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1  |  INTRODUC TION

The burgeoning field of telomere dynamics has added new perspec-
tives and directions to the study of ecology and evolutionary biology. 
The interest is testament to the fact that telomeres represent an in-
triguing biomarker that provides a link between individual physiology, 

life history, and fitness. As the field has developed, so too has the re-
alisation that the maintenance of telomeres is at the centre of this bal-
ance. Studies so far, both experimental (Herborn et al., 2014; Nettle 
et al., 2015) and correlational (Hoelzl et al., 2016; Turbill et al., 2012), 
indicate that telomere restoration is costly (reviewed in Young, 2018). 
However, the mechanisms underlying telomere maintenance remain 
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Abstract
Increasing evidence at the cellular level is helping to provide proximate explanations 
for the balance between investment in growth, reproduction and somatic mainte-
nance in wild populations. Studies of telomere dynamics have informed researchers 
about the loss and gain of telomere length both on a seasonal scale and across the 
lifespan of individuals. In addition, telomere length and telomere rate of loss seems 
to have evolved differently among taxonomic groups, and relate differently to or-
ganismal diversity of lifespan. So far, the mechanisms behind telomere maintenance 
remain elusive, although many studies have inferred a role for telomerase, an enzyme/
RNA complex known to induce telomere elongation from laboratory studies. Exciting 
further work is also emerging that suggests telomerase (and/or its individual compo-
nent parts) has a role in fitness that goes beyond the maintenance of telomere length. 
Here, we review the literature on telomerase biology and examine the evidence from 
ecological studies for the timing and extent of telomerase activation in relation to life 
history events associated with telomere maintenance. We suggest that the underly-
ing mechanism is more complicated than originally anticipated, possibly involves sev-
eral complimentary pathways, and is probably associated with high energetic costs. 
Potential pathways for future research are numerous and we outline what we see as 
the most promising prospects to expand our understanding of individual differences 
in immunity or reproduction efficiency.
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elusive and evolutionary biologists have turned to clinical research for 
answers. The obvious candidate as regulator within the system is the 
enzyme complex telomerase. Telomerase comprises an RNA compo-
nent (TERC) and a catalytic protein domain (TERT) essential for the 
reverse transcriptase activity of the enzyme (see Box 1). Telomerase 
is known to catalyse the elongation and maintenance of telomeres by 
adding telomeric repeats to the chromosomal ends and thus counter-
acting losses that occur during end replication and oxidative stress 

(Harley et al., 1990; von Zglinicki, 2002). For most organisms, telo-
merase is not active throughout all life stages and across all tissue 
types (Haussmann et al., 2004; Lingner et al., 1997; Logeswaran et al., 
2021; Wright et al., 1996), strongly suggesting trade- offs between life 
history stages such as growth, maintenance and reproduction. As a 
potential regulator of these trade- offs, measurement of telomerase 
activity (TA) is of increasing interest for evolutionary biologists trying 
to understand the process of senescence (see Box 2).

BOX 1 The structure and function of telomerase

• Telomerase in its active state is composed of a DNA polymerase enzyme complex (telomerase reverse transcriptase; TERT) that 
carries its own RNA template (telomerase RNA component; TERC, TER or TR) to add telomeric repeats to the ends of chromo-
somes (see figure 1 and description in Sandin & Rhodes, 2014).

• In vertebrates, TERT is composed of the essential telomerase N- terminal domain (TEN), the C- terminal extension domain (CTE), 
the telomerase RNA- binding domain (TRBD) and the reverse transcriptase domain (RT). The TEN domain stabilizes the DNA- RNA 
duplex in the active site of the enzyme (Akiyama et al., 2015), CTE is necessary for stable binding of the enzyme to the DNA 
(Hossain et al., 2002), TRBD binds the RNA- template (Lai et al., 2001) and RT is the catalytic domain (Dey & Chakrabarti, 2018; 
Lingner et al., 1997).

• TERC is considered a non- coding RNA that contains the template region for adding telomeric repeats to the ends of chromosomes. 
Its total size is highly variable between taxa and ranges from 133 nucleotides (nt) in the fish Nothobranchius furzeri to over 2000 nt 
in the fungus Neurospora crassa (http://telom erase.asu.edu/; Podlevsky et al., 2008). In vertebrates, the template- RNA is flanked 
by the template boundary element (TBE) at the 5′ side. The pseudoknot (PK) is located downstream of the template and is essential 
for TERT- TERC interaction and function of the holoenzyme. Furthermore, TERC contains several structures that interact with TERT 
and other proteins (e.g., dyskerin protein complex) to ensure functionality (reviewed in Logeswaran et al., 2021; http://telom erase.
asu.edu/).

• Telomeric repeat variants (e.g., TTAGGG— in vertebrates) differ between taxonomic groups. Correspondingly, both TERT and TERC 
have a distinct composition of subunits and regions in different taxa. In insects for example, TERT lacks the TEN domain while 
nematodes lack TEN and large fractions of CTE (reviewed in Mason et al., 2011). In TERC, the arrangement and composition of 
elements (PK, TBE, etc) is variable between taxa. On the sequence and structure level of these different elements, the variability 
between taxonomic groups is even more pronounced (Logeswaran et al., 2021).

• Trafficking of TERT and TERC between nucleus and cytoplasm is not fully understood. In yeast (Saccharomyces cerevisiae), the 
assembly of the telomerase holoenzyme probably takes place in the cytoplasm before it is imported into the nucleus, while in 
humans, TERT and TERC are separated in the nucleus during most of the cell cycle and are only assembled during S phase. Such 
separation is likely to be necessary to avoid unregulated TA (reviewed in Gallardo & Chartrand, 2008). TA is detectable throughout 
the cell cycle but only a small fraction of TERC is co- localized with telomeres during S phase (the stage where telomere elongation 
takes place in vivo), suggesting a low elongation rate per cell cycle (this is true for both, human and yeast; Gallardo & Chartrand, 
2008; Teixeira et al., 2004; Zvereva et al., 2010).

• A study by Florell et al. (2001) and Schmidt et al. (2016) reveals that telomerase diffuses throughout the nucleoplasm and that 
the enzyme frequently binds TPP1 (a protein of the shelterin complex) at telomeres. The Shelterin complex is formed by several 
proteins and protects the chromosomal ends from degradation (e.g., de Lange, 2005). The TPP1 bindings occur thousands of times 
per S phase, but only a very limited number of these probing events are sufficiently long to allow telomere elongation.

• After telomerase is guided to the chromosomal end, and forms stable “bonds”, elongation is carried out only on the G- rich over-
hang (either resulting from terminal RNA primer removal on the lagging strand, or by exonuclease dependent resection, reviewed 
in Schrumpfová and Fajkus (2020). Therefore, telomerase binds to the distal nucleotides of these overhangs and adds a new telo-
meric repeat (in vertebrates: GGTTAG). This elongation step can be repeated multiple times via a translocation mechanism and 
DNA Pol [alpha]- primase can fill the complementary strand (Diede & Gottschling, 1999).

• In multicellular organisms, TA is usually detected in all early developmental stages. After organogenesis, TA is restricted to pro-
liferating stem cells, while it is downregulated in somatic cells (reviewed in Schrumpfová et al., 2019). In rodents, the tendency to 
downregulate somatic TA is body mass dependent, where species of weight smaller than 1 kg (e.g., mice) keep TA throughout their 
life, while larger animals downregulate telomerase in somatic tissues (likely to reduce the risk of cancer; Seluanov et al., 2007).

http://telomerase.asu.edu/
http://telomerase.asu.edu/
http://telomerase.asu.edu/
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Senescence is defined in evolutionary biology as the relaxation 
of natural selection at old- ages, attributed to the reduced fitness 
contribution of older breeders due to poor reproductive perfor-
mances and survival rates (Gaillard & Lemaître, 2020). Williams’ 

theory of senescence stipulates that it should be found in all living 
organisms that have, among other prerequisites (Gaillard & Lemaître, 
2017), genes that will be beneficial early in life and detrimental later 
on (i.e., the antagonistic pleiotropy of ageing, Williams, 1957). At a 

BOX 2 Measurement of telomerase activity: previous studies and methods employed

For more than a decade, evolutionary ecologists have focussed on telomeres (Autexier & Lue, 2006; Haussmann & Vleck, 2002), 

followed by a shift of focus to TA (Autexier & Lue, 2006; Haussmann et al., 2007), in order to better understand individual variability 
in lifespan (Haussmann et al., 2005). However, evaluations of TA are not a simple prospect for most of the species of ecological inter-
est. Logistical constraints and/or specific expertise requirements are the major challenges. For instance, storage and pretreatment 
of samples to preserve TA is inherently complicated because of the nature of this enzyme itself (1) (see Box 1— telomerase RNA 
component— (Florell et al., 2001; Shippen- Lentz & Blackburn, 1990; Theimer & Feigon, 2006; Zvereva et al., 2010). Thus the devel-
opment of reliable TA assessment methodologies is essential to allow research in evolutionary biology to develop and understand 
covariation of age-  or tissue- related TA with animal life- histories. This schematic representation shows the most common methods 
employed to measure TA in human and cancer research. The methods are presented following two main categories: (2) detection of 
telomerase products and (3) amplification of these products (TRAP- based methods). For method- based references [1] to [15] see 
Supporting Information materials. Figure is adapted from Mensà et al. (2019).
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more mechanistic level, senescence, which promotes cell division 
arrest and apoptosis, could be considered as a cell response to age-
ing stress, with both positive and negative impacts on individual 
fitness. For instance, cell senescence also promotes regular tissue 
repair, and protects against cell immortalization and cancer, while 
at the same time triggering proinflammatory or tissue degenera-
tion processes (reviewed in Autexier & Lue, 2006; Campisi, 2013). 
Because telomeres and telomerase stand at the crossroad of these 
cell mechanisms, we propose here that the study of telomerase will 
benefit from being considered in the context of its pleiotropic ef-
fects on individual fitness and through its modulation of life- history 
trade- offs. To do so, we highlight that (i) telomerase genes vary in 
sequences and expression, (ii) telomerase may act via nontelomere- 
related pathways, (iii) telomerase may have pleiotropic effects due 
to dynamic changes in expression and thus mediate trade- offs 
among traits. We then address what could be the costs associated to 
telomerase activation, and propose a few avenues for studying the 
putative telomerase— fitness link.

2  |  THE ECOLOGIC AL LINK TO 
TELOMER A SE

Early studies of telomere dynamics in non- model organisms re-
ported individual differences in telomere attrition related to age 
(Aubert, 2014), birth order (Noguera et al., 2016), birth timing 
(Eisenberg et al., 2012), early life stress (Cram et al., 2017; Price 
et al., 2013), reproductive output (Beaulieu et al., 2011; Monaghan 
& Haussmann, 2006), rewarming during hibernation (Hoelzl, Smith, 
et al., 2016), and habitat suitability (Angelier et al., 2013) among oth-
ers. After this initial interest in telomeres as a reliable biomarker for 
stress and biological ageing, evidence began to emerge that, in some 
species at least, telomere length could be actively restored or even 
elongated (Foley et al., 2018; Haussmann et al., 2003; Hoelzl, Smith, 
et al., 2016). Despite initial scepticism, further studies confirmed 
active telomere maintenance across multiple species. TA was con-
sidered the most likely mechanism responsible for telomeric resto-
ration and once again ecological researchers borrowed from clinical 
fields and cancer research to find the best way to measure TA in 
an ecological setting (see Box 2). Subsequent work has implicated 
an association between TA levels and telomere dynamics in a broad 
range of taxa. Mu et al. (2015) found a link between seasonal leaf 
growth, telomere length and TA in the Chinese Pine (Pinus tabulae-
formis). Interestingly, telomere length increased with temperature 
throughout the year whereas TA showed a negative association, 
suggesting a potential lag between stimulus and response. A strong 
association between TA and telomere length was observed in mul-
tiple strains of zebra fish (Danio rerio) with a marked drop in both 
detected in older individuals (Anchelin et al., 2011). In a follow- up 
experimental study (Anchelin et al., 2013), telomerase- knockdown 
zebra fish showed premature ageing and reduced lifespan in the 
first generation. Restoration of TA in the second generation led to 
rescue of telomere length and survival confirming the causal role 

of telomerase in the association. Likewise, Hatakeyama et al. (2016) 
demonstrated in Japanese medaka (Oryzias latipes) that telomere at-
trition and restoration are linked to growth and TA respectively, and 
that a critical loss of telomere homeostasis is associated with mor-
tality. Recently, an intriguing link with embryo corticosterone levels 
was shown in yellow- legged gulls, Larus michahellis (Noguera et al., 
2020). Hatchlings from corticosterone– injected eggs were shown to 
have both higher levels of TA and longer telomeres. Telomerase was 
also shown to induce the synthesis and repair of TTAGG- telomeric 
repeats in Lepidoptera (Gong et al., 2015) and this association seems 
to be widespread in most orders of insects (Korandová et al., 2014). 
Combined, these studies largely demonstrate that telomere length 
and telomerase are closely coupled as expected based on in vitro 
studies and tightly regulated by environmental factors.

Crucially though, many studies have not detected the expected 
link between telomere maintenance and TA (see citations in Table 
S1). Clinical studies in humans and experimental work show that in 
many conditions, telomere length is uncoupled from TA (Xie et al., 
2015) and that telomerase acts in diverse functions at the cellular 
and physiological levels (Haendeler et al., 2009; de Punder et al., 
2019; Sahin & DePinho, 2012; Saretzki, 2009). Work in honeybees 
(Apis mellifera) also could not find a link between telomere length 
and TA, with the latter being regulated in a developmental and 
caste- specific manner (Korandová & Čapková Frydrychová, 2015; 
see also Koubová et al., 2019). The inconsistent findings from studies 
of the telomere— telomerase relationship raise questions about the 
ubiquity of a single telomere repair mechanism but, perhaps more 
interestingly, also suggests alternative roles for telomerase and its 
subunits in life history trade- offs. Resolving the links in these trade- 
offs promises to open the door to exciting avenues of research in 
ecology and evolutionary biology.

3  |  LINKING LIFE HISTORY TR ADE- 
OFFS AND INDIVIDUAL FITNESS WITH 
TELOMER A SE?

The essential requirement for a biological variable to play a role in 
evolution is to show variation among individuals in a population 
(along with transmission to the next generation and conferring 
some fitness effects). Telomerase is formed via the assemblage of 
two main subunits coded by highly conserved genes (TERT, TERC). 
The eutherian TERT genes are characterized by a recent evolution 
history from reptile- like forms, such as the platypus TERT ortholog 
(Hrdličková et al., 2012) and have thus emerged with the ancestral 
mammals. More importantly, polymorphisms of those genes do 
exist in humans, their discovery originating from the study of tel-
omere diseases such as congenital dyskeratosis (Savage et al., 2008; 
Vulliamy et al., 2001). In those patients, the RNA component of the 
telomerase (TERC) and an associated regulating protein (dyskerin, 
DCK1 gene) are mutated, leading to defective telomere maintenance 
by telomerase and premature ageing phenotypes (Marrone & Dokal, 
2004). Human TERT mutations were also found to be associated with 
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different, rather late- life, diseases (Calado & Young, 2012), and TERT 
single nucleotide polymorphisms have been identified in humans, 
often associated with an increase in cancer risks (Rafnar et al., 2009, 
together with shortened telomeres in this study), or bone marrow 
failure (Yamaguchi et al., 2005). Enhanced TA is found in more than 
nine out of 10 cancer cells (Shay & Bacchetti, 1997). So how could 
telomerase defects enhance cancer risks? Causality is thought to re-
late to the capacity of haematopoietic cells (and then immune cells) 
to upregulate telomerase when activated. Given that the level of 
TERT expression may be the rate- limiting mechanisms of control of 
TA (Counter et al., 1998), TERT deleterious mutations may shorten 
telomere length of leucocytes, and then decrease the ability of the 
immune system to survey cell immortalization and eliminate cancer 
cells (Calado & Young, 2012). Therefore, focusing on the individual 
variation in TERT expression and TA in white blood cells, and charac-
terising how it may modulate immunosenescence (de Punder et al., 
2019), may provide the first insights into the telomerase— fitness 
relationship. In addition, telomerase polymorphisms have been pre-
viously associated with noncancer diseases, with significantly modi-
fied soma protective effects (Snetselaar et al., 2018). TERC variants 
were shown to have an opposite effect on longevity in humans 
(Soerensen et al., 2012), thereby suggesting that telomerase muta-
tions may carry putative fitness benefits and costs.

3.1  |  Telomerase: a two- headed coin with telomere 
length and nontelomere length sides

The studies cited above mainly explain their results based on the 
protective action of telomerase on telomeres, which is of prime in-
terest for biologists seeking telomerase— fitness relationships but 
also renders difficult any conclusion on telomerase effects per se. 
However, noncanonical effects of telomerase do exist (i.e., not me-
diated by the maintenance of telomere length) and should be taken 
into account to explore further the potential fitness benefits pro-
vided by this enzyme. Insights for the putative importance of these 
noncanonical roles in shaping life- histories were recently illustrated 
in an interspecific comparison study of TERT sequences and expres-
sions (Lai et al., 2017). Highly variable patterns of alternative splicing 
of the catalytic subunit TERT was described even in closely related 
species, suggesting that different functions of telomerase may have 
evolved in relation to lineage specific life histories (Lai et al., 2017). 
However, to date, the nature of those non- canonical roles (and their 
control by alternative splicing) are almost exclusively studied in hu-
mans and seem restricted to a few main impacts of TERT expression: 
mitochondrial functioning, enhanced cell proliferation (via the acti-
vation of growth factor signalisation pathway), control of the gene 
expression (not only oncogenes, e.g., immune genes) and regulation 
of TA during early- life development (de Punder et al., 2019; Smith 
et al., 2003; Ulaner et al., 1998; Xiang et al., 2000). One first research 
question to be addressed could be related to the stress- induced 
colocalisation of telomerase into the mitochondria when human cells 
are exposed to a mild oxidative stress event (Ahmed et al., 2008). 

Even if we need additional aspects of TA or TERT to be better de-
scribed (such as nontelomeric DNA maintenance, Gorbunova et al., 
2002), the implication of such a telomerase- dependent response in 
explaining interindividual differences to environmental stress would 
be of broad interest for evolutionary biologists. They suggest that 
either due to genetic variance or post- transcriptional regulation, in-
dividuals may react differently to environmental factors, for which 
the physiological response needs the activation of TERT expres-
sion and/or TA. One intriguing observation was made in planarian 
worms, an animal showing tissue regeneration capacity and asexual 
or sexual reproduction. In this model, alternative splicing of TERT 
seems to regulate the mechanisms of telomere elongation either in 
the somatic cells during fission (asexual reproduction) or in the germ- 
line cells during sexual reproduction (Tan et al., 2012). Together with 
similar observations in colonial ascidians or urochordate animals, it 
suggests that variation in telomerase expression has coevolved with 
specific life- history traits like mode of reproduction (Lai et al., 2017), 
extreme lifespan or somatic regeneration capacity (Tan et al., 2012 
and herein cited references).

3.2  |  Tackling the telomerase— fitness link from its 
pleiotropic nature

We have briefly introduced so far that the role of telomerase may 
go beyond its accepted contribution to the maintenance of tel-
omere length (noncanonical impacts of the TERT or TERC subu-
nits), which may be associated with species’ traits. However, to 
tackle the telomerase— fitness hypothesis, we may also reconsider 
the question through the prism of its main period of high activ-
ity (at least in most birds and mammals), early- life development, 
and of its primary role in cell replication (Gorbunova & Seluanov, 
2003). Could telomerase have a dual and age- related impact on 
fitness, via individual health and lifespan components? By favour-
ing developmental processes and cell renewal in early life, do TA 
and noncanonical TERT/TERC expression have positive effects on 
individual reproductive output, while leading to increased cancer 
risks in later life? When thinking of such pleiotropies of telomer-
ase and fitness relationships, the first objective of future stud-
ies should be to evaluate how early and late- life expression of 
telomerase may modulate individual fitness at young, reproduc-
tive and post- reproductive adult stages (i.e., in accordance with 
predictions of the antagonistic pleiotropic ageing theory). Since 
early- life consequences remain difficult to evaluate and need 
long- term data sets of individual life trajectories, focusing on ani-
mal models in which TA regularly rise naturally during their life 
cycle would be an interesting option. For instance, hibernator spe-
cies are known to reactivate telomerase at the start of their active 
life cycle (Hoelzl, Cornils, et al., 2016; Hoelzl, Smith, et al., 2016; 
Turbill et al., 2013), and determining how the variance in activity or 
in body and intracellular localisation explain subsequent individual 
performance in reproduction and survival would be relatively easy 
to achieve. Nevertheless, TERT alternative splicing is recognized as 
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being involved in modulating TA during development in humans, 
but only its consequence in terms of telomere length has so far 
been evaluated (reviewed in Shay & Wright, 2019). This question 
needs to be re- evaluated in biological models where individual 
health and fitness can be measured over life. Along the same lines, 
the pleiotropies of noncanonical effects should also be studied. 
In fact, TERT ectopic expression in mice fibroblasts triggers cell 
growth by repressing growth- inhibiting pathways (Geserick et al., 
2006). This suggests that individual variation in TERT expression 
may underline individual variation in growth rates, and thereby 
potentially contribute to the growth— lifespan trade- off (Metcalfe 
& Monaghan, 2003).

3.3  |  Tackling the telomerase— fitness link from its 
dynamic nature

An important second way of studying telomerase in an evolu-
tionary context will be to search for acute TA or TERT expres-
sion in response to stress under natural conditions. Telomerase is 
mainly described as active during embryogenesis and early- life in 
most animals (Bekaert et al., 2004; Prowse & Greider, 1995), and 
then is shut down to avoid cancer- risks (Shay & Wright, 2019). 
However, this general view has been regularly amended by data 
collected on several taxa, suggesting that TA could be main-
tained at adulthood in certain conditions. For instance, beside 
the maintained TA in the soma of insects, lizards or fish (reviewed 
in Gomes et al., 2010), repression of TA was not found as an un-
alterable characteristic in mammals and birds. TA actually cova-
ries (negatively) with species body mass in rodents (Gorbunova 
& Seluanov, 2009) and life- long TA characterizes some long- 
lived small seabirds (Haussmann et al., 2007), while its expected 
positive impact on telomere length was described in hibernating 
(Hoelzl, Cornils, et al., 2016; Turbill et al., 2013) as well as in non-
hibernating species (Criscuolo et al., 2020; Fairlie et al., 2016). 
The latter studies highlighted that telomerase may be turned-
 on at certain life stages, probably in some particular cells (e.g., 
stem or haematopoietic cells) and raises the question of whether 
telomerase forms part of the response- repertoire an organism 
possesses to face stress (Beery et al., 2012), or which may con-
strain adaptive abilities (Choi et al., 2008). Given the ability of 
immune cells to express high TA when activated (Bodnar et al., 
1996; Hiyama et al., 1995; Yamada et al., 1996), future studies 
would benefit from a focus on immune cells, and how changes 
in TA (i.e., increases) vary at the individual level in response to 
immune challenge and what are the collateral effects on other 
somatic tissues. Still, while exploratory, those studies will prob-
ably uncover only part of the global picture as they will focus 
solely on the dynamics of TA. Adding the noncanonical functions 
of telomerase via the characterization of TERT / TERC dynamics 
of expression over age and in response to stress is vitally impor-
tant to establish how telomerase may affect individual fitness 
or bestow individuals with specific life- history trait associations.

3.4  |  Telomerase as a mediator of the reproductive 
trade- off

The different age- related risks of TA have so far been conceptual-
ized based on our present knowledge of telomerase implication in 
cell- growth or renewal processes (Morrison et al., 1996) and in cell 
immortalization and the associated cancer risk (Tian et al., 2018). 
However, the risk has never been considered in relation to the cost 
of reproduction in adults, neither for TA nor at the level of subunit 
expression and of their noncanonical effects. When studying the 
cost of reproduction, defined as decreased future reproductive 
and survival rates (Stearns, 1992), one may consider telomerase 
as one of the pleiotropic regulators that may affect adult breed-
ers current success (via the maintenance of telomere length) and 
their future prospects (via the noncanonical TERT/TERC protec-
tive effects, see below). Because the cost of reproduction may be 
mediated through telomere erosion or other cell defects of the 
adult soma and of gametes, using telomerase as the response vari-
able will extend our understanding of reproductive costs beyond 
the “Y model” of energy allocation between reproduction and 
lifespan (reviewed in Harshman & Zera, 2007). Such a possibility 
has been illustrated in a single cell- organism, yeast, where a role 
for telomerase in response to DNA replication stress, but also in 
additional maternal cell ageing, was highlighted (Xie et al., 2015). 
Such a telomerase- based fitness component may also relate to the 
regulation by telomerase of stem cells capacity to be mobilized 
and punctually proliferate (Calado & Chen, 2006), thereby modu-
lating cell renewal rate and organ performance in breeders. Again, 
focusing on immune cells, as it is the somatic tissue where TA is 
more likely to be recorded, seems the best alternative if we are 
to evaluate how telomerase may mediate the ageing outcomes of 
reproduction (Schulenburg et al., 2009).

4  |  E VIDENCE FOR A COST OF 
TELOMER A SE AC TIVATION

The first cost to consider for TA in an evolutionary biology sense is 
energetic. A previous review on the role of telomeres in the evolu-
tion of life- history traits underlined the importance (and lack) of 
obtaining accurate data on how costly it is for a cell, and thereby 
for an organism, to maintain telomere length (and thus indirectly 
in activating telomerase, Young, 2018). Ecophysiological studies 
have suggested that maintenance of telomere length may be in-
terpreted as energetically costly since, for instance, food supply 
during bad years allowed better telomere maintenance in free- 
living edible dormice (Glis glis; Hoelzl, Cornils, et al., 2016; Nowack 
et al., 2019). Still, those studies did not disentangle the specific 
impact of telomerase activation from telomere lengthening. The 
current absence of clear data showing increased ATP consumption 
associated with TA allows an alternative view that telomerase may 
modulate in return the efficiency of the cellular energy- generating 
machinery.
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4.1  |  The intriguing telomerase and mitochondrial 
relationship

Interestingly, among the noncanonical cell functions of telomerase 
so far described (reviewed in Arndt & MacKenzie, 2016), one intrigu-
ing finding is the mitochondrial localization of the TERT— telomerase 
subunit, recurrently reported by independent research groups 
(Ahmed et al., 2008; Haendeler et al., 2009; Moslehi et al., 2012). 
This appears to be of interest for studying the TERT specific role in 
the context of life- history trade- offs, since the mitochondria stands 
at the crossroads of the production of cell energy (i.e., ATP) and of 
deleterious byproducts of cell respiration (i.e., reactive oxygen spe-
cies (ROS); Criscuolo et al., 2005; Sahin & DePinho, 2012; Speakman 
et al., 2004). The first observation came from TERT deficient mice 
strains that showed compromised mitochondrial biogenesis through 
decreased mitochondrial content in somatic tissues, such as the heart 
and liver, as well as through decreased ATP mitochondrial synthesis 
(Sahin et al., 2011). The cellular pathways implicated in those nega-
tive effects have been clearly established. The lack of TERT expres-
sion leads to the suppression of the peroxisome proliferator- activated 
receptor gamma, coactivator 1 (PGC) activation pathway (Sahin et al., 
2011) with cascading negative effects on gluconeogenesis, fatty acid 
oxidation or oxidative balance (Sahin & DePinho, 2012). Whether 
those changes are telomere- length dependent or due to noncanoni-
cal functions of TERT remains under debate. TERT was found to bind 
to genes coding for the complex I of the respiratory chain, a major 
site of superoxide production, to improve respiratory chain activity (of 
complex I and of maximal respiration rate) and to protect mitochon-
drial DNA from oxidative stress (Haendeler et al., 2009). However, at 
least one study found higher levels of mitochondrial DNA damages 
due to hydrogen peroxide when TERT was relocalized within the mi-
tochondria, and suggested that the mitochondrial— telomerase rela-
tionship was part of the oxidative stress pathway that triggers cell 
apoptosis (Santos et al., 2004). In addition, TERC −/− mice which re-
tain TERT expression, presented the same mitochondrial dysfunction 
as TERT- deficient mice, strongly suggesting a telomere length defi-
ciency (and not a noncanonical) explanation (Sahin & DePinho, 2012; 
Strong et al., 2011). In the future, studying the effects of telomerase 
on mitochondrial functioning and then on the bioenergetics of cells 
needs to be extended in two ways. First, towards the study on how 
telomerase, mitochondrial dysfunction and signalling pathways well- 
known to control the energy trade- offs of organism ageing (e.g., IGF1 
and mTOR) are interconnected (reviewed in Sahin & DePinho, 2012). 
Whether the telomerase regulation of the mitochondrial functioning 
is direct or indirect is not of primary importance for evolutionary stud-
ies, but how telomerase may modulate those signalling pathways will 
uncover new sides of the individual variability in the growth and age-
ing trade- off. Second, we need to extend those studies to a broader 
range of species, starting with those that maintain TA after early- life 
development. As with telomeres, telomerase, mitochondria and IGF1/
mTOR pathways are highly conserved over evolution. Exploring how 
they differently interact in species that evolved variable growth rates, 
metabolism and lifespans would be highly valuable. For instance, TA is 

not found in dipterian insects (Sasaki & Fujiwara, 2000), but whether 
noncanonical functions of telomerase play a role in individual fitness 
in those animals remains unexplored.

5  |  THE BEST MODEL S TO START WITH: 
TERT  −/− KNOCK-  OUT ANIMAL S

5.1  |  On longevity trade- off…

Tackling the role of telomerase in regulating the trade- offs among 
cellular and life- history traits will be of paramount importance in the 
coming years. While it remains indescribably complex to decipher 
causality in telomere biology and ageing, one natural starting place 
is to examine how life- history traits like growth, reproduction and 
lifespan are combined in biological models that experimentally lack 
TA, such as the TERT or TERC −/− organisms (Anchelin et al., 2013; 
Blasco et al., 1997). Those knock- out models provide us with some 
clues that need to be explained in a life- history context. To date, 
only one study has indirectly addressed the variation of expres-
sion of telomerase and of TERT/TERC subunits in relation to lifespan 
evolution and extrinsic risks of mortality (Hartmann et al., 2009). In 
short (3 months) and longer- lived (6 months) killifish, Nothobranchius 
furzeri, TERT and TERC gene expression correlate with TA and are 
equally expressed in both strains, but increase with age in some tis-
sues of the long- lived population. Since telomere ends erode with 
age in both strains, we may expect some noncanonical roles for tel-
omerase subunits to play a role in lifespan in this animal. Using such 
populations of the same species, that have naturally evolved life- 
history trait differences due to ecological constrains (i.e., short- lived 
killifish originate from temporary pools with eggs drying in the mud 
until the next generation, thus exhibiting short adult lifespan expec-
tancy), we may extend our understanding of the impact of telom-
erase and telomerase subunit expression to divergent evolution of 
fast pace of life (i.e., fast growth and high reproductive investment).

5.2  |  …reproduction trade- off…

TERC −/− mice show progressive telomere shortening over generations, 
with reduced cell turnover, bone marrow failure, and reproductive im-
pairment only in the sixth generation of homozygous mutants (TERT −/− 
mice presented similar phenotypes (Herrera et al., 1999; Strong et al., 
2011) for consistent results in a mouse strain with a different genetic 
background). Telomerase- mutated C. elegans worms (trt- 1) can survive 
the absence of full TA and show no particular deficiencies, apart from 
becoming sterile after few generations (Lackner & Karlseder, 2013). 
While being rather anecdotal for molecular and cell biologists focusing 
on lifespan, those studies conducted on very different species may say 
something about the control of reproduction by age signalling, but may 
also have missed how impaired TA may modulate the reproductive out-
put of adults. If accumulation of DNA damage over generations is the 
main explanation for the late appearance of specific sterile phenotypes 
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in knockout models, we may expect that reproduction, or any other 
activity either energy consuming or potentially stressful, would also be 
more detrimental for the future reproductive and survival prospects 
of TERT −/− or TERC −/− breeders. Unfortunately, the original work on 
mice said nothing about the reproductive success of those mice (Blasco 
et al., 1997), while mutated worms did show a decrease in brood size 
(Lackner et al., 2012). Additional telomerase mutants like TERT −/− ze-
brafish (in which telomerase is active through life and present in the 
ovary even in infertile old females) develop normally until adulthood 
(Anchelin et al., 2013) and start with normal clutch size and viability 
(i.e., until 1- year- old). However, TERT −/− zebrafishes then present a 
fast senescence and premature sterility (Henriques & Ferreira, 2012). 
Interestingly in this study, TERT −/+ and TERT +/+ zebrafish increased 
their reproductive performances after 1 year, while the female TERT 
−/− presented a reduced number of eggs per spawn (Anchelin et al., 
2013). Still, there were no detailed data on how, for instance, the het-
erozygote strain may suffer from a lowered reproductive success than 
the control one. Such a question remains a key point to evaluate the 
putative telomerase— fitness links. Again, given that TERT has been 
found to have noncanonical roles in inducing neutropenia in zebrafish 
(Alcaraz- Pérez et al., 2014), it is unknown whether this could also 
modulate reproductive success via gamete viability (see Anchelin et al., 
2013 for deleterious effect on sperm).

5.3  |  …or immune trade- off

Since cell proliferation is one of the active arms of immunity, a last 
obvious context where telomerase impact should be evaluated in 
knockout models relates to the cost of mounting an immune response. 
Telomerase seems to be involved in replicative capacity of immune 
cells (Allsopp et al., 2002) and TERC −/− mice show a reduced spleen 
size with a reduced rate of proliferation of either B and T lymphocytes 
following immune challenge (Blasco, 2002). In addition, a higher pro-
portion of neutrophils has been recorded (Herrera et al., 1999; maybe 
as a compensatory response to lymphocyte weakness) and mac-
rophages of TERC −/− mice are characterized by an “old- phenotype” 
with reduced proliferative capacity and higher intracellular ROS con-
centrations (Sebastián et al., 2009). As neutrophils and macrophages 
are central in the set- up and control of the inflammatory and innate 
immune responses (Desai et al., 2010), evaluating how TERC −/− indi-
viduals react to inflammatory challenges commonly used in ecophysi-
ological studies (i.e., lipopolysaccharide injection) will be of interest, 
both in terms of energy expenditure of collateral oxidative damage, 
and ultimately of future reproductive and survival prospects.

6  |  TERT POLYMORPHISMS AND 
E XPRESSION DIFFERENCES WITHIN STUDY 
POPUL ATIONS

While knockout models offer an attractive starting point for examin-
ing telomerase effects, an alternative and perhaps parallel approach 

is to screen for polymorphisms and expression differences in TERT 
among individuals. Many ecological studies focus on the underly-
ing causes and effects of oxidative stress particularly with respect 
to important fitness related parameters (e.g., reproduction, survival, 
longevity, immune status). The exploration of telomere dynamics 
has been a natural extension of these studies (reviewed above). A 
further focus could now be investigations of variation in telomerase 
critical genes at the genomic level and how that links with the un-
derlying telomerase modulation and fitness effects. The explosion 
of next- generation sequencing technologies paves the way for stud-
ies interested in genomic polymorphisms and their phenotypic ef-
fects. Much can be adopted from human studies that have searched 
for similar links in relation to health and disease (Calado & Young, 
2012; Rafnar et al., 2009; Savage et al., 2008; Vulliamy et al., 2001). 
Screening of entire populations for variation at a handful of candi-
date genes is now feasible for most labs. Linking TERT/TERC related 
polymorphisms to TA and other phenotypic differences should be 
a relatively simple add- on to many studies, particularly for well- 
studied captive and long- term population studies.

7  |  CONCLUSION: THERE IS A LOT TO 
GAIN IN STUDYING TELOMER A SE FOR 
E VOLUTIONARY BIOLOGISTS

Our present knowledge of the role of telomerase in modulating cell 
ageing, bioenergetics or signalization pathways (all mechanisms un-
derlying the individual phenotype and ultimately its life- history traits 
such as immunity, growth or reproductive rates) is largely lacking. 
Using knockout models of telomerase genes has provided us with a 
unique tool to study how the combination of physiological and life his-
tory traits is likely to be altered when compared to wild- type strains. 
Of course, heterozygotes of mutated genes (TERT −/+ or TERC −/+) 
will be more valuable as they will take us beyond the on/off (i.e., ster-
ile/fertile) phenotypes. In addition, the study of telomerase must be 
extended to a broader range of species in non- models animals such as 
birds, fish, mammals or insects, where descriptive studies on change 
in TA with age or tissue have already paved our way (e.g., Hartmann 
et al., 2009; Jemielity et al., 2007; Koubová et al., 2019; McAloney 
et al., 2014; O'Hare & Delany, 2005; Wang et al., 2011). Measurement 
of TA in such studies should be a natural next step via the use of 
already available and easily adaptable methods (e.g., TRAP assays, 
Mensà et al., 2019). Adding original data on, more particularly, the 
pleiotropic action of canonical and noncanonical activities of telom-
erase, and exploring how they may have co- evolved with particular 
life- history traits form our next scientific objective.
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