
De novo variants in the alternative exon 5 of SCN8A cause
epileptic encephalopathy

Epilepsy Genetics Initiative1,2

Purpose: As part of the Epilepsy Genetics Initiative, we re-
evaluated clinically generated exome sequence data from 54
epilepsy patients and their unaffected parents to identify molecular
diagnoses not provided in the initial diagnostic interpretation.

Methods: We compiled and analyzed exome sequence data from
54 genetically undiagnosed trios using a validated analysis pipeline.
We evaluated the significance of the genetic findings by reanalyzing
sequence data generated at Ambry Genetics, and from a number of
additional case and control cohorts.

Results: In 54 previously undiagnosed trios, we identified two
de novo missense variants in SCN8A in the highly expressed
alternative exon 5 A—an exon only recently added to the
Consensus Coding Sequence database. One additional undiagnosed

epilepsy patient harboring a de novo variant in exon 5 A was found
in the Ambry Genetics cohort. Missense variants in SCN8A exon
5 A are extremely rare in the population, further supporting the
pathogenicity of the de novo alterations identified.

Conclusion: These results expand the range of SCN8A variants in
epileptic encephalopathy patients and illustrate the necessity of
ongoing reanalysis of negative exome sequences, as advances in the
knowledge of disease genes and their annotations will permit new
diagnoses to be made.
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INTRODUCTION
The Epilepsy Genetics Initiative (EGI) is a signature program
of Citizens United for Research in Epilepsy (http://www.
cureepilepsy.org/egi/index.html). It was created to house and
periodically reanalyze exome sequence data for patients with
seizure disorders who have had clinical exome or genome
sequencing performed as part of their medical care. The EGI
reanalyzes data within the repository every 6 months with two
broad goals: (i) to identify novel epilepsy genes through
aggregate analyses of one of the largest sources of exome
sequence data in patients with epilepsy and (ii) to reanalyze
exome sequence data, using the most up-to-date knowledge,
for missed genetic diagnoses in epilepsy patients who initially
received an inconclusive result. Newly identified genetic
diagnoses are returned to patients and families through their
referring physician.
Through the work of the EGI, we report here the identi-

fication of three novel disease-causing variants in alternative
exon 5 A of SCN8A in three unrelated patients with epilepsy.
These diagnoses were missed by clinical exome sequencing
because, at the time of analysis, exon 5 A was not recognized
as protein coding in the consensus coding sequence database
(CCDS; https://www.ncbi.nlm.nih.gov/projects/CCDS/).
The SCN8A gene encodes the sodium channel Nav1.6.

Mutations cause SCN8A epileptic encephalopathy or early

infantile epileptic encephalopathy type 13 (OMIM 614558),
accounting for ~ 1% of epileptic encephalopathy cases.1

SCN8A encephalopathy is typically associated with seizures
beginning in infancy, developmental delay and varying
degrees of impaired speech and motor function. Most patients
have multiple seizure types, and onset is generally not
associated with fever or illness.
Nav1.6 consists of four homologous domains (DI–DIV),

each of which contains six transmembrane segments
(S1–S6).2 The SCN8A gene is comprised of 26 protein-
coding exons.3 The majority of pathogenic variants in SCN8A
are de novo missense variants or missense variants inherited
from a mosaic parent.1 SCN8A contains two pairs of tandemly
duplicated, mutually exclusive, alternatively spliced exons
with a common evolutionary origin—exons 5 A/5 N and
exons 18 A/18 N (Figure 1).4 Exons 5 and 18 encode portions
of transmembrane segments S3 and S4 in domain I and
domain III of Nav1.6, respectively. The 18 N transcript
contains a conserved in-frame stop codon, which is predicted
to result in protein truncation and is widely expressed at low
levels in nonneuronal tissue.4 Exons 5 N (neonatal) and 5 A
(adult) differ by two out of 31 amino acids (Figure 1).5 In
humans and rodents, there is evidence that the expression
of exon 5 A increases during development;5,6 the expression
of “neonatal” exon 5 N decreases over time, but it continues
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to be expressed at a low level in the adult brain. This is
confirmed in exon-level data publically available in the
BrainSpan database (http://www.brainspan.org/). Before this
work, five disease-causing variants had been identified in
exon 5 N of the SCN8A gene, and none had been described
in exon 5A.7

MATERIALS AND METHODS
In this study, we analyzed exome sequence data from 54
unrelated probands and their unaffected parents (trios).
Sequence data were generated at GeneDx, Ambry Genetics,
University of California Los Angeles, Children’s Hospital
of Philadelphia, the Laboratory of Personalized Genomic
Medicine at Columbia University, the Broad Institute, and the
Center for Advanced Studies, Research and Development in
Sardinia. We also secondarily evaluated: (i) 13,448 unrelated
control samples (not ascertained for neuropsychiatric condi-
tions) sequenced at the Institute for Genomic Medicine, (ii)
individuals with nonlesional focal epilepsy (n = 1,187),
genetic generalized epilepsy (n = 640), and epileptic ence-
phalopathy (n = 280) who were sequenced as part of the
Epi4K Consortium,8,9 and (iii) 3,693 individuals who under-
went diagnostic sequencing through Ambry Genetics, 1,013

of whom had been diagnosed with a seizure disorder. The
study was approved by the institutional review boards at
Columbia University Medical Center, University of California
San Francisco, Children’s Hospital of Philadelphia, Boston
Children’s Hospital, New York University Langone Medical
Center, Ann & Robert H. Lurie Children’s Hospital of
Chicago, and Duke University as well as the Solutions
Institutional Review Board (Ambry Genetics). After informed
consent was obtained, exome data files (FASTQ or BAM)
generated at diagnostic exome sequencing establishments
were transferred to the EGI repository at the Institute for
Genomic Medicine at the Columbia University Medical
Center.
For individuals 1 and 2, trio data were analyzed with a

pipeline based on the Genome Analysis Toolkit best-practices
protocol, as reported by Zhu et al.10 Trio sequence data
were analyzed using an updated version of our established
trio sequencing framework. SureSelect XT2 All Exon V4 and
SureSelect Human All Exon 50Mb XT kits (Agilent
Technologies; Santa Clara, CA) were used for the exome
capture in individual 1 and individual 2, respectively.
Individual 3 was identified through reinterrogation of

clinical exome sequence data by Ambry Genetics following
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Figure 1 Exon 5 of SCN8A. (a) Exon 5 is encoded by two sequences in the genome (exons 5 N and 5 A). Only one of the two exons remains in the
transcripts after splicing occurs. The nucleotide (b) and amino acid sequences (c) of exons 5 N and 5 A are nearly identical. Asterisks indicate the sites
with the same sequence and arrows highlight the sites where a novel disease-causing SCN8A variant was identified in exon 5 A in this study. All
disease-causing variants were found at sites where the sequence was identical between exons 5 A and 5 N. (d) Exon 5, highlighted in red, spans two
transmembrane domains and a small extracellular region of Nav1.6. The three disease-causing variants, marked in green, were all located in the regions
encoding transmembrane-spanning portions of the protein. (Adapted from ref. 4.)
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the identification of the two candidate variants of exon 5 A
in SCN8A in the EGI cohort. The capture kit used by Ambry
Genetics was xGen Exome Research Panel version 1.0
(Integrated DNA Technologies; Coralville, IA). This indivi-
dual was subsequently enrolled in the EGI to obtain
phenotype information.
Variants in exon 5 A of SCN8A are annotated throughout

the paper based on the RefSeq identifier XM_005269075.1.

RESULTS
Fifty-four individuals were enrolled as trios through the EGI;
most had severe epilepsies, particularly epileptic encephalo-
pathies. Two were found to have a de novo variant in
alternative exon 5 A of the SCN8A gene. The first individual
found to carry a variant in exon 5 A of SCN8A (c.667A>G;p.
Arg223Gly) had undergone exome sequencing in 2015. The
clinical report was negative for causative variants in disease
genes associated, or possibly associated, with the reported
phenotype. The second individual had a different exon 5 A
variant (c.632T>C;p.Val211Ala). This individual had under-
gone exome sequencing in 2014; while no diagnostic findings
(pathogenic or likely pathogenic) had been reported, this
SCN8A variant was reported as a de novo heterozygous
intronic variant of uncertain significance. Clinical details of
these two cases are shown in Table 1.
A review of 3,693 individuals who underwent diagnostic

sequencing through Ambry Genetics revealed one additional
de novo variant in SCN8A exon 5 A (c.692T>C;p.Ile231Thr).
This finding was not identified at the time of the patient’s
initial clinical sequencing. The exon is well sequenced on the
Ambry Genetics sequencing platform. Clinical details of this
case are shown in Table 1.
The XM_005269075.1 transcript contains exon 5 A of

SCN8A. Exon 5 A was not included in CCDS 53794.1 or
CCDS 44891.1 at the time the patients underwent sequencing,
but it has since been included in the recent release 20
(CCDS81692.1). Since diagnostic companies often analyze
only the secure annotations defined by CCDS, these variants
were not called as pathogenic.
All three variants in exon 5 A are classified as probably

damaging by PolyPhen-2,11 are absent from the Exome
Aggregation Consortium and Genome Aggregation Data-
base,12 and were not seen in any of the 13,448 in-house
controls, despite sufficient sequence depth across both sets of
controls at these sites to have called the variants (at least 90%
of the 92 bases were sequenced at least 10-fold in more
than 99% of the controls evaluated; average coverage across
exon 42.3).
No missense variants were identified in exon 5 A of SCN8A

in any of the other epilepsy cohorts we evaluated, including
280 individuals with epileptic encephalopathy, 640 individuals
with genetic generalized epilepsy, and 1,187 individuals with
nonlesional focal epilepsy. Each base of exon 5 A was
sequenced at least 10-fold in these cohorts (average coverage
across exon 55.6), so it is unlikely that a variant was missed.

DISCUSSION
After reinterrogation of existing sequence data, we report
three de novo variants in exon 5 A of SCN8A that were not
reported as pathogenic during previous diagnostic exome
interpretations. Despite evidence in the literature of the exon
being present and expressed in the SCN8A transcript, it was
not included in previous CCDS releases; these mutations were
therefore either not reported or reported as variants of
uncertain significance. Nonetheless, we believe these variants
are pathogenic for the following reasons:

1. All three reported individuals experienced seizure onset
in the first year of life and global developmental delay,
which are phenotypic characteristics consistent with
those previously described in SCN8A1,13,14 (Table 1).

2. According to the American College of Medical Genetics
criteria, these three variants would be classified as
likely pathogenic. All three are de novo variants (both
maternity and paternity confirmed; PS2), absent from
controls (PM2), and have multiple lines of computa-
tional evidence (PolyPhen and SIFT) supporting a
deleterious effect (PP3).15

3. In the second case, while the variant was classified as a
variant of uncertain significance by the clinical labora-
tory, the ordering physician felt that it may contribute
to the patient’s phenotype and introduced phenytoin to
the patient’s drug regimen based on previous reports
of marked benefit in the SCN8A patient population.16

This resulted in a greater than 90% reduction in seizures
in the patient, who was previously refractory to many
antiepileptic drugs. While not conclusive evidence of
pathogenicity, this pattern is similar to that reported
previously for patients with disease-causing SCN8A
variants.

4. Each base located in the genomic coordinates corres-
ponding to exon 5 A of SCN8A (hg19, chr12:52082789-
52082880) was sequenced at least 10-fold in all 54
probands studied and in 13,228 unrelated controls. We
observed no missense variants in any of the 13,228
controls evaluated where exon 5 A was completely
sequenced at least 10-fold, nor in any of the other 120
controls where the exon was only partially sequenced.
In the Exome Aggregation Consortium and Genome
Aggregation Database, with aggregate variant frequen-
cies from the data of more than 138,000 exome- and
genome-sequenced individuals, each base in the exon
was sequenced 10-fold in more than 90% of individuals,
and only two missense variants were reported (c.653C>
T;p.Ala218Val and c.644A>G;p.Asn215Ser) out of a
total of nine variant sites in the exon. Assuming that all
base substitutions in exon 5 A can occur, we estimate the
expected rate of nonsynonymous variation in the exon to
be 0.704 by taking the sum of the estimated mutability
associated with each possible nonsynonymous substitu-
tion considering its trinucleotide context8 and dividing it
by the sum of the trinucleotide mutability for all possible
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Table 1 The Epilepsy Genetics Initiative (EGI) participant phenotype and summary of cases previously described in the literature
Summary of SCN8A EE cases previously
described in the literature1,13,14

EGI individual 1 EGI individual 2 EGI individual 3

Variant — c.667A>G (p.Arg223Gly) c.632T>C (p.Val211Ala) c.692T>C (p.Ile231Thr)

Inheritance — De novo De novo De novo

Sex — Female Male Male

Ethnicity — Paternal–European

Maternal–Chinese

Paternal–European Maternal–Filipino Paternal–European Maternal–

European

Age at seizure onset 4–5 months on average 6 months 3 months Febrile seizures at ~ 7–8 months; first

unprovoked seizure at ~ 1 year of age

Seizure type(s) Focal, tonic, clonic, myoclonic, and absence

seizures reported; epileptic spasms; typically

not associated with fever; convulsive or

nonconvulsive status epilepticus in some

Clusters of head drops that

evolved into extensor spasms

Tonic–clonic, then asymmetric supplementary

motor seizures (left > right); tonic; focal

dyscognitive

Febrile generalized tonic–clonic

seizures, focal seizures, absence

seizures

Development Intellectual disability is common and may

range from mild to severe; no speech for

some; wheelchair dependence for some

Global developmental delay Global developmental delay; never developed

language

Global developmental delay; learning

difficulty

Regression In most cases, development is normal from

birth to seizure onset; regression often slows

or regresses following seizure onset

No Yes; used to walk but regressed in setting

of prolonged seizures

No

Electroencephalogram Moderate to severe background slowing with

focal or multifocal epileptiform discharges

Hypsarrhythmia with

electroclinical spasms with

electrodecrement

Left focal spikes, generalized spike/wave,

background slowing and disorganization

Multifocal epileptiform discharges

with background slowing

Magnetic resonance imaging Variable degrees of generalized atrophy Diffuse atrophy Mild white matter volume loss; increased

FLAIR hyperintensity in the left hemisphere

in the acute setting of seizures

Normal

Other Hypotonia, dystonia, ataxia, hyperreflexia,

choreoathetosis

— — Hypotonia, ataxia

Diagnosis before exome

sequencing

— West syndrome of unknown

cause

Epileptic encephalopathy of unknown cause Epileptic encephalopathy of unknown

cause

Response to treatment Seizures refractory for many patients Refractory to all anti- AEDs Refractory to many AEDs; felbamate

withdrawal precipitated convulsive status;

addition of cannabidiol was reported to be

helpful; once SCN8A diagnosis was made,

phenytoin resulted in a > 90% reduction

in seizures

Responder to levetiracetam and

topiramate; good seizure control since

~ 3 years of age; still has staring spells

AED, antiepileptic drug; EE, epileptic encephalopathy; FLAIR, fluid-attenuated inversion recovery.
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base substitutions across the exon. Given that we expect
70.4% of all possible substitutions to result in a
nonsynonymous amino acid change, an observation of
only two of the nine (22%) variant sites is unlikely to
occur by chance (P = 0.004, binomial exact test). This
overall pattern indicates that this exon is probably under
purifying selection, and suggests that protein-altering
genetic variation may also be associated with a disease
phenotype.

5. One of the amino acid substitutions in exon 5 A des-
cribed here, p.Arg223Gly, was previously identified in
exon 5 N (NM_014191.2: c.667A>G) in a patient with
epileptic encephalopathy.17 Functional analysis identified
altered activity of the channel.17 A second amino acid
substitution in exon 5 A described here, p.Val211Ala
(c.632T>C), is located adjacent to the pathogenic exon
5 N variant p.Phe210Leu (NM_014191.3: c.628T>C).18

Since the alternative splicing of exon 5 is conserved across
several of the mammalian sodium channel alpha subunit
genes, including two other known epilepsy genes, we should
consider the potential for missed diagnoses in those genes as
well. For SCN2A, it is unlikely that diagnoses have been
missed because both forms of the exon are annotated in the
CCDS. In fact, Nakamura et al.19 identified a genetic variant
in the SCN2A transcript variant 3 (NM_001040143.1), which
is the neonatal (6 N) isoform (CCDS 33313.1), as well as
genetic variants in transcript variant 1 (NM_021007.2), which
contains the 6 A exon (CCDS 33314.1). In contrast, although
SCN1A also contains transcripts with both neonatal (5 N) and
adult (5 A) exons,20 only the adult exon 5 A is included in the
CCDS. This suggests that disease-causing variants in exon 5 N
of SCN1A may also be missed.
Given the developmental regulation of SCN8A, we con-

sidered that variation in the alternate exon 5 A may translate
to a different age of onset or presentation in affected indivi-
duals. While one individual reported here had a later than
average age of onset and a milder course, no consistent
pattern was identified in our cohort compared with the
phenotype of individuals with variants elsewhere in SCN8A.
In conclusion, we report three novel epilepsy diagnoses in

SCN8A, all of which were located in an alternate copy of exon
5 (exon 5 A) and overlooked by clinical exome sequencing.
These findings motivate immediate re-evaluation of the
genomic sequence defining exon 5 A of SCN8A, particularly
in patients with severe refractory subtypes of epilepsy. In
addition, they motivate re-evaluation of other well-defined
alternative exons in known epilepsy genes, which may detect
missed diagnoses in the epilepsy patient population. The
results also provide a clear demonstration of the value of deep
analysis and iterative interrogation of clinical exome sequence
data that were initially found to be inconclusive. This is
important not only because new disease genes and new
phenotypes for known genes are still being routinely
discovered, but because our knowledge of gene structures
and important genomic regions continues to evolve.
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