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specific lipids in separate datasets so that a small set of 
lipids can be used as nutritional biomarkers.
Method We utilized a direct infusion high-resolution 
mass spectrometry method to analyse the lipid profiles of 
3.2 mm dried blood spot samples collected at age 3 months 
from the Cambridge Baby Growth Study (CBGS-1), which 
formed the discovery cohort. For validation two sample 
sets were profiled: Cambridge Baby Growth Study (CBGS-
2) and Pregnancy Outcome Prediction Study (POPS). Lipi-
domic profiles were compared between infant groups who 
were either exclusively breastfed, exclusively formula-
fed or mixed-fed at various levels. Data analysis included 
supervised Random Forest method with combined classi-
fication and regression mode. Selection of lipids was based 
on an iterative backward elimination procedure without 
compromising the class error in the classification mode.
Conclusion From this study, we were able to identify and 
validate three lipids: PC(35:2), SM(36:2) and SM(39:1) 
that can be used collectively as biomarkers for infant nutri-
tion during early development. These biomarkers can be 
used to determine whether young infants (3–6 months) are 
breast-fed or receive formula milk.

Keywords Lipidomics · Biomarker discovery · Random 
Forest · Infant nutrition

1 Introduction

Early nutritional biomarkers are essential in the study of 
infancy metabolism, and for investigations into ‘metabolic 
programming’. This concept is based on increasing evi-
dence that nutrition and growth in early life are linked to 
long-term health outcomes across the life course (Horta and 
Victora 2013; Singhal 2006). Importantly, the underlying 

Abstract 
Introduction Links between early life exposures and 
later health outcomes may, in part, be due to nutritional 
programming in infancy. This hypothesis is supported by 
observed long-term benefits associated with breastfeed-
ing, such as better cognitive development in childhood, and 
lower risks of obesity and high blood pressure in later life. 
However, the possible underlying mechanisms are expected 
to be complex and may be difficult to disentangle due to the 
lack of understanding of the metabolic processes that dif-
ferentiate breastfed infants compared to those receiving just 
formula feed.
Objective Our aim was to investigate the relationships 
between infant feeding and the lipid profiles and to validate 
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physiological and metabolic mechanisms are poorly under-
stood and difficult to study. This is due to a lack of rele-
vant tools that encompass both the precision and resolution 
required to investigate the differences in the endogenous 
metabolic responses of infants to breast or formula milk. In 
addition, there is the necessity for such tools to be mini-
mally invasive thus limiting ethical concerns in terms of 
obtaining suitable samples from infants. Furthermore, it is 
also essential that newly found differentiating metabolite 
signals from lipids are validated so that they can be rec-
ognised as reliable biomarkers (Strimbu and Tavel 2010; 
Issaq et al. 2011; Willis and Lord 2015; Xia et al. 2013).

Biomarker discovery has emerged as a rapidly growing 
field and in the last 3 years and there have been more peer-
reviewed reports published (ca. 16,000) than in all the years 
before combined (ca. 13,000) (http://www.scopus.com). All 
this work has led to discovery of many differentiating lipids 
from an increasing number of papers on metabolomics 
(Koulman et  al. 2014) and shotgun lipidomics (Ivanova 
et al. 2009; Shevchenko and Simons 2010; Wolf and Quinn 
2008), many of which show very relevant and significant 
differences in lipid profiles between different pathologies, 
populations and diets. However, many of these results are 
rarely validated in independent studies, and this is essential 
in enabling the translation from finding differential lipid 
profiles to the application of lipid biomarkers.

We developed and validated a lipid profiling method 
using high resolution mass spectrometry to determine the 
lipid composition of dried blood spot samples (Koulman 
et  al. 2014). We applied this method to samples from the 
Cambridge Baby Growth Study (CBGS) to determine if 
infant nutrition had a significant impact on lipid metabo-
lism and infant growth. We reported the significant differ-
ences between the lipid profiles of breast-fed and formula-
fed infants (Prentice et al. 2015). Our aim was to validate 
these differences in the lipid profile between breastfed and 
formula-fed infants and be able to call these lipids biomark-
ers of infant nutrition.

2  Methods

2.1  Cohort study design

The Cambridge Baby Growth Study (CBGS) is a prospec-
tive observational birth cohort, focussing on the antenatal 
and early postnatal determinants of infancy growth (Pren-
tice et  al. 2015). Mothers were recruited during early 
pregnancy from a single antenatal centre in Cambridge, 
between 2001 and 2009. Their infants were seen at birth by 
trained research nurses and followed-up at 3 and 12 months 
respectively with detailed anthropometry. Dried blood spots 
(DBS) were collected using capillary heel prick sampling, 

dropping blood spots onto  WhatmanTM® untreated filter 
paper (Ahlstrom 226, ID Biological Systems). Infancy feed-
ing (exclusive breast-, mixed or exclusive formula-feeding) 
was assessed by questionnaire at age 3 months. The study 
was approved by the Cambridge research ethics committee 
and all mothers gave written consent. With slight modifica-
tions to the protocol, two further waves of data collection 
were subsequently completed (labelled CBGS2 and POPS).

2.1.1  Cambridge Baby Growth Study dataset 1 (CBGS‑1)

We modified our direct infusion high-resolution mass spec-
trometry (HRMS) method with plasma/serum samples 
and applied this initially to 241 DBS samples (dataset 1) 
from the Cambridge Baby Growth Study (CBGS) cohort, 
a prospective observational birth cohort. The samples 
were taken at 3 months (m) of ages when infants also had 
detailed anthropometrical measurements, and feeding prac-
tice was assessed by questionnaire (exclusive breastfeeding 
(HM), exclusive formula-feeding (FM), or mixed feeding 
(HM&FM). Dataset-1 consisted of a total of 239 infants 
at 3 months of age, who had different feeding practice and 
coded as following: 85 HM, 87 FM, 67 mixed-fed. Because 
of the substantial differences in the lipid profile between 
these groups (Prentice et  al. 2015), we aimed to validate 
these findings in a new independent sample set, using these 
original data as a training dataset. The study was approved 
by the Cambridge local research ethics committee, and all 
mothers gave informed written consent (LREC 00/325).

2.1.2  Cambridge Baby Growth Study dataset 2 (CBGS‑2)

A second lipidomics dataset (dataset-2) from the Cam-
bridge Baby Growth Study cohort (CBGS-2) was avail-
able, which was based on samples that were obtained 
from infants born small for gestational age or from dia-
betic mothers. The total number of samples (n) were 95 
(43 breast-fed, 25 formula-fed, 27 mixed-fed at 3 months). 
This dataset-2 was used for validation of the potential bio-
markers found in dataset-1. The study was approved by the 
Cambridge local research ethics committee, and all moth-
ers gave informed written consent (LREC 11/EE/0068).

2.1.3  Pregnancy Outcome Prediction Study (POPS)

A third dataset was available consisting of infants at both 3 
and 6 months of age (n = 40, 16 breast-fed, 11 formula-fed, 
13 mixed-fed at 3 months). This dataset was from the end 
of CBGS recruitment when more detailed data collection 
had been added to the CBGS protocol, but the demograph-
ics of the cohort were very similar. In addition to recording 
feeding practice, data for these infants were available on 
volume of formula intake (ml per day) in both mixed- and 
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exclusively formula-fed infants. This dataset-3 was used for 
validation of the potential biomarkers found in dataset-1. 
Ethical approval for the study was obtained from the Cam-
bridgeshire 2 Research Ethics Committee (reference 07/
H0308/163).

2.2  Data generation

DBS on filter paper cards were air dried at ambient temper-
ature overnight, before being stored in Ziploc storage bags 
at −20 °C until analysis, when a single 3.2  mm spot was 
punched from the larger DBS.

2.3  High‑resolution mass spectrometry (HRMS)

The large-scale lipidomics method was adapted for a plat-
form developed for plasma samples (Eiden et al. 2015) to 
enable the analysis of DBS samples and has been previ-
ously described (Koulman et al. 2014). In brief, the blood/
analytes from a 3.2 mm DBS was extracted with 100 µl of 
MilliQ  H2O in a well of a glass-coated 2.4  ml deep well 
plate (Plate+TM, Esslab, Hadleigh, UK), then 250  µl of 
MeOH was added. Lipids were partitioned into 500  µl 
of Methyl-tertiary-butyl ether. After centrifugation, the 
organic layer was concentrated and used for lipid analysis. 
Samples were infused into a Thermo Exactive benchtop 
orbitrap (Hemel Hampstead UK), using an Advion Triv-
ersa Nanomate (Ithaca US) and data acquired in both posi-
tive (+1.2 kV) and negative (−1.5 kV) mode voltages. All 
experiments were run with blank controls and two different 
quality control samples. In total, 218 lipid signals could be 
detected robustly using this method. The lipids have been 
identified as described previously (Koulman et  al. 2014) 
and the identification is at level 2 of the Metabolomics 
Standards Initiative .

All datasets are provided in the supplementary material 
1.

2.4  Data analysis strategies

The lipid signals obtained were semi-quantitative, with 
the signal intensity of each lipid expressed relative to the 
total lipid signal intensity, for each individual, per thou-
sand. Raw HRMS data were processed using XCMS 
(http://www.bioconductor.org) and Peak picker v2.0 (an 
in-house R script). All lipid species where >30% of cases 
had a value of zero, were excluded from further analyses. A 
detailed data analysis diagram is shown in Fig. 1.

Lipidomics data were generated from DBS of three 
studies: CBGS-1, CBGS-2, and POPS. For the CBGS-2 
and POPS studies, there were DBS samples collected 
at 3 months and 6 months. For all participants, the diet 
was recorded and coded as follows: human milk (HM), 

formula milk (FM) and mix (formula and human milk, 
HM & FM). Diets were considered as different class or 
groups and hence the classification method was appropri-
ate. Within CBGS-2 and POPS datasets, the total daily 
amount of milk (ml) were also assessed.

2.5  Random Forest

Random Forest (RF) (Breiman 2001; Acharjee et  al. 
2011, 2016)), a machine learning ensemble method was 
employed in conjunction with multiple learning algo-
rithms to obtain better predictive performance. This 
included a backwards elimination (Diaz-Uriarte and 
Alvarez de Andres 2006).

This allowed all the metabolite data to be combined 
in a nonlinear way rather than solely in a linear way and 
hence allow the discovery of more complex dependen-
cies. RF was used for both classification and regression-
based analysis (Breiman 2001) and involved a bootstrap-
ping method for training or testing and decision trees for 
prediction. Bootstrapping generates random samples from 
the dataset with replacement. Every bootstrapped sam-
ple has a corresponding left out or ‘out-of-bag’ (OOB) 
sample that is used to test the algorithm. For example, 
if we generate 100 bootstrapped samples, every time we 
get a set of predictions from the training samples. The 
final prediction is simply the average of all 100 predic-
tions from the trees that do not contain training samples 
in their respective bootstrap sample (test samples).

Fig. 1  Workflow for the data analysis. Random Forest (RF) classifi-
cation was used to select subsets of lipids from lipidomics data and 
different classes of milk nutrition are shown. CBGS-1 data were used 
as a training set whereas CBGS-2 and POPS data were used for vali-
dation and quantified using the area under a receiver operator charac-
teristics (AUROC)

http://www.bioconductor.org
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2.5.1  Random Forest classification

Random Forest was exploited as a multiclass classifica-
tion method to classify different types of feeding (HM, 
FM or combinations). For the classification model, RF 
needed to use some of the parameters to be set “a pri‑
ori”. For example, the number of trees (ntree) and the 
number of variables (lipids) randomly sampled as candi-
dates at each split (mtry) needed to be defined. We used 
ntree = 500 and mtry = square root of the number of vari-
ables in our models. For example, for this dataset, mtry 
was set to 15 and the nearest integer to the square root of 
218, the total number of metabolites.

2.5.2  Random Forest regression

Our aim was to assess if the significant differences in the 
lipid profile of infants due to their early nutrition could 
indeed be replicated. Again RF was employed to iden-
tify the lipids with the strongest predictive power in the 
discovery cohort and subsequently we tested the chosen 
lipids in two different datasets for validation.

In regression analyses, RF was used to predict the 
total amount of quantified milk from CBGS-2 and POPS 
data sets and construct a predictive model for each of 
the response clinical phenotypes, whilst quantifying the 
importance of each variable. Quantification was based 
on the variation explained  (Q2) by the model, not only 
as a measure of goodness of fit of the data, but also 
determined by left-out “out-of-bag” samples as a proxy 
for predictive quality. The variance explained in RF is 
defined as 1.0 − (mean square error (MSE)/Q2), where 
MSE is the sum of squared residuals of the OOB sam-
ples divided by the OOB sample size. RF regression also 
requires parameters for example number of trees (ntree), 
and the number of variables (lipids) randomly sampled as 
candidates at each split (mtry). In this work, ntree = 500 
and mtry = 72 approximately one-third of 218.

2.5.3  The backward elimination method

To select metabolites Random Forests were fitted itera-
tively and at each iteration a new forest was built after 
discarding 20% of the metabolites with the smallest vari-
able importance. The selected set of metabolites was then 
fitted with the RF model to check the OOB error rate. 
This procedure was repeated using the varSelRF function 
from varSelRF package in R-CRAN (Diaz-Uriarte and 
Alvarez de Andres 2006).

2.5.4  Permutation test

RF quantifies the importance of lipids that classify the 
different nutritional intakes but does not give a signifi-
cance level or a threshold to choose a possible subset of 
associated metabolites. Therefore, a permutation test was 
included to indicate significance of the lipid’s associa-
tions in this study. In this situation, the different feeding 
categories were randomized, each time applied to the RF 
1000 times for 1000 different randomizations. In each 
analysis, the  Q2 and variable importance in terms of a 
decrease in node impurities were estimated. Node purity 
values were ordered from the permuted datasets and the 
95th percentile of the distribution node impurity values 
were taken to assess the significance of the individual 
lipids. The same was done for the 95th percentile of  Q2 
to denote significance of the  Q2 value in RF regression 
model.

2.6  Software

All statistical analysis was done in using R software 
(v3.3.0). Two R packages for Random Forest analysis: Ran-
dom Forest (Liaw and Wiener 2002) and varSelRF (Diaz-
Uriarte and Alvarez de Andres 2006) were required. To aid 
reproducible research, the R- Scripts are provided in the 
supplementary material 2.

3  Results

3.1  Classification

3.1.1  Results from CBGS Dataset −1

RF classification method was applied in the following four 
different ways. In each situation, we estimated the per-
centage of out-of-bag (OOB) error using all and selected 
variables.

HM, FM, and Mix (three-way classification): In this 
situation, HM, FM and HM & FM were considered as 
three classes. The OOB class error from RF classification 
method using all variables was 28% and after selected vari-
able was 27%.

HM and FM (two-way classification): In this situation, 
HM and FM were treated as two classes. The OOB error 
was estimated as 3.5% using all variables whereas after 
selection of variables, it was 2.8%.

HM and Others (two-way classification): In this situa-
tion, HM feed samples were treated as one class and rest of 
other samples were considered as one class. The OOB error 
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was estimated 18% using all variables, whereas, after selec-
tion of variables, it was 17%.

FM and Others (two-way classification) analysis: In this 
situation, FM feed samples were treated as one class and 
rest of other samples were considered as one class. The 
OOB error was estimated 8.7% using all variables whereas 
after selection of variables, it was 10%.

Using a backwards elimination method, we were able 
to identify the lipids that had the strongest impact on the 
classification. The list of selected lipids is shown with their 
uniqueness or overlap for their ability to predict class mem-
bership in the different situations (Fig. 2).

3.1.2  Validation

RF classification was applied to the dataset-1 (treated as a 
training set) to identify the differentiating lipids, which we 
aimed to translate to biomarkers through the validation in 

datasets-2 and dataset-3. The selected lipids were applied 
to the CBGS-2 and POPS datasets, as validation work 
and to check the area under receiver operating character-
istic (AUROC) performance. A summary of the results 
is shown in the Fig.  2(a) and (b). Figure 3 shows a sum-
mary of the AUROC curves for the test and validation 
sets. Figure 3(a) represents AUROC values in four differ-
ent situations using all the lipids whereas 3(b) representing 
AUROC performance with selected lipids from training 
data (CBGS-1) set. Using backward elimination, we were 
able to filter lipids out of the entire lipid pool (p = 218) in 
all the other situations and from the Fig. 3(b). Three lipids 
PC(35:2), SM(36:2) and SM(39:1) were found to be com-
mon in all the situations (HM, FM vs. Mix; HM vs. FM; 
HM vs. Others and FM vs. Others) from dataset-1. It is 
clear that selected lipids do not compromise the AUROC 
values in comparison to the results obtained with all the 
lipids (p = 218) on CBGS-2 (dataset-2) and POPS data 

Fig. 2  Lipids selected using backwards elimination process. a shows common and unique lipids in the different situations. b lists the lipids asso-
ciated with the situations explored. For simplicity, the situations are marked in different colours

Fig. 3  Summary of the area under receiver operating characteristic 
(AUROC) curves in different situations with human milk (HM), HM 
& formula (Mix) and formula (FM). Four situations are described 

with all lipids in (a) and selected lipids in (b) and their impact on 
AUROC values are summarised clearly showing that the selected 
lipids are enough to predict in both CBGS-2 and POPS datasets
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(dataset-3). This is because of elimination of lipids that 
were not relevant for the predicting the response variable. 
Validation models were also created using the 6-month 
infancy data available (POPS), and can be found in the 
Supplementary Material 3.

3.2  Prediction of volume of formula milk using 
regression analysis

Using regression models, we aimed to predict the daily 
intake volume of formula milk (ml) in the dataset-1 
from dataset-2 and dataset-3 respectively. The variation 
explained  (Q2) by CBGS-2 and POPS were 32 and 51% 
respectively using all the lipids. The Pearson correlation 
(r) value of the correlation between these two predictions 
was 0.65 (p < 10−5) (Supplementary Material 4). Further-
more, we selected 13 significant lipids from POPS data 
based on the backwards elimination approach and used 
only them to predict the amount of the volume of for-
mula milk (ml) in the dataset-1. The variation explained 
 (Q2) in CBGS-2 and POPS were 38 and 65% respectively 
(Fig. 2) and Pearson correlation (r) value from two predic-
tions using all the samples (in the HM, FM and Mix situ-
ation) was 0.87 (p < 10−6). The predictions of the amount 
of the volume of formula milk (ml) in the CBGS-1 from 

CBGS-2 and POPS dataset using selected lipids are shown 
in Supplementary Material 5. The 13 selected lipid groups 
were: LysoPC(14:0), DG-H20(33:1), SM(36:2), PC(34:2), 
SM(39:1), PC(37:4), PE(40:3) with PC(37:3), TG(49:1), 
PE(43:4), TG(51:3), TG(51:2), TG(53:3) with TG(53:2) 
and finally sphingomyelins SM(36:2) and SM(39:1) already 
shown to be robust and predictive nutritional biomarkers. 
The daily milk intake volume in the CBGS-2 and POPS 
datasets provided the opportunity to predict the amount of 
milk in the CBGS-1 dataset. In Fig. 4, we show how for-
mula milk (FM) and Mix samples are distributed, the FM 
samples form a defined cluster, whereas the Mix samples 
are dispersed around them.

4  Discussion

The study of lipid metabolism in healthy infants remains 
largely unexplored. One of the main reasons is that repeat 
drawing of blood from healthy newborns is regarded as 
over-invasive. Dried blood spots (DBS) from heel pricks 
have long been established as the most appropriate sample 
format and this is now commonly applied to screen infants 
for inborn errors of metabolism (Chace et  al. 1993; Pan-
dor et al. 2004). Until recently, methods were not sensitive 

Fig. 4  Predictions of the volume of formula milk (ml) in the 
CBGS-1 samples (FM and mix samples only) from CBGS-2 and 
POPS dataset separately using selected lipids. The dashed lines show 

the relationships within FM (red) and Mix feed (blue) samples. The 
FM showed a limited correlation with two predictions whereas Mix 
feed samples show a linear relationship with Pearson correlation 0.56
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enough to discriminate small differences in circulatory-
metabolic responses of healthy infants. We have devel-
oped and validated a lipid profiling method using DBS 
from infants (Koulman et  al. 2014). The method provides 
data on approximately 200 endogenous lipids from a sin-
gle 3.2 mm DBS disc. The process is automated and fast, 
very robust, inexpensive and therefore suitable for studying 
large cohorts. We applied this method to a subset of DBS 
samples collected in the Cambridge Baby Growth Study 
and showed that lipid profiles of breastfed infants are sig-
nificantly different to those of formula-fed infants (Pren-
tice et al. 2015). This work led to the discovery of specific 
blood lipid signals that can indicate whether a 3-month-old 
infant has received either breastfeeding or formula feeding.

We showed in the original discovery study only the dis-
crimination between exclusively breastfed and exclusively 
formula fed infants (Prentice et  al. 2015). However, there 
is a considerable number of infants that receive a mixture 
of breast milk and formula (mixed-feeding). We expected 
that it would be possible to predict the amount of formula 
milk mixed-fed infants received, based on the infants’ lipid 
profile, enhancing the application of lipid biomarkers in 
early life. By expanding this work across two more datasets 
we were able to validate the putative lipid biomarkers of 
infant nutrition. We used a reproducible strategy to inves-
tigate lipidomics data and reveal lipids for different diets 
and also validate these as biomarkers in two independent 
data sets. We used Random Forest throughout our analy-
sis both in classification and regression mode. Further-
more, we selected lipids iteratively that resulted in a small 
class errors in the classification and a higher  Q2 (variation 
explained) in the regression.

Dataset-2 and dataset-3 were available for independ-
ent validation and provided an opportunity compare the 
lipids identified from the dataset 1. We found PC(35:2), 
SM(36:2) and SM(39:1) in dataset-1 with a discriminatory 
power and these were validated in dataset-2 and dataset-3. 
The response vector (for both class and quantification of 
formula feed) was randomized 1000 times to investigate the 
robustness of the model.

The three key lipids that distinguished breastfed from 
formula fed infants are the phosphatidylcholine PC(35:2) 
and two sphingomyelins SM(36:2) and SM(39:1). Further-
more, two of the three biomarkers contain odd chain fatty 
acids and these two biomarkers are not correlated, which 
suggest that the origins of the odd chain fatty acids for 
these two lipids are different. The vast majority of lipids 
in both breast milk and formula milk are triglycerides (ca 
98%), while triglycerides are a much smaller part of the 
blood lipids in the infant. Therefore, it cannot be assumed 
that all the lipids found in the blood are directly coming 
from the diet. An exception could be SM(39:1), which 
is higher in the formula-fed infants. SM(39:1) is mainly 

SM(16:1/23:0) based on fragmentation data. It has been 
shown that the SM(39:1) is one of the common long chain 
sphingomyelins in different formula milks (Fong et  al. 
2013) and not commonly present in breast milk (Blaas 
et al. 2011). Total sphingomyelin content in breast milk is 
about a five-fold higher than in formula milk, which could 
partly explain why SM(36:2) is higher in breastfed infants. 
However, not all sphingomyelins are significantly higher 
in breastfed infants and it is likely that lipid homeostasis 
curbs differences in sphingomyelin intake. For PC(35:2) 
(mainly PC(17:0/18:2)) it is unclear why this phospholipid 
is increased due to breastfeeding. Both breast milk and for-
mula contain odd chain fatty acids but there is no literature 
that has quantified the odd chain fatty acids comprehen-
sively. It is possible that breast milk consumption leads 
to an increased endogenous production of odd chain fatty 
acids due to alpha-oxidation (Jenkins et al. 2015).

The lipids that can predict the amount of formula intake 
are to a large extend odd chain fatty acid containing lipids, 
such as SM(39:1), TG(51:2), TG(53:2) etc. Although breast 
milk contains odd chain fatty acid, the level of very long 
odd chain fatty acids, such as C23:0 in SM(39:1) suggests 
that is a direct marker of formula intake. This work clearly 
indicates that the lipid metabolism is significantly impacted 
by nutrition very early during child development and the 
lipids identified can be used to predict whether or not the 
infant has received formula feed and, if so, how much.

In terms of comparing Random Forest to other similar 
approaches, (Scott et al. 2013) studied and tested 28 clas-
sifiers on data from NMR and mass spectroscopy from 
different origins as the training set for a number of multi-
variate tools. Data came from four metabolomics or food 
projects, where the numbers of classes differed. Random 
forests were found to perform consistently the best on high-
dimensional data but only reported in less than 5% of the 
research literature. As a high dimensional procedure impor-
tantly, where the number of metabolites (p) is much larger 
than the number of samples (n) it also has an internal cross-
validation procedure using out of the box (OOB) sampling. 
A limitation, however, is that Random Forest will default 
to using all variables simultaneously and a pre-selection 
of the variables is recommended. Backward elimination is 
implemented in the package varSelRF (Diaz-Uriarte and 
Alvarez de Andres 2006) uses the OOB as minimization 
criterion, however, the improved performance achieved 
with the reduced model is likely to be biased. One possible 
solution is to apply a cross-validation-based protocol and 
(Tsamardinos et al. 2014). In this work, some lipids found 
were common to both the approaches whereas others were 
specific to the mode applied.

The result of this study shows that the lipid status mark-
ers are reproducible. Their reliability in predicting the 
exposure of formula intake vs. breast milk requires further 



 A. Acharjee et al.

1 3

25 Page 8 of 9

investigation and will be of great value to future epidemio-
logical and public health research into the effect of mixed-
feeding strategies.

4.1  Concluding remarks

We present a reliable strategy for prioritising putative bio-
markers from lipidomics and show the lipid profile differs 
due to nutrition in infants. Differences were further stud-
ied in two validation datasets which allowed the validation 
of unambiguous lipid biomarkers. This work was able to 
identify and confirm that three lipids: PC(35:2), SM(36:2) 
and SM(39:1) can together be used as robust biomarkers of 
infant nutrition.
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