflammasome/NLRP3 Inflammasome
Signaling Pathway; 2) AMPK/ROS/TXNIP/NLRP3
Inflammasome Signaling Pathway; and 3) AMPK/SIRT1/Nrf2/
HO-1/NF-kB Inflammasome Signaling Pathway, which can be
used to design DCM-related drugs through the above signaling
pathways in the future.

However, through our study, it is found that there are still the
following problems to be solved in this direction of DCM-
induced pyroptosis: Firstly, the detailed mechanism underlying
the function of the gasdermin family in DCM in the downstream
pathway of pyroptosis remains unclear. Secondly, small-molecule
inhibitors targeting TLR4, NLRP3, and other inflammatory
components are potential therapeutic options for DCM.
However, there are still many unknown pathways and targets,
and corresponding inhibitors, related to the occurrence and
development of DCM related to pyroptosis awaiting further
exploration. These insights may provide research ideas for
developing new mechanisms, drugs, and technologies for
DCM. Based on the current summary, we propose the
following research targets.

First, the mechanism of pyroptosis triggered by diabetic
cardiomyopathy proposed in this review needs more
experiments to verify its feasibility. And the independent

dependence of each pathway has not been explored, which
provides a direction for future studies.

Second, pyroptosis is a double-edged sword, and most of the
current research focuses on its bad side. Can we use the
advantages of pyroptosis for DCM?

Finally, more attention should be paid to the
pathophysiology of DCM, and to understand the possible
potential pathways of the pyroptosis-related inflammasome,
which can offer new methods and technologies for the clinical
treatment of DCM.
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