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Abstract: Repeated blood donors manifest clinical, subclinical, and biochemical signs of iron 

deficiency anemia, have significantly higher erythropoietin and vascular endothelial growth 

factor (VEGF) concentrations, and decreased tissue oxygen saturation, oxygenated tissue 

hemoglobin, and regional cerebral oxygen saturation. Erythropoietin and VEGF are potent 

retinal angiogenic factors which may initiate and promote the retinal angiogenesis process 

independently or simultaneously. Increases in circulating levels of erythropoietin and VEGF 

are proportionate to the levels of hematocrit, hypoxemia, and tissue hypoxia. It is suggested that 

higher erythropoietin production following iron deficiency anemia-induced chronic hypoxemia/

hypoxia may, hypothetically, enhance the risk of retinal angiogenesis and/or neovascularization, 

possibly by inducing hypoxia inducible factor-1 alpha, which consequently upregulates genes 

stimulating angiogenesis, resulting in formation of a new vasculature, possibly by modulation 

of signal transducer and activator of transcription 3 signaling in the retina. Implications of this 

hypothesis cover erythropoietin doping, chronic hypoxia, and hypoxemic situations, such as 

angiogenesis-related cardiac and pulmonary diseases.

Keywords: repeated blood donation, erythropoietin, retinal neovascularization, vascular 

endothelial growth factor, hypoxia

Introduction
The need for blood products is constant and unremitting.1 Only a small percentage 

of eligible individuals answer the appeal to donate. However, there is a subgroup of 

people who donate blood repeatedly. High demand for blood may have led to a bias 

towards investigations analyzing and reporting beneficial effects of blood donation, 

such as reduced risk of myocardial infarction,2,3 improved rheological properties,4,5 and 

blood lipid-lowering effects.6 Overstressing any beneficial health effect might trigger 

the eagerness of blood donors, especially considering the fact that in some countries 

these people are appreciated in many ways (for example, being shown on television). 

This may spark an extreme desire to donate blood repeatedly among multitime donors. 

Also, blood donors might be categorized to include healthy people and ill people who, 

for whatever reason, think they should or have been advised to donate blood. For 

example, there is a widespread belief that blood donation improves blood coagulation 

in diabetics and in smokers. While these ideas might be true, this should not lead to a 

situation where the decision to donate blood becomes obsessive.

It would not be surprising if a disease with low prevalence but high severity, such 

as retinal angiogenesis and/or retinal neovascularization, was underdiagnosed in a 

very small group of repeated blood donors if there were no structured items included 
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in a donor medical questionnaire, or if ophthalmological 

observations are not considered when providing preliminary 

data to be analyzed prospectively or retrospectively. Impor-

tantly, this is likely to happen because there is currently no 

hypothesis proposing a link between them.

To the best of the author’s knowledge, any detrimen-

tal effects of repeated blood donation on erythropoiesis 

counterbalance the risk of induced retinal hypoxia, and its 

subsequent possible effects on retinal angiogenesis and/or 

retinal neovascularization in humans have been overlooked 

to date. This review suggests that repeated blood donors 

might be physiologically at increased risk of ocular altera-

tions. This personal view may have relevant applications 

in other angiogenesis-related disorders. If this theory is 

proven, a simple and inexpensive prophylactic measure can 

be provided for multitime blood donors. Also, eligibility 

and deferral criteria for this special group should be revis-

ited if proven. An extensive search for evidence concerning 

a possible relationship between repeated blood donation 

and retinal alteration included the CENTRAL, MEDLINE, 

EMBASE, CINAHL, ERIC, Informit, and JST databases, 

as well as gray literature and trial registries from inception 

to May 2011. Key search terms included “carcinogenesis”, 

“angiogenesis”, “vascularization”, “retina”, “blood 

donation”, “erythropoietin”, “vascular endothelial growth 

factor”, and “hypoxia inducible factor-1 alpha”.

Erythropoietin, blood donation,  
and the retina
The discovery that erythropoietin and its receptor play a sig-

nificant biological role in tissues outside of the hematopoietic 

system has fueled significant interest in erythropoietin as a 

novel cytoprotective agent in both neuronal and vascular 

systems.7 In addition to the kidney, which is the main site of 

production in the adult, additional organs and cells, includ-

ing the liver, uterus, endothelial cells, vascular smooth 

muscle cells, and insulin-producing cells have been found 

to secrete erythropoietin.7,8 The erythropoietin receptor 

(EPOR) is expressed by a variety of cells, including neurons, 

microglia, astrocytes, and cerebral endothelial cells, myelin 

sheaths on human peripheral nerves, and the neural retina 

of the eye.9–11

EPOR is a member of the type 1 cytokine recep-

tor family which modulates cell growth, apoptosis, and 

differentiation.12,13 Erythropoietin shows angiogenic activ-

ity in EPOR-expressing vascular endothelial cells, which 

stimulate proliferation, migration, and angiogenesis.14 

Furthermore, EPOR is upregulated in a variety of solid 

malignant neoplasms.13,15 In the pterygium stroma, a variety 

of endothelial cells forming vascular cavities has shown cyto-

plasmic immunoreactivity for EPOR. In normal conjunctival 

epithelium, a few basal cells showed weak homogeneous 

immunoreactivity for EPOR in the cytoplasm. The number 

of EPOR-expressing epithelial cells was much higher in the 

pterygium compared with the normal conjunctiva. EPOR 

expression was marginally detected in stromal microvessels 

of the normal conjunctiva. However, immunoreactivity for 

erythropoietin was not noted in the pterygium epithelium 

and stroma, or in normal conjunctiva, suggesting that the 

erythropoietin-independent EPOR-signaling pathway plays 

a potential role in cell proliferation and angiogenesis in the 

human pterygium.16

In healthy humans, erythropoiesis counterbalances the 

continuous removal of aged red blood cells. Erythropoietin is 

the main growth factor responsible for regulation of red blood 

cell production in steady-state conditions and for enhancing 

the rate of production of red blood cells whenever blood 

loss or hemolysis occurs, and is considered to be the main 

hormone that controls erythropoiesis.17,18 For example, small 

decreases in hematocrit as would be typical after a situation 

such as presurgical autologous blood donation often do not 

result in increased erythropoietin levels or in compensatory 

erythropoiesis.19 However, this might be different in the case 

of repeated blood donation and/or phlebotomy.

The effect of repeated phlebotomy on serum immu-

noreactive erythropoietin levels studied prospectively in 

autologous blood donors has shown an increase in the level 

of serum immunoreactive erythropoietin with successive 

phlebotomies.20 Maeda et  al evaluated endogenous serum 

erythropoietin levels in normal subjects after a single 400 mL 

phlebotomy. The subjects were followed up for 56 days. The 

hemoglobin values of both males and females decreased to 

a nadir on days 3–7 post-phlebotomy. Hemoglobin values 

gradually increased, but did not completely recover to pre-

phlebotomy levels by day 56. Serum erythropoietin levels 

increased at six hours post-phlebotomy to 20.1 ± 5.4 mU/mL 

in males and to 20.7 ±  7.0 mU/mL in females from pre-

phlebotomy levels of 14.6  ±  4.0  mU/mL in males and 

13.4 ± 4.1 mU/mL in females, respectively.21

Duda et  al studied the effect of exercise performed 

before and 24 hours after withdrawal of 450 mL of blood 

on serum erythropoietin levels in 12  male subjects aged 

23.2 ± 2.6 years with a body mass index of 23.6 ± 2.1 kg/m2 

and VO
2 max

 of 2937 ± 324 mL/min. Withdrawal of 450 mL 

of blood within 24 hours significantly increased the serum 

erythropoietin concentration. The subjects performed an 
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incremental exercise test until exhaustion twice, separated 

by a period of about 7–10 days. The second test was per-

formed 24 hours after withdrawal of 450 mL of blood. In 

the control study, no effect of incremental exercise on serum 

erythropoietin concentration was seen, which amounted to 

14.24 ± 7.66 mU/mL at rest and 14.97 ± 6.07 mU/mL at the 

end of the incremental test. During the experiment performed 

24 hours after withdrawal of 450 mL of blood, the serum 

erythropoietin concentration at rest was significantly elevated 

(P , 0.01) in relation to the control measurement (amounting 

to 24.85 ±  13.60 mU/mL) and, at the end of incremental 

exercise, a tendency towards further elevation (P = 0.09) in 

erythropoietin concentration up to 28.32 ± 14.51 mU/mL 

was observed.22

In another study, Bofill et  al investigated whether the 

presence of type 2 diabetes mellitus influences the eryth-

ropoietin response to repeated phlebotomies in normal 

subjects. Subjects were aged 43–79 years, with a mean age 

of 64.8 ± 8.8 years in diabetic patients and 65.0 ± 6.1 years 

in controls. As a group, the diabetic patients donated a mean 

of 2.71 ± 0.70 (range 1–4) blood units and control patients 

donated a mean of 3.14  ±  0.65 (range 2–5) blood units. 

These differences were statistically significant (P , 0.05), 

representing 12.1% less blood being predonated in diabetic 

patients. Serum erythropoietin levels in controls increased 

uniformly between 1.5-fold and 3.2-fold from initial values, 

but changes in diabetic patients ranged from no increase in 

four patients to a 12-fold increase in one patient.23

Higher whole blood and plasma viscosity has been cor-

related with several ocular disorders, including age-related 

macular degeneration,24,25 retinal vein thrombosis,26 and 

retinal neovascularization.24,26,27 In a study by Meada et al,21 

erythropoietin levels after a single 400  mL phlebotomy 

continued to increase to peak levels of 25.5 ± 6.3 mU/mL 

in males and 28.7 ± 11.5 mU/mL in females on days 7–14 

and thereafter decreased until day 56.

What does this observation suggest? Although blood 

donation has been shown to reduce viscosity,28 it is possible 

that successive blood donations chronically increase eryth-

ropoietin levels and upregulate EPOR. Although it is usually 

considered that blood donation improves blood viscosity, 

this might be an immediate effect, and longitudinal data are 

needed to compare single versus repeated blood donation. 

However, considering the enhancing effect of blood donation 

on serum erythropoietin until day 56, it is possible that blood 

viscosity might actually be increased in the long term, and 

thus interactions with different severity in different people in 

different physiologic or pathologic situations would be likely. 

This view by no means negates the possibility that elevated 

erythropoietin might trigger retinal angiogenesis without 

modulating blood viscosity. Trials are warranted to compare 

erythropoietin levels in first-time blood donation versus 

repeated blood donation.

The author knows of no direct evidence of higher EPOR 

expression in repeated blood donors. However, a study in 

children with acute lymphoblastic leukemia showed that 

ectopic expression of ETV6/RUNX1 induced upregulation 

of EPOR. However, anemia did not appear to influence 

EPOR expression on leukemic cells, although children 

with ETV6/RUNX1-positive leukemias had a lower median 

hemoglobin than controls.29 It remains to be elucidated 

whether repeated blood donation upregulates EPOR 

expression in the human retina.

VEGF, blood donation, and the 
retina
VEGF is expressed in human retina and choroid30 as well as 

sickle cell and choroid,31 and its expression precedes retinal 

neovascularization in the retina and optic nerve.32 VEGF 

mediates tissue hypoxia-induced vasculoangiogenesis, 

hematopoiesis,33 and erythropoiesis.34 Low hemoglobin is 

associated with increased serum levels of VEGF in cancer 

patients,35 and it has been suggested that anemia might 

increase the progression of angiogenesis in malignant and 

benign tumors.35,36

Kawamura et al examined the effect of controlled phle-

botomy on blood flow in an ischemic mouse leg model, in 

which 200 µL of blood were drawn from the tail vein once a 

week. After four weeks, blood flow in the ischemic leg was 

significantly better in the phlebotomy group, and capillary 

density was significantly higher. Repeated phlebotomies 

increased serum erythropoietin levels, as well as expression 

of hypoxia inducible factor-1 alpha (HIF-1α) and VEGF, and 

both expression and activity of Akt and endothelial nitric 

oxide synthase in ischemic legs. Repeated phlebotomies 

resulted in increased blood flow in ischemic legs via an angio-

genic action that involved the Akt/endothelial nitric oxide 

synthase pathway, endothelial progenitor cell mobilization, 

and their complicated cross-talk.37

Hypoxia/hypoxemia, blood donation, 
and the retina
Iron homeostasis alterations leading to hypoxia has been 

implicated in the regulation of VEGF transcription.38 

Production of VEGF and basic fibroblast growth factor is 

stimulated in hypoxic patients with exacerbated chronic 
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obstructive pulmonary disease, and elevated levels of VEGF 

and basic fibroblast growth factor activate the process of 

neoangiogenesis.39 VEGF and basic fibroblast growth factor 

augment proliferation of retinal pigment epithelium (REP) 

and pericytes, especially under hypoxia, and it has been 

proposed that these two cytokines have a synergistic effect 

at several stages of angiogenesis in the retina.40

Systemic hypoxemia (lung or heart disease) or a vascular 

disease of the retina can cause retinal hypoxia. Oxygen plays 

the key role in stabilizing HIF-1α and its function. When 

the oxygen tension is normal, HIF-1α is rapidly oxidized 

by hydroxylase enzymes, but when cells become hypoxic, 

HIF-1α escapes degradation and starts to accumulate, 

triggering activation of a large number of genes, including 

VEGF and erythropoietin. HIF-1α has been shown both clini-

cally and experimentally to have a mediating or contributing 

role in several oxygen-dependent retinal diseases, and this 

subject has been reviewed elsewhere.41

Jeger et al investigated whether clinically relevant blood 

loss of 500 mL from healthy volunteers can be detected by 

changes in tissue oxygen saturation after a standardized 

ischemic event. They performed occlusion of the brachial 

artery for three minutes in 20 healthy female blood donors 

before and after blood donation. Tissue oxygen saturation 

and total oxygenated tissue hemoglobin were measured 

continuously at the thenar eminence. Ten healthy volunteers 

were assessed in the same way to examine whether repeated 

vascular occlusion without blood donation exhibits time-

dependent effects. Blood donors had a median age of 30.5 

(range 19–62) years. Their median body mass index was 21 

(range 18–23.5) kg/m2. Median blood volume was estimated 

to be 70 mL/kg body weight or 4060 (range 3500–4550) mL. 

Median capillary hemoglobin was 139 (range 127–157) g/L. 

This was measured once immediately after arrival at the 

blood donation service. In the control group, the median 

age was 23 (range 22–25) years. Median body mass index 

was 21 (range 19–23) kg/m2. Median blood volume was 

4165 (range 3500–4480) mL. Blood donation caused a 

substantial decrease in systolic blood pressure, but did not 

affect resting tissue oxygen saturation and oxygenated tis-

sue hemoglobin values. No changes were seen in the blood 

donor group with regard to the vascular occlusion test, but 

in the control group there was an increase in the oxygenated 

tissue hemoglobin rate of recovery during the reperfusion 

phase. The authors concluded that tissue oxygen saturation 

measured at the thenar eminence is insensitive to blood loss 

of 500 mL, but blood loss greater than this would probably 

lead to detectable changes.42

Because the retina is a part of the neural system, it 

would be interesting to consider the effect of blood dona-

tion on regional cerebral oxygenation and cerebral blood 

volume. In 50 healthy blood donors who donated 450 mL 

of whole blood within 4–9  minutes, changes in regional 

cerebral oxygen saturation and cerebral tissue hemoglobin 

concentration were measured. Within the study group, 

regional cerebral oxygen saturation decreased by 0.44% 

(P , 0.01) on average during blood donation, which is still 

within the range of individual physiologic baseline variation. 

The average venous hemoglobin concentration decreased 

significantly by 4.6%, whereas cerebral tissue hemoglobin 

concentration increased significantly by 2.5% and cerebral 

blood volume by 7.%. An increase in cerebral blood volume 

indicates cerebral vasodilation, which seems to be the major 

compensatory mechanism during acute blood loss. The 

decrease in regional cerebral oxygen saturation was relatively 

small, indicating that cerebral oxygenation was maintained 

within the physiologic range.43 However, it is noteworthy 

that a state of anemia and iron deficiency exists in repeated 

blood donors.44,45 Iron deficiency may thus enhance expres-

sion of HIF-1α,46–49 which consequently upregulates genes 

stimulating angiogenesis, resulting in the formation of a new 

vasculature in the retina.50,51

With regard to how hypoxia may be causally related to 

iron deficiency, Smith et al investigated whether increasing or 

decreasing iron availability modifies altitude-induced hypoxic 

pulmonary hypertension. They conducted two randomized, 

double-blind, placebo-controlled trials. In the first one, 

22 healthy men aged 19–60 years resident at sea level were 

studied over one week of hypoxia at an altitude of 4340 m. 

In the second study, 11 men aged 30–59 years resident at 

high altitude and diagnosed with chronic mountain sickness 

were studied over one month of hypoxia at the same altitude. 

In the first protocol, participants received intravenous infu-

sions of Fe(III)-hydroxide sucrose 200  mg or placebo on 

the third day of hypoxia. In the second protocol, patients 

underwent staged isovolemic venesection of 2 L of blood. 

Two weeks later, the patients received intravenous infusions 

of Fe(III)-hydroxide sucrose 400  mg or placebo, which 

were subsequently crossed over. In the sea-level residents, 

approximately 40% of the pulmonary hypertensive response 

to hypoxia was reversed by infusion of iron, which reduced 

pulmonary artery systolic pressure by 6 mmHg (95% con-

fidence interval [CI] 4–8  mmHg), from 37  mmHg (95% 

CI 34–40  mmHg) to 31  mmHg (95% CI 29–33  mmHg; 

P = 0.01). In the chronic mountain sickness group, progres-

sive iron deficiency induced by venesection was associated 
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with an approximately 25% increase in pulmonary artery 

systolic pressure of 9 mmHg (95% CI 4–14 mmHg), from 

37 mmHg (95% CI 30–44 mmHg) to 46 mmHg (95% CI 

40–52 mmHg; P = 0.003). It was concluded that hypoxic 

pulmonary hypertension may be attenuated by iron supple-

mentation and exacerbated by iron depletion.52

The amount of blood donated by multitime donors is 

higher than by first-time blood donors, and both direct and 

indirect evidence42,43,52 suggests that there might be a level 

of tissue hypoxia in multitime donors because of a chronic 

state of anemia.

Anemia, erythropoietin, and VEGF
Increases in circulating levels of erythropoietin are propor-

tional to the levels of tissue hypoxia, which are influenced by 

hematocrit,53 and there are several papers reporting that ane-

mic patients have elevated levels of VEGF, which is a marker 

of tissue hypoxia.36,54 In a prospective study, plasma VEGF 

levels were measured prospectively in three groups of infants 

suspected of requiring red blood cell transfusions to find a 

vascular endothelial growth factor cutoff value indicative of 

tissue hypoxia. The three groups were acutely anemic (an 

episode of acute bleeding [hematocrit drop . 5%] per day), 

chronically anemic (hematocrit drop , 5% per day), and non-

transfused (hematocrit drop , 5% per day) but not meeting 

the clinical criteria for a transfusion. VEGF concentrations 

were lower in the acutely anemic infants than in the chroni-

cally anemic infants, but erythropoietin levels did not differ 

between these groups. The VEGF concentration was ,140 

pg/mL in all acutely anemic infants, and this was deemed to 

be the threshold level indicating sufficient tissue oxygenation 

in subsequent analysis. Interestingly, 30% of the chronically 

anemic infants had VEGF levels . 140 pg/mL.54

In patients with untreated locoregionally confined solid 

cancers of the head and neck, cervix, rectum, and lung, and 59 

additional patients without malignant disease (36 nonanemic 

patients without serious disease and 23 patients with renal 

anemia) it was shown that plasma levels of VEGF were 

16.2 ± 12.7 pg/mL in 36 nonanemic patients without malig-

nant disease, 49.2 ± 34.5 pg/mL in 49 patients with cancer 

(P , 0.001), and 89.9 ± 67.8 pg/mL in 23 patients with renal 

anemia (P =  0.001). VEGF levels in cancer patients were 

correlated significantly with hemoglobin levels. Patients with 

cancer had higher plasma levels of VEGF than patients 

without malignant disease if hemoglobin was $12  g/dL 

(33.1 ± 17.5 pg/mL versus 16.6 ± 13.0 pg/mL, P , 0.001) than 

if hemoglobin was 11.0–11.9 g/dL (56.1 ± 26.4 pg/mL versus 

18.5 ± 14.5 pg/mL, P = 0.038). If hemoglobin was ,11 g/dL, 

plasma VEGF levels were significantly elevated in patients 

with and without cancer (67.0 ± 47.5 pg/mL versus 88.9 ± 68.8 

pg/mL). A significant association between low hemoglobin 

levels and increased plasma levels of VEGF was confirmed. 

In patients with renal anemia, changes in hemoglobin under 

erythropoietin treatment were inversely correlated with 

changes in plasma VEGF levels, with decreasing VEGF after 

an increase in hemoglobin (P = 0.01).36

Erythropoietin and VEGF interplay  
with retinal angiogenesis and 
retinopathy
It was recently shown that anemia of the newborn induces 

erythropoietin expression in the developing mouse retina.55 

Erythropoietin mRNA expression levels in the retina are 

greatly elevated during the hypoxia-induced proliferation 

phase of retinopathy in the mouse.56 A paper by Sato et al57 

confirms that the expression of ocular VEGF and erythro-

poietin are temporally linked in humans. In fact, expression 

of erythropoietin and VEGF mRNA is regulated by the same 

transcription factor, ie, HIF-1α, that binds to the cis-acting 

hypoxia-response element located in the 3′-flanking region 

of the human erythropoietin and VEGF gene.58 Like the 

proteins regulated by HIF-1α, HIF-1α activity can be pro-

tective at the right time and destructive at the wrong time. 

The right time of expression is when capillaries are present 

that are healthy enough to be protected by VEGF and eryth-

ropoietin. The wrong time is when ischemia is permanent, 

because the ischemic tissue is already expressing too much 

of these proteins.59

Takagi et  al investigated the potential role of erythro-

poietin during retinal angiogenesis in proliferative diabetic 

retinopathy. The vitreous EPO level in patients with prolif-

erative diabetic retinopathy was significantly higher than 

that in nondiabetic patients. Erythropoietin and VEGF were 

both independently associated with proliferative diabetic 

retinopathy, and erythropoietin was more strongly associated 

with proliferative diabetic retinopathy than VEGF. Blockade 

of erythropoietin inhibited retinal neovascularization in 

vivo, and inhibited endothelial cell proliferation response to 

proliferative diabetic retinopathy vitreous in vitro. Their data 

provide strong evidence that erythropoietin is a potent retinal 

angiogenic factor independent of VEGF, and is capable of 

stimulating ischemia-induced retinal angiogenesis in prolif-

erative diabetic retinopathy.60

Measurement of both erythropoietin and VEGF levels 

in the vitreous fluid of diabetic patients with proliferative 
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diabetic retinopathy has been shown to be much higher 

than that in patients without diabetes (464.0 mI/mL versus 

36.5 mI/mL, P , 0.001). The median VEGF level in patients 

with retinopathy was also significantly higher than that in 

patients without diabetes (345.0 pg/mL versus 3.9 pg/mL, 

P , 0.001). Erythropoietin and VEGF were independently 

associated with proliferative diabetic retinopathy, and 

erythropoietin was more strongly associated with the pres-

ence of proliferative diabetic retinopathy than was VEGF. 

Erythropoietin and VEGF gene expression levels are 

upregulated in the murine ischemic retina, and blockade of 

erythropoietin inhibits retinal neovascularization in vivo 

and endothelial cell proliferation in the vitreous of patients 

with diabetic retinopathy in vitro.61 Erythropoietin is a potent 

ischemia-induced angiogenic factor that acts independently 

of VEGF during retinal angiogenesis in proliferative diabetic 

retinopathy.

Chen et al investigated the inhibition of retinal eryth-

ropoietin mRNA expression with RNA interference as a 

potential strategy to suppress retinal neovascularization 

and to prevent proliferative retinopathy. They used a mouse 

model of oxygen-induced retinopathy. A small interference 

RNA (siRNA) targeting erythropoietin or control negative 

siRNA was injected intravitreally at postnatal days 12, 

14, and 15 during the hypoxic phase, and the effect on 

neovascularization was evaluated in retinal flat mounts at 

postnatal day 17. Retinal erythropoietin mRNA expression 

in the total retina was suppressed during the initial phase 

of vessel loss in retinopathy and was significantly elevated 

during the hypoxia-induced proliferative phase in all three 

neuronal layers in the retina, corresponding to an increased 

level of retinal hypoxia. EPOR mRNA expression levels 

also increased during the second neovascular phase, specifi-

cally in hypoxia-induced neovascular vessels. Intravitreous 

injection of erythropoietin siRNA effectively inhibited 

approximately 60% of retinal erythropoietin mRNA expres-

sion and considerably suppressed retinal neovascularization 

by approximately 40%.62

Evidence of retinal findings  
in anemic and hypoxic situations
In two prospective case series, it has been shown that 

retinal vascularization is affected by maternal anemia,63 

neonatal anemia,63 and the need for oxygen for more than 

48  hours.63,64 There are mounting case reports of ocular 

alterations in anemic or hypoxemia situations, such as reti-

nal vasculopathy,65 peripheral retinal neovascularization in 

Fanconi anemia,66 sickle cell hemoglobin C retinopathy,67 

or idiopathic polypoidal choroidal vasculopathy and sickle 

cell retinopathy,68 branch retinal artery occlusion,69 retinal 

cotton wool spots and preretinal hemorrhages,70 unusual 

morphological features of intraretinal and preretinal 

neovascularization and of chorioretinal lesions in sickle 

cell retinopathy,71 peripheral retinal neovascularization in 

sarcoidosis and sickle cell anemia,72 and central retinal vein 

occlusion and nonarteritic ischemic optic neuropathy.70 

Blood et al described a retinopathy secondary to anemia from 

myeloid metaplasia in polycythemia vera.73 It is noteworthy 

that Fanconi anemia is characterized by high levels of serum 

erythropoietin as well as serum ferritin.74,75 A full review of 

numerous case reports of retinal alterations in anemia would 

be beyond the scope of this paper, and interested readers may 

refer to medical sources.

Relationship between 
erythropoietin and retinopathies
Diabetic retinopathy
The retinal angiogenic potential of erythropoietin in 

humans exacerbates proliferative diabetic retinopathy.76,77 

Diskin et al examined whether severity and progression of 

diabetic retinopathy could be accelerated by administra-

tion of rhEPO to patients with chronic renal failure. There 

was significantly greater deterioration of retinopathy after 

one year in the patients who had received erythropoietin 

(P = 0.004). The prevalence and severity of proliferative 

retinopathy appeared to have increased and was most closely 

associated with erythropoietin dosing.76 The erythropoietin 

vitreous concentration in the patients with proliferative 

diabetic retinopathy (512 [range 120–880] mU/mL) was 

significantly higher than in the patients with retinal detach-

ment, preretinal macular membranes, and macular holes 

(25.1 [range 5.2–201] mU/mL, P  ,  0.001).78 Also, the 

vitreous erythropoietin level was upregulated in eyes with 

proliferative vitreoretinopathy.79

Retinopathy of prematurity
Both early erythropoietin80 and late erythropoietin81,82 treat-

ment increases the risk of retinopathy of prematurity.  There 

is a consensus that rhEPO is a significant independent risk 

factor for the development of retinopathy of prematurity.57,80–87 

It has been suggested that the timing of rhEPO treatment 

during different stages of retinopathy is likely critical for 

determining its beneficial or destructive role in retinopathy 

of prematurity,88 and may explain the discrepancies seen in 

some studies.
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Oxygen-induced retinopathy and 
neovascularization
Chen et al studied the role of erythropoietin in a mouse model 

of retinopathy characterized by oxygen-induced vascular 

loss followed by hypoxia-induced pathological neovascu-

larization for the first time. Without treatment, local retinal 

erythropoietin levels were suppressed during the vessel loss 

phase. Administration of exogenous erythropoietin pre-

vented both vessel dropout and subsequent hypoxia-induced 

neovascularization. Early use of erythropoietin also protected 

against hypoxia-induced retinal neuron apoptosis. In contrast, 

retinal erythropoietin mRNA levels were highly elevated 

during the retinopathy neovascular phase. Exogenous late 

erythropoietin treatment did not protect the retina, but rather 

enhanced pathological neovascularization. The early protec-

tive effect of erythropoietin occurred through both systemic 

retinal recruitment of proangiogenic bone marrow-derived 

progenitor cells and activation of prosurvival NF-κB via 

erythropoietin receptor activation on retinal vessels and 

neurons. Early retinal erythropoietin suppression contributed 

to retinal vascular instability, and elevated erythropoietin 

levels during the proliferation stage contributed to neovas-

cularization and disease.89

It has been shown that the vitreous erythropoietin 

level is upregulated in eyes with rhegmatogenous retinal 

detachment.77–79,90 Anterior segment ischemia is a dreaded 

complication of retinal detachment. Conditions of relative 

hypoxia, such as sickle cell anemia91 and sickle cell hemoglo-

binopathy anemia,92 may precipitate vaso-occlusive phenom-

ena in retinal detachment. While tissue hypoxia secondary 

to the anemia in these patients with sickle cell anemia may 

play a role, it is also likely that direct vascular occlusion and 

endothelial damage from interaction with abnormal hemo-

globin tactoids also play a major role in retinopathy.

Hypothesis linking repeated blood  
donation to retinal angiogenesis
Previous studies have shown that maternal anemia in early 

pregnancy influences the pattern of placental vascularization,93 

and that maternal iron deficiency anemia may trigger a cas-

cade of pathophysiological processes, involving alterations 

in placental angiogenesis,94 chronic placental hypoxemia, 

and oxidative stress apoptosis.95 In adults with cyanotic 

congenital heart disease (n = 4, 27–47 years of age, mean 

systemic arterial oxygen saturation 77% [range 71%–81%] 

and mean hematocrit 64.5% [range 53.7%–69.5%]), retinal 

vascular tortuosity was increased, but no patient had ocular 

symptoms, and all eyes had good visual acuity. Increased 

retinal vascular tortuosity, which appears to be prevalent 

in adults with cyanotic congenital heart disease, is likely 

to be in response to hypoxemia and erythrocytosis because 

normalization of the retinal vascularity patterns after surgical 

relief of cyanosis resulted in resolution of hypoxemia and 

erythrocytosis.96

Shortt et al tested the hypothesis that chronic systemic 

hypoxia leads to angiogenesis in the adult retinal circulation 

in the absence of pre-existing vascular disease. Adult male 

Sprague-Dawley rats (n = 9) were exposed to a fraction of 

inspired oxygen of 0.10 for two weeks while control animals 

(n = 10) were exposed to room air. Chronic systemic hypoxia, 

in the absence of other pathological processes, caused angio-

genesis in the adult rat retina and provided an in vivo model 

for investigating this important process in the adult retina, 

in particular pathways specific to this tissue.97

To provide a possible mechanism by which repeated blood 

donation might enhance the risk of retinal neoangiogenesis 

and/or neovascularization, it might be helpful to mention the 

results of a study that was carried out to investigate the mecha-

nisms of adaptive response of the heart to long-term anemia 

induced by iron deficiency. Weanling Sprague-Dawley rats 

were fed an iron-deficient diet for 20 weeks to induce iron defi-

ciency anemia. The iron-deficient diet initially induced severe 

anemia, which resulted in left ventricular hypertrophy and dila-

tion with preserved systolic function associated with increased 

serum erythropoietin concentration. Cardiac signal transducer 

and activator of transcription 3 (STAT3) phosphorylation and 

VEGF gene expression increased by 12 weeks of iron deficiency 

anemia, causing angiogenesis in the heart. Thereafter, sustained 

iron deficiency anemia induced upregulation of cardiac HIF-1α 

gene expression and maintained upregulation of cardiac VEGF 

gene expression and cardiac angiogenesis. However, sustained 

iron deficiency anemia promoted cardiac fibrosis and lung 

congestion, with decreased serum erythropoietin concentration 

and cardiac STAT3 phosphorylation after 20 weeks of iron 

deficiency anemia compared with 12 weeks.47

STAT3 is an angiogenic factor and is expressed in the 

human retina. It has been shown that erythropoietin treatment 

may offer a unique dual-function strategy for neuroprotection 

and regeneration of retinal ganglion cells. Erythropoietin 

induced STAT3 phosphorylation in retinal ganglion cells, 

and inhibition of Jak2/STAT3 abolished erythropoietin-

induced growth. Erythropoietin-facilitated neuritogenesis 

was paralleled by upregulation of Bcl-X, a Bcl-2 homolog 

capable of promoting retinal ganglion cell regeneration. 

The PI3 K/Akt pathway was also involved in antiapoptotic 
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and regeneration-enhancing erythropoietin actions.98 Also, 

VEGF rapidly induces STAT3 tyrosine phosphorylation and 

nuclear translocation in retinal microvascular endothelial 

cells.99 STAT3 expression has been shown to be enhanced 

in hypoxia.100 Thus, it is possible that erythropoietin-induced 

and/or VEGF-induced STAT3 tyrosine phosphorylation is 

partly responsible for the retinal alterations in iron deficiency 

anemia and possibly in repeated blood donors.

Conclusion
Indirect evidence of enhanced erythropoietin production fol-

lowing repeated phlebotomy,20,23 single 400 mL phlebotomy,21 

and single 450 mL blood donation,22 together with findings 

of decreased hepcidin levels in superdonors,101 suggests 

decreased tissue oxygen saturation and oxygenated tissue 

hemoglobin values in repeated blood donors,42 decreased 

regional cerebral oxygen saturation (almost by half) after a 

single 450 mL blood donation,43 and enhanced VEGF pro-

duction in hypoxic situations,39 suggesting the possibility of 

existence of a chronic hypoxia and or hypoxemia in repeated 

blood donors, especially considering the fact that the primary 

stimulus for increasing erythropoietin synthesis is tissue 

hypoxia resulting from reduced blood oxygen availability.8,102 

Such a chronic hypoxia and/or hypoxemia status in repeated 

blood donors may induce HIF-1α expression, which in turn, 

might upregulate genes stimulating angiogenesis, resulting 

in the formation of a new vasculature.50,51

A linkage between repeat blood donation and retinal 

proliferation is possible, and further studies should be 

undertaken to see if changes in guidelines are required. This 

personal view does not negate the health effects of blood 

donation. Rather, it raises a question about ocular safety in 

multitime blood donors. Gathering and analyzing data on 

retinal findings from these people, either retrospectively or 

prospectively, might yield preliminary safety information, as 

well as those who donate blood for humanitarian reasons.
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