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Abstract 

The SH3 and multiple ankyrin repeat domains 3 (Shank3) protein is a core organizer of the macromolecular complex 
in excitatory postsynapses, and its defects cause numerous synaptopathies, including autism spectrum disorders. 
Although the function of Shank3 as a postsynaptic scaffold is adequately established, other potential mechanisms 
through which Shank3 broadly modulates the postsynaptic proteome remain relatively unexplored. In our previous 
quantitative proteomic analysis, six up-regulated ribosomal proteins were identified in the striatal synaptosome of 
Shank3-overexpressing transgenic (TG) mice. In the present study, we validated the increased levels of RPLP1 and 
RPL36A in synaptosome, but not in whole lysate, of the TG striatum. Moreover, protein synthesis and extracellular 
signaling-regulated kinase (ERK) activity were enhanced in the TG striatal synaptosome. To understand the potential 
contribution of increased protein synthesis to the proteomic change in the TG striatal synaptosome, we performed 
RNA-sequencing analyses on both whole synaptosomal and synaptic polysome-enriched fractions. Comparative 
analyses showed a positive correlation only between the polysome-associated transcriptome and up-regulated pro-
teome in the TG striatal synaptosome. Our findings suggest a novel mechanism through which Shank3 may remodel 
the postsynaptic proteome by regulating synaptic protein synthesis, whose dysfunction can be implicated in SHANK3-
associated synaptopathies.
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Main text
Shank3 protein is a core organizer of the macromo-
lecular complex in the postsynaptic density (PSD) 
of neuronal excitatory synapses [1]. Consistent with 
its critical roles in proper synaptic development and 

function, variants of the SHANK3 gene have been 
causally associated with numerous synaptopathies 
[2]. Shank3 interacts with many other synaptic pro-
teins through its multiple protein–protein interaction 
domains, thereby regulating their synaptic localization 
and stability [3]. This “scaffolding” function is a well-
established mechanism underlying the organization 
of the PSD complex by Shank3. However, considering 
the highly dynamic regulation of synaptic proteins, 
including local synthesis and turnover [4], there can be 

Open Access

*Correspondence:  neurohan@korea.ac.kr
†Chunmei Jin, Yeunkum Lee and Hyojin Kang have contributed equally 
to this work.
1 Department of Neuroscience, College of Medicine, Korea University, 73, 
Goryeodae‑ro, Seongbuk‑gu, Seoul 02841, Republic of Korea
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-021-00756-z&domain=pdf


Page 2 of 5Jin et al. Mol Brain           (2021) 14:39 

additional, yet unexplored, mechanisms through which 
Shank3 orchestrates the postsynaptic proteome.

By applying a quantitative proteomic analysis, we 
recently identified several differentially expressed (63 
up-regulated/73 down-regulated) proteins in the stri-
atal synaptosome of Shank3 TG mice compared with 
wild-type (WT) mice [5]. Unexpectedly, we found 
that six ribosomal proteins (RPs) were included in the 
up-regulated proteins of the TG striatal synaptosome 
(Fig.  1a). Consistently, bioinformatic analyses revealed 
that several ribosome-related terms were significantly 
represented by the up-regulated proteins (Additional 
file  1: Figs. S1 and S2). Furthermore, Western blot 
analysis validated the increased levels of RPLP1 and 
RPL36A in synaptosome of the TG striatum compared 
with the WT striatum (Fig.  1b). Notably, in whole 
lysate, those protein levels were comparable between 
the TG and WT striata, suggesting that an increase in 
RP levels was specific to synaptosome.

Based on the above results, we measured the effi-
ciency of global protein synthesis or mRNA translation 
in WT and TG striata, by using a puromycin incorpo-
ration assay (Additional File 1: materials and methods). 
We used acute striatal slices from WT and TG mice 
and confirmed that proteins in both whole lysate and 
synaptosome could be labeled by incubating the slices 
with puromycin (Additional File 1: Fig. S3). Labeling 
was suppressed by pretreatment with the protein syn-
thesis inhibitor, cycloheximide, suggesting that puro-
mycin signals represent nascent polypeptides. When 
we measured the intensity of puromycin labeling, it 
was significantly increased in synaptosome, but not in 
whole lysate, of the TG striatum compared with the 
WT striatum (Fig.  1c). This result suggests that, simi-
lar to the increase in RP levels, protein synthesis was 
enhanced only in synaptosome of the TG striatum.

The mechanistic target of rapamycin (mTOR) and 
mitogen-activated protein kinase (MAPK)/ERK path-
ways are key regulators of synaptic protein synthesis 
[6]. We previously showed decreased mTOR complex 1 
(mTORC1) activity in whole lysate of the TG striatum 
compared with the WT striatum [7, 8]. However, since 
increased RP levels and protein synthesis in the TG stria-
tum were observed specifically in synaptosome, we meas-
ured the activities of mTORC1 and ERK in the striatal 
synaptosome of WT and TG mice. Unlike in whole lysate 
[7], mTORC1 activity was normal, but ERK activity was 
significantly increased in the TG striatal synaptosome 
(Fig.  1d). The total levels of mTOR and ERK proteins 
were comparable between the WT and TG striata.

Intriguingly, when we compared the list of 63 up-reg-
ulated proteins in the TG striatal synaptosome [5] with 
that of the recently reported comprehensive Shank3 
interactome (793 proteins) [9], only eight proteins, 
including Shank3 itself, were shared by both lists (Addi-
tional File 2: Table  S1). This unexpectedly low percent-
age of Shank3-interacting proteins in the up-regulated 
proteome (12.7%) suggests that interaction-mediated 
recruitment by overexpressed Shank3 (i.e., the scaffold-
ing function of Shank3) may only partially contribute to 
the proteomic change in the TG striatal synaptosome. 
Therefore, we investigated whether increased protein 
synthesis may be associated with proteomic change in 
the TG striatal synaptosome. To examine this, we per-
formed sucrose density-gradient fractionation with 
the striatal synaptosome of WT and TG mice and then 
purified RNAs from whole synaptosomal (referred to as 
“input”) or only polysome-enriched (“polysome”) frac-
tions (Fig.  1e). We validated the relative enrichment of 
mRNAs in the polysome fractions by measuring the 
amounts of two well-known synaptic mRNAs (CaMKIIa 
and Dlg4) [10] (Fig. 1f ). The purified synaptosomal input 

Fig. 1  Increased ribosomal protein levels, protein synthesis, and ERK activity in the striatal synaptosome of Shank3-overexpressing transgenic 
(TG) mice compared with wild-type (WT) mice. a The graph shows relative protein abundance between the TG and WT striatal synaptosomes. 
The six ribosomal proteins (RPs) up-regulated in TG mice and their fold-change values are indicated. b Western blot images and graph showing 
the expression levels of RPs in whole lysate and synaptosome of the TG striatum compared with the WT striatum (n = 6–7 mice per genotype). 
c Western blot images and graph showing the levels of puromycin (Puro.) labeling in whole lysate and synaptosome of the WT and TG striatal 
slices (n = 7 mice per genotype). d Western blot images and graph showing the levels of total and phosphorylated mTOR and ERK in the striatal 
synaptosome of WT and TG mice (n = 8–10 mice per genotype). e Western blot images showing the distribution of the RPs, RPS6 and RPL36A, 
in different sucrose density-gradient fractions of the WT and TG striatal synaptosome. Samples from WT liver were loaded as a positive control 
for sucrose density-gradient fractions. f Graph showing the results of qRT-PCR validation for the enrichment of CaMKIIa and Dlg4 mRNAs in 
polysome-enriched fractions of the striatal synaptosome. g Schematic diagram showing the multi-omics datasets of the WT and TG striata. 
h–j Graphs showing the comparisons of fold-change values between the proteomic change and each of the transcriptomic changes in the TG 
striatum. k Graphs showing the comparisons of fold-change values between the top 50 up-regulated proteins and synaptic polysome-associated 
transcripts (upper panel), as well as between the top 50 down-regulated proteins and synaptic polysome-associated transcripts (lower panel) in 
the TG striatum. l Schematic diagram showing a hypothesis that Shank3, via the ERK pathway, regulates synaptic protein synthesis, which provides 
proteins to the postsynaptic density (PSD). Data are presented as the mean ± SEM. *P < 0.05 (unpaired two-tailed Student’s t-test). All raw image and 
quantification data for Western blotting is provided in Additional files 3 and 4

(See figure on next page.)
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and polysome RNAs from three pairs of WT and TG stri-
atal samples were further processed for next-generation 
RNA-sequencing (RNA-seq) (Additional File 2: Table S2).

We previously performed whole tissue, as opposed 
to synaptosome-enriched, RNA-seq on the WT and 
TG striata [7]. Therefore, using the obtained multi-
omics datasets, we could compare correlations between 
proteomic change and three different transcriptomic 

changes in the TG striatum (Fig. 1g). Using proteomic 
change as a standard, we calculated its correlations 
with each of the three RNA-seq datasets by matching 
their fold-change values for each protein. Notably, as 
we narrowed down the list of proteins, from the top 
700 (350 up-regulated/350 down-regulated) to the top 
100, based on their fold-change values, mRNA level 
change in polysome, but not in whole tissue and input, 
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showed a gradual increase in the correlation coefficient 
to the proteomic change (Fig.  1h–j). In addition, with 
any group of protein lists, polysome showed a markedly 
higher correlation coefficient than the whole tissue and 
input coefficients. Moreover, when we separately ana-
lyzed the top 50 up-regulated and 50 down-regulated 
proteins, only the up-regulated proteins showed a fur-
ther increase in correlation coefficient with respect to 
the polysome data (Fig.  1k). These results suggest a 
positive correlation between polysome-associated tran-
scriptomic and up-regulated proteomic changes in the 
TG striatal synaptosome.

Here, we showed increased RP levels and protein syn-
thesis in the striatal synaptosome of Shank3-overexpress-
ing mice. Elevated ERK activity, which directly interacts 
with Shank3 [11], may mediate the process [6, 12]. Based 
on our comparative analyses, we cautiously speculate that 
increased protein synthesis from the synaptic polysome-
associated transcripts in the TG striatum may contribute 
to the remodeling of its postsynaptic proteome (Fig. 1l). 
The correlation between them might be underestimated 
because our proteomic data is a “snapshot” which is a net 
outcome of protein synthesis and degradation. Therefore, 
direct identification of the locally synthesized proteome 
[13] in the TG striatal synaptosome will be an important 
direction for future studies.

Among the up-regulated proteins in the TG striatum, 
dopamine D1 receptor (DRD1) and its downstream tar-
get, dopamine and cAMP regulated phosphoprotein 
32  kDa (DARPP-32), showed up-regulated polysome-
associated mRNA levels in the TG striatal synaptosome 
(Additional File 2: Table  S3). Considering mania-like 
behaviors, such as hyperlocomotion and amphetamine 
hypersensitivity, observed in Shank3 TG mice [3, 14], 
increased local synthesis of DRD1 and DARPP-32, if vali-
dated, may possibly contribute to the synaptic and behav-
ioral changes in TG mice.

In conclusion, our study provides evidence suggesting 
the convergence of synaptic scaffolds and protein synthe-
sis, where abnormalities are considered major pathogenic 
mechanisms underlying numerous synaptopathies [15, 
16].

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1304​1-021-00756​-z.

Additional file 1: Fig. S1 Gene ontology analysis for the up-regulated (A) 
and down-regulated proteins (B) in the striatal synaptosome of Shank3 
TG mice. Fig. S2 Gene set enrichment analysis (GSEA) for the proteomic 
change in the striatal synaptosome of Shank3 TG mice. Fig. S3 Puromy-
cin (Puro.) labeling of nascent polypeptides in acute slices of the mouse 
striatum. CHX, cycloheximide. Materials and methods 

Additional file 2: Table S1. List of 63 up-regulated proteins in the striatal 
synaptosome of Shank3 TG mice. Table S2. Summary of RNA-seq map-
ping results. Table S3. List of proteins identified from the quantitative 
proteomic analysis in the striatal synaptosome of Shank3 TG mice, and 
their fold changes values for each data set are shown.

Additional file 3. All raw images for entire membranes of Western 
blotting.

Additional file 4. All raw numerical data for image quantification.

Abbreviations
DARPP-32: Dopamine and cAMP regulated phosphoprotein 32 kDa; DRD1: 
Dopamine D1 receptor; ERK: Extracellular signal-regulated kinase; MAPK: 
Mitogen-activated protein kinase; mTOR: Mechanistic target of rapamycin; 
PSD: Postsynaptic density; RNA-seq: RNA-sequencing; RP: Ribosomal protein; 
Shank3: SH3 and multiple ankyrin repeat domains 3; TG: Transgenic; WT: 
Wild-type.

Acknowledgements
We thank the Laboratory Animal Research Center at the Korea University Col-
lege of Medicine for animal care and support.

Authors’ contributions
CJ, YL, KJ, JP, YZ, HRK, RM, HS, YK, and KH designed and performed the experi-
ments. HK, HJ, JYK, YKK, and KH analyzed and interpreted the data. KH wrote 
the paper. All authors have read and approved the manuscript.

Funding
This work was supported by the National Research Foundation of Korea 
(NRF) grants funded by the Korea Government Ministry of Science and ICT 
(NRF-2018R1C1B6001235 and NRF-2018M3C7A1024603 to KH), by the Korea 
University Graduate School Junior Fellow Research Grant (to CJ), and by the 
KBSI Grant (C060100 to JYK).

Availability of data and materials
The datasets used and analyzed in the current study are available from the 
corresponding author on reasonable request.

Ethics approval and consent to participate
The Shank3 TG mice were bred and maintained in a C57BL/6J background 
according to the Korea University College of Medicine Research Requirements. 
All experimental procedures were approved by the Committee on Animal 
Research of the Korea University College of Medicine (KOREA-2018-0003).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Neuroscience, College of Medicine, Korea University, 73, 
Goryeodae‑ro, Seongbuk‑gu, Seoul 02841, Republic of Korea. 2 Department 
of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic 
of Korea. 3 Division of National Supercomputing, Korea Institute of Science 
and Technology Information (KISTI), Daejeon, Republic of Korea. 4 Creative 
Research Initiatives Center for Molecular Biology of Translation, Korea Uni-
versity, Seoul, Republic of Korea. 5 Division of Life Sciences, Korea University, 
Seoul 02841, Republic of Korea. 6 Brain Korea 21 PLUS Project for Medical 
Science, Yonsei University College of Medicine, Seoul, Republic of Korea. 
7 Department of Anatomy, Brain Research Institute, Severance Biomedical Sci-
ence Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. 
8 Research Center for Bioconvergence Analysis, Korea Basic Science Institute 
(KBSI), Ochang, Republic of Korea. 

Received: 22 December 2020   Accepted: 19 February 2021

https://doi.org/10.1186/s13041-021-00756-z
https://doi.org/10.1186/s13041-021-00756-z


Page 5 of 5Jin et al. Mol Brain           (2021) 14:39 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

References
	1.	 Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 

2000;113(Pt 11):1851–6.
	2.	 Ey E, Bourgeron T, Boeckers TM, Kim E, Han K. Editorial: Shankopathies: 

Shank protein deficiency-induced synaptic diseases. Front Mol Neurosci. 
2020;13:11. https​://doi.org/10.3389/fnmol​.2020.00011​.

	3.	 Han K, Holder JL Jr, Schaaf CP, Lu H, Chen H, Kang H, et al. SHANK3 over-
expression causes manic-like behaviour with unique pharmacogenetic 
properties. Nature. 2013;503(7474):72–7. https​://doi.org/10.1038/natur​
e1263​0.

	4.	 Cajigas IJ, Will T, Schuman EM. Protein homeostasis and synaptic 
plasticity. EMBO J. 2010;29(16):2746–52. https​://doi.org/10.1038/emboj​
.2010.173.

	5.	 Jin C, Kim S, Kang H, Yun KN, Lee Y, Zhang Y, et al. Shank3 regulates striatal 
synaptic abundance of Cyld, a deubiquitinase specific for Lys63-linked 
polyubiquitin chains. J Neurochem. 2019;150(6):776–86. https​://doi.
org/10.1111/jnc.14796​.

	6.	 Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, Pacini L, et al. 
Disruption of mTOR and MAPK pathways correlates with severity in idi-
opathic autism. Transl Psychiatry. 2019;9(1):50. https​://doi.org/10.1038/
s4139​8-018-0335-z.

	7.	 Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S, et al. Striatal transcriptome 
and interactome analysis of Shank3-overexpressing mice reveals the con-
nectivity between Shank3 and mTORC1 signaling. Front Mol Neurosci. 
2017;10:201. https​://doi.org/10.3389/fnmol​.2017.00201​.

	8.	 Jin C, Kang H, Ryu JR, Kim S, Zhang Y, Lee Y, et al. Integrative brain tran-
scriptome analysis reveals region-specific and broad molecular changes 
in Shank3-overexpressing mice. Front Mol Neurosci. 2018;11:250. https​://
doi.org/10.3389/fnmol​.2018.00250​.

	9.	 Wang L, Pang K, Han K, Adamski CJ, Wang W, He L, et al. An autism-linked 
missense mutation in SHANK3 reveals the modularity of Shank3 function. 

Mol Psychiatry. 2020;25(10):2534–55. https​://doi.org/10.1038/s4138​
0-018-0324-x.

	10.	 Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM. The local 
transcriptome in the synaptic neuropil revealed by deep sequencing 
and high-resolution imaging. Neuron. 2012;74(3):453–66. https​://doi.
org/10.1016/j.neuro​n.2012.02.036.

	11.	 Wang L, Adamski CJ, Bondar VV, Craigen E, Collette JR, Pang K, et al. 
A kinome-wide RNAi screen identifies ERK2 as a druggable regulator 
of Shank3 stability. Mol Psychiatry. 2020;25(10):2504–16. https​://doi.
org/10.1038/s4138​0-018-0325-9.

	12.	 Kelleher RJ 3rd, Bear MF. The autistic neuron: troubled translation? Cell. 
2008;135(3):401–6. https​://doi.org/10.1016/j.cell.2008.10.017.

	13.	 Hafner AS, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM. Local protein 
synthesis is a ubiquitous feature of neuronal pre- and postsynaptic com-
partments. Science. 2019. https​://doi.org/10.1126/scien​ce.aau36​44.

	14.	 Lee Y, Zhang Y, Kim S, Han K. Excitatory and inhibitory synaptic dysfunc-
tion in mania: an emerging hypothesis from animal model studies. Exp 
Mol Med. 2018;50(4):12. https​://doi.org/10.1038/s1227​6-018-0028-y.

	15.	 Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and 
autism spectrum disorders. Neuron. 2019;101(6):1070–88. https​://doi.
org/10.1016/j.neuro​n.2019.02.041.

	16.	 Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disor-
ders associated with autism and intellectual disabilities. Cold Spring Harb 
Perspect Biol. 2012. https​://doi.org/10.1101/cshpe​rspec​t.a0098​86.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fnmol.2020.00011
https://doi.org/10.1038/nature12630
https://doi.org/10.1038/nature12630
https://doi.org/10.1038/emboj.2010.173
https://doi.org/10.1038/emboj.2010.173
https://doi.org/10.1111/jnc.14796
https://doi.org/10.1111/jnc.14796
https://doi.org/10.1038/s41398-018-0335-z
https://doi.org/10.1038/s41398-018-0335-z
https://doi.org/10.3389/fnmol.2017.00201
https://doi.org/10.3389/fnmol.2018.00250
https://doi.org/10.3389/fnmol.2018.00250
https://doi.org/10.1038/s41380-018-0324-x
https://doi.org/10.1038/s41380-018-0324-x
https://doi.org/10.1016/j.neuron.2012.02.036
https://doi.org/10.1016/j.neuron.2012.02.036
https://doi.org/10.1038/s41380-018-0325-9
https://doi.org/10.1038/s41380-018-0325-9
https://doi.org/10.1016/j.cell.2008.10.017
https://doi.org/10.1126/science.aau3644
https://doi.org/10.1038/s12276-018-0028-y
https://doi.org/10.1016/j.neuron.2019.02.041
https://doi.org/10.1016/j.neuron.2019.02.041
https://doi.org/10.1101/cshperspect.a009886

	Increased ribosomal protein levels and protein synthesis in the striatal synaptosome of Shank3-overexpressing transgenic mice
	Abstract 
	Main text
	Acknowledgements
	References


