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Pituitary neuroendocrine tumors (PitNET) are commonly benign tumors accounting for 10-
25% of intracranial tumors. Prolactin-secreting adenomas represent the most
predominant type of all PitNET and for this subtype of tumors, the medical therapy
relies on the use of dopamine agonists (DAs). DAs yield an excellent therapeutic response
in reducing tumor size and hormonal secretion targeting the dopamine receptor type 2
(D2DR) whose higher expression in prolactin-secreting adenomas compared to other
PitNET is now well established. Moreover, although DAs therapy does not represent the
first-line therapy for other PitNET, off-label use of DAs is considered in PitNET expressing
D2DR. Nevertheless, DAs primary or secondary resistance, occurring in a subset of
patients, may involve several molecular mechanisms, presently not fully elucidated.
Dopamine receptors (DRs) expression is a prerequisite for a proper DA function in
PitNET and several molecular events may negatively modify DR membrane expression,
through the DRs down-regulation and intracellular trafficking, and DR signal transduction
pathway. The current mini-review will summarise the presently known molecular events
that underpin the unsuccessful therapy with DAs.
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INTRODUCTION

Dopamine agonists (DAs) are chemical compounds that, by directly binding to the dopamine
receptors (DRs), induce biological actions resembling that of endogenous dopamine (1). In the
context of pituitary neuroendocrine tumors (PitNET), DAs lead to the inhibition of hormonal
secretion and tumor shrinkage in different pituitary tumor histotypes by mainly binding to the
dopamine receptor type 2 (D2DR), largely expressed in lactotroph pituitary cells but also localized
in other pituitary cell sub-populations including somatotroph and corticotroph cells (2).

DAs can be classified in ergot derivatives, including bromocriptine (BRC), cabergoline (CAB),
pergolide and lisuride, and in non-ergot derivatives such as quinagolide. The most commonly used
DAs as a medical treatment for PitNET are currently BRC and CAB (3).

The main localization of D2DR is on normal and tumoral animal and human lactotroph
pituitary cells (2, 4, 5), therefore DAs represent the treatment of choice for PRL-secreting PitNET,
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for whose management, unlike other PitNET, the consensus
guidelines have recommended the medical therapy as first-line
treatment of choice rather than surgery (6). In prolactinomas,
medical therapy relies on the preferential use of CAB compared
to BRC because of the higher affinity of CAB to D2DR than BRC,
its better tolerability profile, and its higher and long-lasting
efficacy in normalizing prolactin (PRL) levels and in inducing
tumor shrinkage (6). Indeed, in prolactinomas receiving
treatment with CAB biochemical control and relevant tumor
shrinkage are reportedly recorded in the vast majority of patients
up to 100% and 96% of cases, respectively (7).

The D2DR localization in normal and tumoral animal and
human somatotroph (4, 8–10) and normal and tumoral human
corticotroph pituitary cells (11, 12) has provided the basis for
DAs application also in the therapeutic algorithm of acromegaly
and, as off-label use, in Cushing’s Disease (CD). However, in
patients harbouring GH-secreting PitNET and ACTH-secreting
PitNET, the biochemical and tumoral efficacy of DAs is lower
than in prolactinomas. Indeed, DAs, mainly CAB, are indicated
as monotherapy in patients with GH-secreting PitNET with mild
disease (13), defined as mild signs and symptoms of GH excess
and modest elevation in serum IGF-I levels (lower than 2 times
the upper limit of normal) (14). In such patients, CAB
administration has resulted in the achievement of biochemical
control in approximately one-third of patients (15).
Alternatively, CAB can be used in combination with
somatostatin receptor ligands (SRLs) in patients displaying
partial responsiveness to SRLs monotherapy (14), defined as
incomplete or inadequate biochemical and tumoral control (16),
or in addition to the GH receptor antagonist pegvisomant (17).
In such patients, CAB addition to SRLs has resulted in the
achievement of biochemical control in 52% of patients (15).
When combined with pegvisomant, CAB administration has
been demonstrated to induce biochemical control in 68% of
patients (17). In CD, DAs are listed among the pituitary-directed
drugs for patients with ACTH-secreting PitNET, including those
who have experienced a noncurative surgery or a postoperative
recurrence and are not candidates for additional pituitary
surgery (18). In such patients, the use of CAB has resulted in
the achievement of biochemical control in up to 40% of cases
(19). Added to other compounds, CAB has been shown to induce
biochemical control in 56-79% when used in combination with
steroidogenesis inhibitors (20–22) and up to 88% when
administered in addition to pasireotide and ketoconazole (23).

Despite the proven biochemical and tumoral efficacy of DAs
in prolactinomas, a minority of patients, accounting for 10% of
patients with macroprolactinoma and less than 20% of those
with macroprolactinoma (24, 25), fail to achieve the biochemical
control of PRL excess and/or the reduction in tumor mass during
treatment with DAs (6, 26).

In patients with persistent/recurrent clinically nonfunctioning
PitNET, for which no medications have been approved, the
efficacy of DAs, including CAB and BRC, in reducing the tumor
size has been tested based on the D2DR expression established in
most of the nonfunctioning PitNET tissues in several preclinical
studies (27–29). DA therapy evaluated in some case reports and in
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small series provided variable results with a reduction in
tumor size in 30% of cases and induction of stable disease in
58% of cases (30). However, due to insufficient and variable
evidence, DA therapy is not routinely administrated in patients
with nonfunctioning PitNET and DAs use is still a matter of
debate (31).

The molecular mechanisms of DAs resistance in PitNET are
not fully understood. This mini-review focuses on the molecular
mechanisms underlying the resistance to DAs in PitNET.
DOPAMINE RECEPTORS AND THEIR
REGULATION OF PHYSIOLOGICAL AND
PATHOPHYSIOLOGICAL MECHANISMS IN
PITUITARY TUMORS

DRs are five subtypes of G protein-coupled receptors (GPCRs)
divided into two subgroups based on their structural, functional
and pharmacological properties: D1-like family, including D1DR
and D5DR, and D2-like family, comprising of D2DR, D3DR, and
D4DR (2). The presence of introns within the coding regions of
D2-like receptors give rise to the potential formation of isoforms
due to the occurrence of alternative splicing in their mRNAs (2).
Indeed, D2 receptor exists in two different isoforms,
denominated D2 short (D2S) and D2 long (D2L) isoforms,
differing for the presence or absence of 29 amino acids in the
third intracellular loop, and displaying distinct physiological and
pharmacological properties (2).

In lactotroph cells, the dopamine pathway, besides the well-
known regulation of hormone secretion, controls the complex
physiological mechanism of cell homeostasis. The lactotroph cell
homeostasis represents a condition of biological and molecular
steady-state to prevent the triggering of pathological conditions.
Indeed, in lactotroph cells, a correct function of the dopamine
signalling pathway is needful to limit PRL synthesis and
secretion, and cell growth and proliferation, to minimize the
development of lactotroph hyperplasia, or lactotroph
differentiation and expansion, with a consequent formation of
PRL-secreting tumors leading to a state of pathological
hyperprolactinemia (32–37).

DRs are involved in human and animal hormone secretion
inducing the cyclic AMP (cAMP) pathway. Precisely, D1-like
receptors, being coupled to stimulatory G proteins (Gas),
activate cAMP pathway, inducing adenylyl cyclase (AC)
activity, cAMP accumulation, protein kinase A (PKA)
activation and calcium (Ca2+) release from the intracellular
compartment. Conversely, D2-like receptors, being coupled to
inhibitory G proteins (Gai/o), inhibit cAMP pathway,
suppressing AC activity, cAMP accumulation, PKA activation
and Ca2+ release from the intracellular compartment (2).
Interestingly, studies in rodents have demonstrated that D2S
and D2L isoforms induce two cAMP-independent pathways in
the regulation of lactotroph cell homeostasis: the mitogen-
activated protein kinase (MAPK) and the phosphatidylinositol
3-kinase (PI3K)/protein-kinase B (PKB) pathways.
January 2022 | Volume 12 | Article 791633
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Specifically, studies on mouse lactotroph cell models
demonstrate that D2S induces ERK1/2 of the MAPK pathway
and PKB of PI3K pathway, whereas D2L inhibits ERK1/2 and
PKB. In physiological conditions, the expression of both
isoforms is sufficient to maintain PRL synthesis and secretion
and cell proliferation, while the simultaneous knockdown of both
D2DR isoforms induces the inhibition of ERK1/2 and the
induction of PKB activity resulting in uncontrolled cell
proliferation and consequent pituitary hyperplasia and
hyperprolactinemia (35). Conversely, in pathological states, the
expression of only one D2DR isoform is no longer sufficient to
control lactotroph homeostasis (35). These data suggest that the
control of D2L/D2S ratio and therefore the balance between
MAPK and PI3K pathway are a prerequisite to maintaining
lactotroph homeostasis and preventing pathological
lactotroph development.

More recently, a newmechanism of DRs modulation has been
demonstrated to be involved in the regulation of pituitary tumor
volume shrinkage. Indeed, in in vitro rodent prolactinoma and
somatotropinoma cell lines (MMQ and GH3) and in vivo rodent
pituitary tumors it has been demonstrated that the activation of
D5DR mediates cell growth suppression by autophagic pathway
stimulation through PKB/mTOR signalling (38–40). Deeply,
D5DR activation inhibits mTOR signalling, decreasing p70S6K
and 4eBP1 phosphorylations. Consequently, D5DR activation
induces autophagic cell death, enhancing the protein expression
of the classical hallmark of autophagy activation, the
microtubule-associated protein light chain 3-II (LC3-II), but
also regulating the levels of several molecules known as
hallmarks of apoptosis but also involved in the autophagic
process (38, 39, 41). Indeed, D5DR activation increases reactive
oxygen species (ROS) levels, rises the cleavage of poly-(ADP-
ribose) polymerase (PARP) and the Caspase-3, and decreases the
superoxide dismutases (SOD) protein expression (38, 39, 41).
Interestingly, BRC and CAB have been found to prompt cell
death via different pathways; BRC induces prolactinoma cell
death mainly through the apoptosis pathway, while CAB induces
prolactinoma cell death mainly via the autophagic cell death
pathway (40).

Interestingly, D2DR has been also demonstrated to be
involved in the growth and invasiveness as well as in the
growth of stem-like cells, the main source of drug resistance, of
nonfunctioning PitNET. Indeed, the activation of D2DR
significantly induces antiproliferative effects by activating
ERK1/2, p38 MAPK and caspase-3 in primary cultures of
nonfunctioning PitNET (42) and induces antiproliferative
effects on primary stem-like cell spheres of nonfunctioning
PitNET (43). Moreover, the activation of D2DR significantly
reduces the migration and invasion of a human cell model and of
primary cultures of nonfunctioning PitNET, through the Rho-
associated protein kinase (ROCK)-dependent LIMK (LIM
kinase, an actin-binding kinase) activation. D2DR activation of
ROCK/LIMK pathway determinates the inactivation of the
protein cofilin, an actin-binding protein that regulates filament
dynamics, with a consequent loss of its ability to bind the actin
and, thus, promoting cell migration (44).
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DOPAMINE AGONISTS RESISTANCE IN
PITUITARY TUMORS

Guideline for hyperprolactinemia has defined theDAs resistance as
a failure to achieve normal PRL levels together with a ≥ 50%
reduction in tumor size at maximally tolerated doses (6). Only a
small subset of patients with prolactinomas does not respond to
DAs treatment (primary resistance), as approximately 20-30% is
resistant to BRC and around 10-20% to CAB (24, 45), due to
modification of DRs expression or to intracellular molecular
mechanisms. Very infrequently patients with prolactinomas
experience a delayed resistance becoming refractory to DAs
prolonged treatment (secondary resistance) (46–51). This
condition is generally considered an expression of a negative
prognosis as it might indicate a malignant transformation of the
prolactinoma (46).

In GH-secreting PitNET, the efficacy of DAs, particularly CAB,
is remarkably lower than prolactinomas, regardless of their
administration as monotherapy or in addition to other
compounds; similarly, in ACTH-secreting PitNET the therapeutic
efficacyofDAs,mainlyCAB, is limitedbyadecreased response over
time leading to escape to treatment (12, 52, 53).

Several molecular mechanisms, reviewed in the following
sections and summarized in Figure 1, seem to play a role in
DAs resistance.
DRs EXPRESSION IN PITUITARY TUMORS:
MECHANISMS OF RESISTANCE

Generally, the effectiveness of BRC or CAB has been related to a
decreased expression inDRs, as the expressionof such receptors has
been shown to correlate with responsiveness to therapy in
lactotroph, somatotroph, corticotroph and in clinically
nonfunctioning PitNET (12, 54–58). Particularly, a lower
messenger expression of D2S and D2S/D2L ratio has been
confirmed in the DAs resistant pituitary tumors (12, 27, 28, 54,
56, 59), although in a Japanese study the resistance to DAs in
prolactinomas has been surprisingly correlated to a reduced
messenger expression of D2L receptor subtype (57). In contrast to
these studies, nonfunctioning PitNET response toDAs treatment is
not related to D2DR mRNA and protein expression (60, 61),
suggesting that other additional factors may mediate the growth
inhibitory effects of DAs in nonfunctioning PitNET.

Modulation of DRs Expression
DRs expression can be modulated by several factors, contributing
to affect sensitivity to DAs. Indeed, besides their direct
stimulatory role on PRL gene expression and lactotroph
mitotic activity (62), estrogens may affect the D2S/D2L ratio
tumors, increasing the expression of D2L and therefore affecting
the efficacy of DAs treatment, as demonstrated in mouse normal
pituitary and pituitary tumor cell lines (63–66). On the contrary,
DAs resistant cells, obtained from mice primary lactotroph
tumors exposed to nerve growth factor (NGF), have been
found to change their phenotype into a differentiated, less
January 2022 | Volume 12 | Article 791633
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malignant lactotroph-like phenotype re-expressing the D2DR
protein and recovering the capability to respond to DAs (67).

DRs expression is not the only prerequisite to ensure the
efficacy of DAs therapy. Several biological mechanisms,
including DRs genetic alterations, receptors desensitization,
internalization and intracellular trafficking, and microRNA
(miRNA) expression levels can modulate the success of DAs
treatment of the pituitary tumors.

D2DR Genetic Alterations Associated With
Resistant Pituitary Tumor
CAB resistance in prolactinomas has been significantly
associated with the presence of a D2DR polymorphism. The
polymorphism recognized by the restriction enzyme NcoI
Frontiers in Endocrinology | www.frontiersin.org 4
consists of a synonymous cytosine to thymine (NcoI C/T)
transition at position 957. The gene variant NcoI T+, rather
than being silent, leads to a decreased D2DR mRNA stability and
synthesis through a putative alteration in the receptor mRNA
folding, conferring resistance to the antitumoral action of CAB
(68). Presently, neither mutations in D2DR gene nor methylated
sites in D2DR promoter region have been found to be associated
with resistance to DAs treatment in pituitary tumors.

D2DR Heterodimerization With
Somatostatin Receptors
Heterodimerization between D2DR and somatostatin receptor
(SSTR) type 2 (SSTR2) and/or type 5 (SSTR5) (69) induces a
modification of the ligand-binding and a synergistic effect on the
FIGURE 1 | Molecular mechanisms underpinning the DAs resistance in PRL- and GH-secreting PitNET. 1) The gene variant NcoI T+ of the synonymous
polymorphism NcoI, consisting in a cytosine to thymine (NcoI C/T) transition at position 957, leads to a decreased D2DR mRNA stability and synthesis through a
putative alteration in the receptor mRNA folding, conferring resistance to the antitumoral action of CAB in PRL-secreting PitNET; 2) Estrogens may affect the D2S/
D2L ratio tumors, increasing the expression of D2L and therefore affecting the efficacy of DAs treatment in PRL-secreting PitNET; 3) D2DR in PRL-secreting PitNET
cell model and primary cultures of nonfunctioning PitNET triggers the b-arrestin 2-mediated PKB dephosphorylation inducing antiproliferative effect and the lack of b-
arrestin 2 induces DAs resistance in nonfunctioning PitNET; 4) FLNA is involved in the regulation of D2DR membrane expression and signalling. Indeed, FLNA
anchorage and expression of D2DR on the plasma membrane, by controlling D2DR fate towards recycling processes or degradation in PRL- and GH-secreting
PitNET; 5) D2DR activates ROCK/LIMK pathway with consequent inactivation of the protein cofilin resulting in a loss of its ability to bind the actin and, thus,
promoting cell migration and invasion; 6) miR-93-5p targets Smad7, a negative regulator of TGF-b1/Smad signalling, sustaining the TGF-b1-induced fibrosis in PRL-
secreting PitNET. Alongside, miR-93-5p down-regulates p21 inducing cell-cycle progression and losing the control of ROCK/LIMK pathway, and down-regulates
ATG7, decreasing the autophagic cell death induced by CAB in PRL- and GH-secreting PitNET; 7) the reduced expression of miR-145-5p stimulates the TPT1
protein resulting in decreased DNA repair, increased cell migration and invasion and reduced apoptosis and autophagy. D2DR, dopamine receptor type 2; PKB,
protein-kinase B; FLNA, filamin A; ROCK, Rho-associated protein kinase; LIMK, LIM kinase; ATG7, Autophagy Related 7 protein; TPT1, translationally controlled
tumor protein. Created with BioRender.com.
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activation of transduction pathways that can change the response
to DAs and SRLs. Based on this rationale, chimeric agonists have
been produced for therapeutic use, to be used to overcome the
DAs and SRLs resistance.

Interestingly, the chimeric compound BIM-23A760, binding
with high affinity SSTR2>SSTR5 and D2DR, has been found to
regulate hormonal release, exerting both anti- and pro-secretive
effects in human GH-secreting, ACTH-secreting, and
nonfunctioning PitNET through the regulation of free cytosolic
calcium levels (70, 71) and antiproliferative and/or pro-apoptotic
effects in in vitro human GH-secreting, PRL-secreting and
nonfunctioning PitNET (42, 70, 72, 73), in these latter by
activating ERK1/2 and p38 pathways and caspase-3 (42).
Contrary to what is observed in GH-secreting PitNET where
the chimeric compound BIM-23A760 produced a greater GH
suppression in partial responder tumors to SRL octreotide (71),
in nonfunctioning PitNET the effect exerts from chimeric
compound BIM-23A760 is not significantly different from that
triggered by the specific DA (42, 73). Indeed, in nonfunctioning
PitNET the efficacy of the chimeric compound BIM-23A760 is
mainly dependent on D2DR activation (73), although no
correlation has been found between D2DR expression and the
sensitivity to BIM-23A760 in this pituitary tumor model (73).

Interestingly, the chimeric compound BIM-23A760 has been
found to significantly reduce the cell viability of stem-like cell
subsets of different pituitary tumors (74), thus representing
potential novel therapeutic agents for therapy-resistant tumors.
Despite this, in primary cultures of nonfunctioning PitNET the
D2DR agonist BIM-53097 has been shown to reduce the cell
viability of stem-like cells as well (43), but given the lack of
evidence comparing the selective D2DR agonist with the
chimeric compounds in the regulation of stem-like cells cell
viability in nonfunctioning PitNET, it cannot be stated that the
mutual activation of several receptors through chimeric
compounds is sufficient to overcome the pharmacological
resistance observed in some resistant nonfunctioning PitNET.
Up to now, the lack of biological and clinical determinants still
leaves unresolved the question of the molecular mechanisms
underlying the resistance to DAs in nonfunctioning PitNET.

The Role of Cytoskeleton Protein
Filamin-A
Like other GPCRs, DRs ensure the appropriate magnitude and
duration of the extracellular stimuli translation into intracellular
signals via three main modes of regulation: desensitization, a
process in which a receptor becomes refractory to continued
stimuli; internalization, a process in which receptors are
physically removed from the cell surface by endocytosis; and
down-regulation, a process in which total cellular receptor levels
are decreased. In the last years, the cytoskeleton protein Filamin-
A (FLNA), an actin-binding protein that regulates reorganization
of the actin cytoskeleton by interacting with integrins, several
GPCRs, ion channels and second messengers anchoring them to
the actin cytoskeleton, is associated with the regulation of D2DR
expression and signalling (75–77) in several cell system including
pituitary tumor cells (78, 79). In melanoma cell models, the
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expression of FLNA allows the plasma membrane localization of
D2DR, whereas, in absence of FLNA, D2DR is predominantly
localized in the cytoplasm compartment (76). Consistently,
FLNA protein expression has been found reduced in DAs
resistant human prolactinomas and FLNA silencing by small
interfering RNA in DAs sensitive human prolactinomas has been
shown to result in a reduced protein expression of D2DR,
abrogation of PRL secretion inhibition and antiproliferative
signals (78), demonstrating the crucial role of FLNA in D2DR
expression and its role as scaffold for signalling molecules
involved in D2DR signal transduction in lactotroph tumors.
Moreover, experiments conducted on the rodent prolactinoma
cell line MMQ have demonstrated that FLNA not only allows the
anchorage and expression of D2DR on the plasma membrane,
but it also prevents D2DR lysosomal degradation (78),
demonstrating that FLNA may control D2DR fate towards
recycling processes or degradation. FLNA expression has been
also correlated to D2DR mRNA expression in GH-secreting
PitNET (79).

The Role of b-Arrestins
The activation of DRs, particularly of D2DR, by DAs is quickly
followed by their rapid phosphorylation induced by GPCR
kinases (GRK) and protein kinase C (PKC) (80–83).
This results in the recruitment of b-arrestin 1 and 2,
multifunctional scaffolding proteins, involved in desensitization
and internalization as well as in the induction of signal
transduction protein complexes, in which b-arrestin acts as a
scaffold for different kinases and phosphatases, of several GPCRs,
including D2DR (84–86). However, D2DR desensitization and
resensitization have been reported to be also mediated by b-
arrestin in a phosphorylation-independent manner (87, 88).

b-arrestins have been demonstrated to be expressed in human
pituitary tumors, including lactotroph, somatotroph,
corticotroph and clinically nonfunctioning PitNET (88–90),
with a higher expression of b-arrestin 2 compared b-arrestin 1
(88, 89). Interestingly, b-arrestin 2 is expressed more frequently
in nonfunctioning PitNET responsive to the D2DR-selective
agonist BIM53097 (90).

Moreover, b-arrestins are expressed in rodent MMQ and
GH3 cell lines, b-arrestin 2 being the only one expressed in the
MMQ cell line (90) and the most highly expressed in GH3 cell
line as compared to b-arrestin 1 (89). Remarkably, b-arrestin 2 is
not only involved in the regulation of D2DR expression but also
the regulation of its signal transduction pathway. Indeed, it has
been shown that the BIM53097 agonist binding to D2DR in
MMQ in primary cultures of nonfunctioning PitNET triggers the
b-arrestin 2-mediated PKB dephosphorylation inducing
antiproliferative effect (90). These data have been corroborated
by experiments conducted on primary cultures of
nonfunctioning PitNET lacking b-arrestin 2 expression and
not responsive to DAs. Plasmid transfection of b-arrestin 2 in
such cultures restored the ability of D2DR-selective agonist
BIM53097 to inhibit cell proliferation (90), demonstrating that
b-arrestin 2 has a main role in the responsiveness to DAs in
pituitary tumors.
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The Role of microRNAs
microRNAs (miRNAs) are endogenous, single-strand, highly
conserved, small non-coding RNAs with a length of
approximately 22–25 nucleotides (91). miRNAs play a
significant role in gene expression regulation, inducing mRNAs
degradation or repressing protein synthesis through the binding
to seed sequences located in the 3’-untranslated regions (3′-
UTR) or the 5’-untranslated regions (5′-UTR) or the coding
region of their target mRNAs, thus silencing the target genes. In
particular, miRNAs binding to the sites located in the coding
regions are more potent in inhibiting translation, while, binding
to the sites located in the 3′-UTR are more efficient in triggering
mRNA degradation (91–94).

Recent evidence has revealed that several miRNAs are
involved, among other functions, in regulating drug resistance
in multiple tumors, including pituitary tumors (95–99).

miR-93, miR-17, miR-22, miR-126, miR-142-3p, miR-144,
miR-486-5p, miR-451 and miR-92a were up-regulated while
miR-30a, miR-382, miR-136 have been found down-regulated in
BRC-resistant prolactinomas compared to BRC-sensitive
prolactinomas (97). Interestingly, the knockdown of endogenous
miR-93-5p by the miRNA inhibitor antagomir transfection in
MMQ cells has been shown to significantly increase the
sensitivity to BRC and CAB treatment inducing cell proliferation
inhibition, whereas overexpression of miR-93-5p with the miRNA
mimic agomir transfection blunted the anti-secretive effect of BRC
on PRL release (95) and suppressed the cytotoxic effect of CAB in
MMQ and GH3 cells (97, 99). The DAs resistance induced by the
overexpression of miR-93-5p inMMQ and GH3 cell lines involves
the down-regulation of the protein p21, a key member of cyclin
kinase inhibitors known to be implicated in the inhibition of cell-
cycle progression, as demonstrated in MMQ cell line (97), and the
down-regulation of the protein Autophagy Related 7 (ATG7), an
essential regulator of autophagy, decreasing the autophagic cell
death induced byCAB inMMQandGH3 cell lines and rat pituitary
tumors (99).

About 43% of the DA-resistant prolactinomas have been
reported to be highly fibrotic and to have a higher collagen
content compared to the DA-responsive ones (100). As observed
in other tumors, the initiation and development of tissue fibrosis in
prolactinomas is mediated by TGF-b1/Smad3 pathway and the
expression of TGF-b1/Smad3 signalling pathway components be
elevated in DA-resistant and fibrotic prolactinomas (100).
Remarkably, miR-93-5p is highly expressed in DA-resistant
prolactinomas with a high degree of fibrosis (95). The in vitro
study performed in primary cultures of human prolactinomas has
revealed that TGF-b1 increases the expression ofmiR-93-5p, which
in turn targets Smad7, a negative regulator of TGF-b1/Smad
signalling. The blunting of Smad7 expression by miR-93-5p
promotes the DAs resistance sustaining the TGF-b1-induced
fibrosis in prolactinoma cells (95).

More recently, decreased miR-145-5p levels have been shown
in BRC-resistant human prolactinomas and in BRC-resistant
MMQ cell line with a concomitant higher expression of the
translationally controlled tumor protein (TPT1), a protein that
plays a crucial role in many biological processes including DNA
Frontiers in Endocrinology | www.frontiersin.org 6
damage repair, epithelial to mesenchymal transition (EMT),
migration, invasion, apoptosis and autophagy by interacting
with several other proteins (96).

Other Molecular Mechanisms
Adequate tumor vascularization, defined by the acquisition of
angiogenic phenotype, is a prerequisite for the further outgrowth
of the tumor, as observed in several human tumors including
pituitary tumors (101). Macroprolactinomas have been found to
display a higher degree of vasculature than microprolactinomas,
and similarly, invasive pituitary prolactinomas have been
reported to be significantly vascularized (101). The vascular
endothelial growth factor (VEGF), the hallmark and central
mediator of angiogenesis, has been reported to be highly
expressed in DAs resistant prolactinomas (102, 103). Indeed,
the dopaminergic system, mediated through the D2DR,
negatively regulates the angiogenesis, inhibiting the vascular
permeabilizing and angiogenic activities of VEGF (104), as also
demonstrated in D2DR knockout mice models, in which mRNA
and protein expression of pituitary VEGF-A are increased
compared with wild-type mice, demonstrating that pituitary
VEGF expression is under dopaminergic control (105).
CONCLUSIONS

In conclusion, the pharmacological efficacy of DAs used for the
medical treatment of PitNETs is based on several multifaceted
mechanisms, mainly investigated in prolactinomas. These
mechanisms include the reduction of D2DR expression,
regulated by internalization and down-regulation processes
orchestrated by cytoskeleton proteins and b-arrestins; changes
in the proportion of D2DR subtypes; the regulation of cell
signalling pathway of D2DR; and the increase of angiogenic
and fibrotic markers. Growing evidence has highlighted the role
of miRNAs in DAs resistance, particularly through the regulation
of fibrotic pathway, although further studies are required to
better elucidate the burden and the role of molecular
mechanisms underlying pharmacological resistance to DAs.
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