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Metabolic inflexibility, defined as the inability to respond or adapt to metabolic demand,
is now recognised as a driving factor behind many pathologies associated with obesity
and the metabolic syndrome. Adipose tissue plays a pivotal role in the ability of an organ-
ism to sense, adapt to and counteract environmental changes. It provides a buffer in
times of nutrient excess, a fuel reserve during starvation and the ability to resist cold-
stress through non-shivering thermogenesis. Recent advances in single-cell RNA
sequencing combined with lineage tracing, transcriptomic and proteomic analyses have
identified novel adipocyte progenitors that give rise to specialised adipocytes with
diverse functions, some of which have the potential to be exploited therapeutically. This
review will highlight the common and distinct functions of well-known adipocyte popula-
tions with respect to their lineage and plasticity, as well as introducing the most recent
members of the adipocyte family and their roles in whole organism energy homeostasis.
Finally, this article will outline some of the more preliminary findings from large data sets
generated by single-cell transcriptomics of mouse and human adipose tissue and their
implications for the field, both for discovery and for therapy.

Introduction
The dramatic rise in the incidence of metabolic disease has promoted a major increase in adipose
tissue research over the last decade. The loss of metabolic flexibility in lipid-storing tissues is a driving
force behind complications in obesity, type II diabetes and cardiovascular disease that together con-
tribute to the metabolic syndrome, one of the leading causes of death worldwide [1–3]. Whilst dietary
intervention and promotion of an active lifestyle remain arguably the most effective preventative mea-
sures to combat these diseases, access to high-calorie, nutrient-poor foods and an increasingly seden-
tary societal infrastructure are increasing the demand for alternative therapeutic approaches. Previous
efforts aimed at developing drugs to treat aspects of the metabolic syndrome focused on reducing
caloric intake, both through appetite suppression and restricting absorption of lipids and carbohy-
drates in the gut. More recent efforts have begun to approach the problem from the other side of the
energy-balance scale, through increasing metabolic rate.
At the forefront of this research is the promotion of adipose tissue-mediated thermogenesis, both in

classical brown adipose tissue (BAT) and through the formation of brown-like adipocytes in white
adipose tissue (WAT) depots. Whilst the ability to induce brown adipose characteristics in white adi-
pocytes is now widely accepted, little is understood about the origin of these cells, and even less so the
importance of their origin to their function. Advances in RNA sequencing technology has provided
evidence for the existence of multiple adipocyte subtypes, defined not merely by morphology, but by
their cellular origin and ability to adapt to metabolic stress. Lineage tracing has allowed us to begin to
dissect the heterogeneity of adipose depots, with some proving to be far more complex than previously
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anticipated. Combining these powerful techniques, together with complimentary -omics, substrate labelling and
advanced imaging strategies, has brought adipocyte biology to the forefront of metabolic research.
These exciting findings, though in their infancy, raise an important question deserving of investigation; does

lineage contribute to the function and plasticity of an adipocyte? This article will discuss the structural and
functional characteristics of both classical and novel adipocyte subtypes, their developmental origin and how
these may come together to regulate whole organism energy homeostasis. The therapeutic potential of these
different cell types is yet to be determined, but with an increasing interest in the adipocyte field from both
basic and translational perspectives, the next decade of adipocyte research is well placed to deliver exciting new
findings.

Adipocytes: masters of energy homeostasis
Until recently, white adipocytes were thought of as metabolically inert lipid storage cells, and were often
referred to simply as fat cells. Now it is recognised that adipocytes encompass a highly heterogeneous, plastic
and metabolically active diverse array of cell types. Adipocytes are found both in discrete depots and inter-
spersed in other organs. Different types of adipocytes can be distinguished according to their appearance
(colour) together with their gross cellular characteristics (e.g. number of mitochondria, size and number of
lipid droplets). In many cases, this classification is used to assign different functional attributes, such as
thermogenesis. We now appreciate that there are different adipocyte precursor cells with distinct lineages and
that these lead to adipocyte cell types with discrete and varying functions. This newly gained understanding
raises important questions regarding the relationship between adipocyte cell lineage and function, and opens
up avenues for therapeutically targeting specific populations of adipocytes as a way to treat metabolic disorders,
such as obesity and type 2 diabetes.

White adipose tissue: beyond lipid storage
Classical white adipocytes are unilocular, containing one large lipid droplet serving as a store for triglycerides,
with the capacity to expand and contract in response to energy demand [4,5]. WAT depots are distributed
throughout the body, with nomenclature differing between species and confusingly, sometimes between indi-
vidual studies. In rodents, visceral (trunk) depots include the perigonadal (pgWAT), retroperitoneal (rWAT)
and mesenteric (mWAT). Subcutaneous adipose depots (scWAT) are divided into the anterior subcutaneous
(asWATs), namely the interscapular and axillary WATs, and the inguinal WAT (iWAT) located dorsally,
attached to the hindlimb and pelvis [4,6]. These rodent depots and their counterparts in humans are outlined
in Figure 1. White adipocytes are also found dispersed in the periphery, with smaller discreet depots including
intramuscular [7–9] and dermal [10–12] adipocytes now emerging as important local regulators of tissue func-
tion. Depot-specific responses to metabolic alterations caused by diet, age, hormone signalling and disease have
been reported, with an increase in visceral adipose mass associated with metabolic disease [13–18]. In contrast,
an increase in scWAT correlates with a reduced disease risk [14]. Insights such as these suggest functional dif-
ferences exist between populations of white adipocytes, influenced by their ability to respond to external
stimuli. Thus, an understanding of the origin of individual adipocyte populations within each depot and their
respective function will increase our understanding of their contribution to health and disease.
A common function of WAT, regardless of anatomical location, is to store and release triglycerides in

response to whole body energy demand [13,18–22]. Retrieval of stored lipids is facilitated by a layer of specia-
lised lipid-associated proteins from the perilipin family [23], enabling recruitment of hormone sensitive lipase
(HSL), adipose triglyceride lipase (ATGL) and monoacylglycerol lipase (MAGL) to catalyse lipid breakdown
[24] 1. The existence of perilipin 1 in association with lipid droplets in white adipocytes serves to restrict lipoly-
sis under basal conditions, as well as to create a barrier between otherwise toxic lipid species with surrounding
cells [23]. Loss of perilipin 1 leads to increased basal lipolysis, inflammatory cell recruitment denoted by forma-
tion of crown-like structures, and ultimately cell death. Several inflammatory stimuli, including tumour necrosis
factor α (TNFα) and interleukin 6 (IL6), contribute to increased immune cell infiltration and loss of perilipin 1
in obese individuals, resulting in impaired lipolysis and triglyceride storage in WAT [25,26]. Loss of adipocyte
plasticity under these conditions drives peripheral lipid accumulation and contributes to the development of
systemic insulin resistance. Preservation of lipid droplet integrity and reduction in pro-inflammatory cytokine

1For ease of reading, throughout this review, protein and gene names will be depicted in uppercase regardless of species.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).2072

Biochemical Journal (2020) 477 2071–2093
https://doi.org/10.1042/BCJ20200298

https://creativecommons.org/licenses/by/4.0/


release in WAT is therefore critical for the maintenance of normal white adipocyte function, extensively
reviewed in [23].
In addition to lipid storage, white adipocytes contribute to whole organism energy homeostasis through the

production and secretion of endocrine and paracrine factors, and are themselves sensitive to extracellular sig-
nalling [19,27–29]. Insulin, a central regulator of carbon deposition and metabolism, drives glucose uptake in
adipocytes and stimulates fatty acid synthesis through increased expression of fatty acid synthase (FAS)
[16,17,27]. In cell culture, and in vivo, insulin drives the adipogenic gene programme in adipocyte precursors,
through the stimulation of sterol regulatory element-binding protein (SREBP)-1c [30] and up-regulation of the
master regulator of adipogenesis peroxisome proliferator-activated receptor gamma (PPARγ) via mammalian
target of rapamycin complex 1 (mTORC1) activation [31–33]. Insulin/IGF1 (insulin-like growth factor 1)
knockout (KO) mice display significant reduction in adipose tissue mass with defective basal thermogenic cap-
acity [33]. Expression of the insulin receptor (INSR) and intact IGF-1 signalling are therefore critical for the
commitment of adipocyte stem cells to adipogenesis and for the maintenance and function of mature adipose
tissue [33]. Variations in insulin sensitivity within adipocyte precursor populations is one of several proposed

Figure 1. Anatomical location of adipose tissue depots.

The locations of different depots of brown (BAT), subcutaneous and visceral white adipose tissue (WAT) in mice and humans is

shown.
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determinants of lineage and cell fate. Deletion of tumour suppressor phosphatase and tensin homologue
(PTEN), the negative regulator of insulin/phosphatidylinositol 3-kinase (PI3K) growth stimulating pathways, in
a subset of adipocyte precursors, leads to aberrant signalling independent of ligand binding [34,35]. The result-
ing increase in glucose transport provides a metabolic advantage in targeted cells, driving proliferation, hyper-
trophy and redistribution of adipose mass. Insulin is just one of several factors implicated in the organisation
and selective proliferation of adipocyte precursors. Alterations in adipocyte-derived cytokines (adipokines),
including leptin, adiponectin and TNFα are common under obesogenic conditions [16,36–45], causing changes
in food intake, impaired satiety response and chronic inflammation [1,46–52]. Infiltration of pro-inflammatory
immune cell populations, forming distinctive crown-like structures [53], is a hallmark of obesity and is often
associated with onset of insulin resistance, diabetes and loss of metabolic flexibility. The role of WAT in meta-
bolic flexibility is evident, and is reviewed extensively for its hormonal and lipid-storing functions in health
and disease. Many studies targeting adipose tissue derived stem cells have benefited from its abundance in mice
and humans, and are now beginning to dissect its extraordinary heterogeneity. The following sections will
discuss additional adipocyte populations and their contributions to whole organism energy homeostasis.

Brown adipose tissue: UCP-1 mediated thermogenesis and
beyond
BAT is highly innervated, highly vascularised and metabolically active [54–58]. Discrete depots are located in
the interscapular (iBAT), sub-scapular (sBAT) and cervical (cBAT) regions, and smaller depots have been
reported in association with the kidneys and aorta [6,59–63] (shown in Figure 1). Brown-like or ‘beige/brite’
adipocytes, hereafter referred to as beige adipocytes, exhibit many features characteristic of brown adipocytes.
Importantly, for the purpose of their classification, beige adipocytes are distinguished by their anatomical loca-
tion, interspersed in WAT depots. The number of beige adipocytes increases markedly in response to
cold-exposure, a phenomenon known as ‘browning’. Most studies indicate that beige adipocytes derive from a
white adipocyte precursor stemming mainly from the scWAT depot.
Classical brown adipocytes are hexagonal cells, containing many small lipid droplets (multilocular) and are

rich in mitochondria. Brown adipocytes have an extensive endoplasmic reticulum (ER) network that forms
contact points with the mitochondria, known as the mitochondria-associated ER membrane (MAM) [64,65].
The primary function of ‘classical’ BAT is widely accepted as non-shivering thermogenesis (NST). This func-
tion is enabled by sympathetic innervation, high mitochondrial number and mitochondrial specialisation [66],
abundant lipid stores and by the expression of the respiratory chain uncoupling protein 1 (UCP1) [67–70] (see
Figure 2). Heat production at the expense of ATP synthesis is in stark contrast with the primary function of
white adipocytes, yet both play integral parts in global energy homeostasis, serving as both direct and indirect
buffers of nutritional demand and excess.
Since the discovery of functional BAT in humans [71–73], extensive studies have reviewed its role in the

context of health and disease, and as a potential target for the treatment for metabolic disease through the
activation of UCP1. Uncoupling of the mitochondrial respiratory chain by UCP1 serves to increase heat pro-
duction during cold exposure, particularly in hairless neonates, and provides resistance to obesity resulting
from overfeeding. Both functions require exquisite sensitivity to extracellular signalling, mediated by dense
vascularisation and innervation [74–78]. Perhaps the most well studied of these cascades is the initiation of
thermogenesis by adrenergic receptor (AR) signalling. Responses to adrenaline and nor-adrenaline are
co-ordinated by ARs, which are members of the G protein-coupled receptor super-family. Brown adipocytes
express high levels of β3-ARs which couple to Gs proteins, leading to activation of adenylate cyclase and an
increase in intracellular cyclic AMP levels. Cyclic AMP induces gene expression mediated by the transcription
factor, cyclic AMP-response element binding protein (CREB) [79]. Brown adipocytes also express α2-ARs,
which couple through Gi proteins inhibiting adenylate cyclase, counteracting β3-AR activation of thermogen-
esis. However, in rodents, β3-AR expression is much higher than α2-AR expression, and so adrenergic-
signalling stimulates thermogenesis [80] Stimulation of AR-responsive gene expression is also brought about,
at least in part, through p38-mitogen activated protein kinase (p38 MAPK) mediated phosphorylation of acti-
vating transcription factor 2 (ATF-2) [81–83], the histone demethylase jumonji domain-containing 1A
( JMJD1A) [84,85] and peroxisome proliferator-activated receptor gamma co-activator alpha (PGC1α) [86,87].
PGC1α, once phosphorylated, is free to interact with PPARγ, facilitating the formation of a transcriptional
complex with phosphorylated JMJD1A and SWItch/Sucrose Non-Fermentable (SWI/SNF) in adipocyte
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Figure 2. Thermogenic mechanisms in BAT and WAT. Part 1 of 2

Brown adipocyte architecture contributes to thermogenic phenotypes through vascularisation, innervation, multilocular lipid

droplets (LD) and high mitochondrial (MT) density. Assembly of mitochondria-organelle networks facilitate substrate utilisation,

including the formation of mitochondria-associated ER membrane tethers (MAM) by protein bridges [64,90–96]. (a) Canonical

UCP1-mediated thermogenesis via uncoupling of the mitochondrial electron transport chain (ETC), resulting in H+ gradient

disturbance and proton leak, dissipating energy as heat. UCP1 activity is stimulated by free fatty acid (FFA) and inhibited by

purine nucleotides [65,67,69,97–105]. (b) SERCA/RyR mediated Ca2+ futile cycling in mitochondria. SERCA1 is found in the

inner mitochondrial membranes (IMM) of BAT [64,106]. Ca2+ enters the mitochondria via mitochondrial Ca2+ transporters and is

pumped into the inner mitochondrial space (IMS) by SERCA1, with concomitant ATP hydrolysis. Ca2+ returns to the matrix via

RyR. These cycles are abundant in the ER of brown adipose, heater organs (fish) and skeletal muscle [64,106–113]. A leaky

mitochondrial RyR drives increased ATP hydrolysis uncoupled from net Ca2+ transport generating heat. This may also be

subject to an unknown uncoupling agent [114]. (c) Non-canonical thermogenesis through creatine futile cycling. ATP generated

by the ETC is shuttled into the IMS by the ATP transporter AAC in return for ADP. ATP is then hydrolysed by mitochondrial
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nuclei, bringing promotor, enhancer and coding regions into proximity, driving beige and brown-specific
gene expression [85,88,89].
Extensive literature covers the role and regulation of UCP1-dependent thermogenesis in brown adipose

tissue [65,67,69,97–100,122–127]. Based largely in small mammals (rodents), these studies have focused on
UCP1 as the principle heat-generating pathway utilised by BAT in response to adrenergic signalling (Figure 2).
Ablation of BAT by diphtheria toxin resulted in the onset of obesity and diabetes, coupled with hyperphagia,
when mice were housed at ambient temperature. In contrast, global deletion of UCP1 did not recapitulate this
phenotype [128], demonstrating that functional BAT, but not UCP1 itself, is required for the prevention of
metabolic disease. Supporting this, many studies have characterised UCP1-independent thermogenic mechan-
isms in both brown and beige adipocytes [67,114–116,119,129–135].

UCP1-Independent thermogenic mechanisms in adipose
tissue
The existence of UCP1-independent NST mechanisms is well established, particularly in skeletal muscle [136–138]
and, to a lesser extent, in BAT [107–109,139], and provides insight into the origins of endothermy in mammals.
Importantly, similar mechanisms have been identified in specialised beige and white adipocytes [115–117], and pro-
motion of these mechanisms leads to improved metabolic health, opening new avenues for the treatment of meta-
bolic disease. Evolutionary evidence suggests that these mechanisms pre-date the emergence of UCP1, a defining
feature of BAT, with many species entirely reliant on their existence to facilitate high core body temperatures
[136,140]. The hydrolysis of ATP to ADP provides the energy to drive virtually all of the biological processes
required to maintain life. However, in addition to providing energy for biological work, the energy from ATP
hydrolysis can be converted to heat [108,139,140]. Increased ATP hydrolysis can occur in a futile cycle leading to
increased heat production. This mechanism, best described in skeletal muscle, utilises a calcium (Ca2+) futile cycling
mechanism involving the ryanodine receptor (RyR) Ca2+ channel and the sarco/endoplasmic reticulum Ca2+

ATPase (SERCA) can be used for thermogenesis during cold-stress [136,141]. The sarcoplasmic reticulum (SR), a
membranous network in muscle analogous to the endoplasmic reticulum, is responsible for the initiation of muscle
contraction and can store Ca2+ in millimolar concentrations. Muscle contraction is initiated by the release of Ca2
+into the cytosol by the RyR and relaxation occurs when Ca2+ is actively pumped back into the SR by SERCA.
Although this Ca2+ cycling is coupled, a small amount of heat (∼10–25 kcal/mol ATP) is generated with each
exchange [106,109,142,143]. In response to cold-stimulus, the binding of sarcolipin (SLN) to SERCA uncouples ATP
hydrolysis from Ca2+ transport, at the expense of muscle contraction, generating additional heat. In the absence of
UCP1 in BAT, SLN expression is up-regulated in skeletal muscle, enhancing survival rates during cold exposure
[144–147]. This compensation is reciprocal, with SLN-KO mice displaying increased UCP1 expression and browning
of WAT. Loss of both mechanisms rendered mice extremely cold sensitive during acute exposure, but able to survive
if exposed gradually, at the expense of all lipid stores [147]. This implies that the two mechanisms are complemen-
tary, and to an extent compensatory, in rodents. Another factor influencing heat production is the rate at which Ca2
+ returns to the cytoplasm, through RyRs. The fundamental role of RyRs in Ca2+ driven thermogenesis is highlighted
in the context of malignant hyperthermia, in which missense mutations in skeletal muscle RyR1 result in abnormal
Ca2+ release in response to ligands, predominantly volatile anaesthetic agents, leading to uncontrolled heat produc-
tion in skeletal muscle [148]. Although a rare disease, malignant hyperthermia during anaesthesia could often prove
fatal, but can now be treated effectively with the RyR inhibitor, dantrolene [149]
In some species, the reliance on muscle-based NST is far greater than in mammals. Ca2+ cycling through

SERCA/RyR as a functional thermogenic pathway occurs in the ocular regions of several species of large oceanic,
deep diving fish [139,140]. Termed a ‘heater organ’, this structure consists of modified muscle cells that lack pro-
teins required for muscle contraction. Instead, the cells have an extensive SR network with membranous stacks
located between mitochondria. This unusual arrangement generates a large surface area of the SR allowing for high
level expression of SERCA, together with close proximity to ATP synthesis in the mitochondria. These adaptations

Figure 2. Thermogenic mechanisms in BAT and WAT. Part 2 of 2

creatine kinase (mi-CK) to drive creatine phosphorylation to PCr. The reversal, driven by an as yet unidentified enzyme

completes the futile cycle [115–118]. (d) Non-canonical thermogenesis by SERCA2b-driven Ca2+ futile cycling on the ER

[114,119–121]. See text for more details.
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enable high rates of Ca2+ cycling to drive thermogenesis. The development of this specialised system enables the
fish to maintain eye and brain temperature significantly above the surrounding water temperature, ensuring
optimal function in cold environments. In addition, some birds maintain core temperatures in excess of 38°C with
some reaching ∼44°C in flight. Studies in hummingbirds have revealed that a futile Ca2+ cycling thermogenic
mechanism involving SERCA operates in muscle to facilitate warming following their daily periods of torpor [150].
Though Ca2+ futile cycling is dominant in skeletal muscle, several other substrate fluxes are critical for the

maintenance of ATP production [151]. Lipid futile cycling through the lipolysis and re-esterification of free fatty
acid (FFA) in white adipose is well documented, in both the presence and absence of UCP1 [152–155]. Data
from cultured brown adipocytes suggests these mechanisms are also present in BAT, with little reliance on
UCP1 [151]. However, as the maximal thermogenic capacity of these cells in culture is likely diminished, it
remains unclear as to whether these mechanisms are efficacious in vivo in response to thermogenic demand.
Evidence for both glucose and FFA uptake in BAT in vivo is convincing [63] with administration of a β3-agonist
increasing BAT and beige FFA accumulation. However, further work using these improved imaging techniques
are required to determine the relative contribution to thermogenesis in the absence of BAT UCP1 [63].
The reliance on UCP1 in BAT for thermogenesis in vivo is likely due to the low expression of ATP synthase

(complex V of the electron transport chain) [151,156]. Non-canonical, UCP1-independent thermogenic
mechanisms capable of maintaining core body temperature require significant ATP synthesis to drive heat pro-
duction, limiting the contribution of these pathways in BAT over long periods [97,147,157]. However, many
species express functionally inactive UCP1, and several are devoid of UCP1 in their genome [74]. These evolu-
tionary divergences date back as far as the Cretaceous period, and correlate with an increase in body mass and
a relative reduction in surface area. Small mammals, such as mice, use UCP1 to facilitate NST during cold
periods, at the expense of ATP synthesis otherwise required to build biomass [6,158]. Thus, the study of
thermoregulation in mammals has expanded to include mechanisms that whilst historically overshadowed by
UCP1, are present and active in brown and beige adipose, outlined in Figure 2. The newly defined role of NST
mechanisms in thermogenic adipocytes are perhaps reflective of a shared lineage between brown adipocytes
and myocytes; both cell types arise from a lineage distinct from white adipocytes, marked by the myogenic
regulatory factor MYF5 [6,34,159–161]. Given the limited efficacy and potential side effects of UCP1 activation
in a clinical setting, the possibility of manipulating adipocyte differentiation combined with increasing
UCP1-independent thermogenic mechanisms provides potential avenues for therapeutic intervention in key
areas of metabolic diseases, including type 2 diabetes and obesity.

The adipocyte lineage: heterogeneity and functionality
As is often the case when attempting to define different cell types, the distinction between adipocyte subtypes
is imprecise. The similarities between beige and brown adipocytes raises the question of what is the contribu-
tion of their lineage to function. Progenitor pools in white adipose depots are known to give rise to both white
and beige adipocytes [6,34,158,162,163], capable of performing both storage and thermogenic functions. Whilst
rodents possess distinct brown and beige cell identities, human brown adipocytes exhibit gene expression pro-
files similar to beige adipocytes in rodents [58,129,164,165]. This suggests human brown adipose may more
closely resemble rodent beige adipocytes, emphasising the importance of understanding lineage determination
in the development of adipocyte cell type. An important factor to take into account when studying brown and
beige thermogenic adipocytes, and particularly when making comparisons between rodents and humans, is the
influence of external temperature. Laboratory mice are typically housed at temperatures within the range of
19–23°C, which is ∼10°C below their thermoneutral zone [166]. The thermoneutral zone for a mammal corre-
sponds to the temperature at which the minimal amount of energy is required to maintain body temperature,
and for mice this is ∼29°C [167]. This means that most experiments conducted on standard laboratory housed
mice are done under sub-thermoneutral conditions. As a consequence, mice respond by increasing thermogen-
esis, including NST, primarily in BAT. For humans, defining the thermoneutral zone is complicated due to the
use of clothing, but under many conditions, humans live within the thermoneutral zone, and so do not require
high rates of thermogenesis. Although the effect of external temperature on NST is well appreciated, it is likely
that some of the inferences made between human and mouse thermogenic adipocytes are confounded by the
temperature at which the studies were performed.
Given the heterogeneity of adipose tissue, the number of discrete depots and the broad functionality of

mature adipocytes, it is not surprising that their respective progenitors share the same complexity. Recent
studies combining single-cell RNA sequencing and fluorescent imaging techniques have identified a number of
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new populations of adipose-resident stem cells and ‘pre-adipocytes’ in transition [168–170]. Whether these are
each capable of full adipogenesis is an active area of research and is already yielding exciting results.
Importantly, many of the populations identified in mice have been found in human adipose tissue, though
their contribution to the mature tissue is currently unknown [168,170]. The following section combines what is
known so far of the lineages of specialised adipocytes with respect to their functionality, as well as providing an
overview of the techniques used to elucidate the hierarchies in adipocyte stem cell niches.

Between brown and white: an adipocyte for all seasons
Although we have significant knowledge of the morphology and function of brown and white adipose tissue, our
understanding of their developmental origins are less clear. Identification of beige adipocytes in scWAT depots in
response to stimuli associated with proliferation of BAT only serves to reinforce our incomplete view of the situ-
ation. Genome-wide surveys of isolated brown adipocytes revealed transcriptional regulators capable of promoting
a brown adipose phenotype in pre-adipocytes. Studies later revealed that PR-domain containing 16 (PRDM16)
was capable of complete induction of the brown adipose thermogenic programme (e.g. UCP1, PGC1Α, ADRB3
(β3-adrenergic receptor), DIO2 (deiodinase 2)) [160,171–175] and mitochondrial gene expression in cultured mes-
enchymal stem cells. As a result, in both mice and humans, PRDM16 is regarded as a master regulator of brown
adipose identity. PRDM16 is also a powerful repressor of muscle differentiation, an effect that is stabilised by
euchromatic histone-lysine N-methyltransferase 1 (EHMT1) [160,172–179]. Indeed, deletion of PRDM16 or
EHMT1 reverts cells to a myogenic state, with the formation of myosin heavy chain (MHC) positive myotubes
together with expression of skeletal muscle genes and a loss of functional BAT in vivo [160,174,176]. Conversely,
ectopic expression of PRDM16 in white adipose tissue drives beige adipocyte formation through interaction with
CCAAT-enhancer binding protein β (C/EBPβ) and PPARγ [86,87,89,180]. The interest in PRDM16 as a regulator
of adipocyte fate and function has expanded beyond beiging, as genetic overexpression of PRDM16 in white adi-
pocyte depots led to the identification of novel cell types [114,172,174]. At present, it is not known whether these
new cell types are expressed in wild type mice, or whether their expression requires specific genetic backgrounds.
A summary of adipocyte cell types that have been identified is shown in Table 1.

Table 1 Summary of adipocyte populations, location(s), specialised/stimulating factors and key regulators of cellular fate

Adipocyte
(specialised) Known Lineage Markers Specialisation Key regulators References

White (classical) PDGFRα+; PDGFRβ+/−; MYF5+/−

(depot-specific); SCA1+; MYH11+;
CD34+; CD29+; CD24+; CD31−;
LIN−

Adipokine production, lipid
storage, endocrine, insulation

PPARγ, C/EBPα/β/δ, RXR,
CtBP1/2, PRDM16, ZFP423

[4,6,35,181–183]

Dermal (dWAT) Camp; Ccl4, classic WAT (see
above)

Hair cycling, skin wound healing,
immune response

CAMP [10–12,184–188]

Beige/brite PDGFRα+/−; PDGFRβ+/−; SCA1+;
MYH11+;CD34+; CD29+; CD24+;
CD31−; LIN−

Thermogenesis (UCP1), glucose
uptake, mitochondrial respiration,
creatine futile cycling

PPARγ, PRDM16 EHMT1,
PGC1α, C/EBPα/β/δ,
ZFP516, ZFP423 EBF2,
BMP7

[6,86,97,115,129–
131,158,
174,181–183,189–195]

Alt. Beige (iWAT) PRDM16++; UCP1−/−; PDGFRα+;
SCA1+; MYH11+;CD34+; CD29+;
CD24+; CD31−; LIN−

Thermogenesis (Ca2+ futile cycling
SERCA2b/RyR2), glucose uptake

PRDM16, PPARγ, EHMT1,
PGC1α, C/EBPα/β/δ,
ZFP516, EBF2, BMP7

[114]

g-beige (iWAT) PDGFRα+ SMA+; PAX3+; CD34+;
CD29+ MYOD1Lin+

Glucose metabolism, glycolysis
(ENO1), UCP1

GABPα [133]

Pink (mammary) AP2+; WAP+; ELF5; epithelial Milk production Pregnancy (unknown) [102,196–199]

SMART (iWAT) MYF5/6+; PAX7+ Thermogenesis (Ca2+ futile cycling
SERCA1/RyR1/3), glucose
metabolism, mitochondrial activity

AMPK activity [134]

BAT MYF5+; EN1+; Pax7+ Lipid storage, Thermogenesis
(UCP1 and Ca2+ futile cycling
Serca1), glucose metabolism

PRDM16/3, PPARγ, EHMT1,
PGC1α, C/EBPα/β/δ,
ZFP516, EBF2, BMP7,
KLF11/15, TLE3

[6,55,58,87,131,174,176,
179,189,194,200–205]
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The classical beige adipocyte, most notably induced by acute cold exposure, bears a striking resemblance to
brown adipocytes, in both morphology and function. These beige adipocytes could occur either by transdiffer-
entiation of mature white adipocytes, or through the proliferation of specific pre-adipocytes from stem cell
niches [4,6,15,119,129–132,189,190,196–198,206,207]. Regardless of their origin, the contribution of these cells
to adaptive thermogenesis and whole animal physiology has been documented thoroughly, at least in part due
to their resemblance to human BAT [97,129,170,191,208,209]. Though new evidence now challenges the singu-
lar definition of a beige adipocyte [6,34,210–212], a classical cell signature (platelet-derived growth factor
(PDGFR)α+; stem cells antigen 1 (SCA1)+; myosin heavy chain 11 (MYH11)+; CD34+; CD29+; CD24+; CD31-;
LIN-) is attributable to both beige and white adipose progenitors [6,162,163]. These are distinct from the
adipose endothelial signature (CD34+; CD31+) cells that are required for the formation of vascular endothelium
in adipose tissue in vivo [213]. The adipogenic capacity of these vascular cells may yet prove to be of interest,
as classical BAT may be in part derived from a CD31+ lineage [214].
As active BAT is low in humans beyond infancy, the potential to induce a brown-like adipocyte in WAT

offered new therapeutic possibilities for the treatment of metabolic disease. The use of positron emission tom-
ography (PET) with [18F] fluoro-2-deoxy-glucose (18FDG) in human subjects demonstrated an inverse correl-
ation between BAT mass and body mass index, fasting plasma glucose and adiposity [58,215]. Moreover, BAT
mass increased during acute cold stress, demonstrating recruitment of brown adipose progenitors in humans.
Refined studies using 18FDG-PET later showed significant uptake in peripheral human BAT depots, including
in the posterior subcutaneous region [216–218]. Though largely observational, these studies demonstrated that
brown adipocytes are more widespread in humans than originally appreciated, being expressed in both classical
BAT and WAT depots. In addition, the studies revealed that in humans brown adipocytes are induced in
response to cold exposure, similar to that seen in rodents [97,101,130,170,219].
Despite the extensive work carried out in vitro using primary cells from human WAT, most of the literature

surrounding beige adipose in vivo is based on murine models, a bias introduced due primarily to practical lim-
itations than by design. Case studies in cancer cachexia [220–224], severe burn injury [219,225], thyroid carcin-
oma [226,227] and obesity have reported induction of BAT activation and recruitment of beige adipocytes, but
there are no convincing examples of pharmacological induction in humans. Several molecules shown to
promote beiging in mice have failed to elicit detectable induction in humans. Irisin, an exercise-induced
myokine was shown to have beneficial effects on metabolic parameters associated with browning, including
enhanced energy expenditure, lowered blood glucose, and a reduction in adiposity. Circulating irisin levels were
correlated with induction of thermogenic genes associated with beiging, including a 5–500-fold induction of
UCP1 mRNA [228]. Other studies have since disputed the potential of irisin as a therapeutic strategy, based
partly on the finding that circulating irisin levels are increased in obese patients. These discrepancies, reviewed
in depth by Crujeiras et al. [229], are as of yet unresolved and warrant further investigation, particularly due to
the finding that irisin is also an adipokine and therefore any association with adiposity must be carefully disso-
ciated from fat mass itself [228–232]. Another circulating factor, fibroblast growth factor 21 (FGF21), gained
similar traction as a potential browning agent. In addition to its production in the liver, FGF21 has been
shown to be secreted from activated brown adipocytes, eliciting a robust increase in UCP1 expression in
human neck adipocytes, with lower induction in scWAT [233].
To understand the potential therapeutic relevance of browning of white adipose to human health, there

needs to be a distinction between activation of thermogenesis and promotion of substrate utilisation for meta-
bolic work, with heat production simply a by-product. When assessing the contribution of UCP1-mediated
thermogenesis in beige adipose, both in mice and in humans, it is important to consider UCP1 protein expres-
sion and relative mitochondrial activity, in addition to UCP1 gene expression [234]. The stimulation of UCP1
gene expression by cold exposure in BAT is modest when compared with the ∼100-fold induction seen in
WAT [97,131,189,206,235]. However, these differences have little bearing on the actual contribution of the dif-
ferent tissues to total thermogenic capacity [130,132,236]. Rather, they reflect the fact that the level of UCP1
mRNA in WAT is very low under normal experimental conditions. This is because mice are routinely housed
at ∼20°C thus the contribution of thermogenesis originating from WAT is low, and UCP1 expression is barely
detectable. Following cold-exposure, the fold-induction of UCP1 expression is therefore large, even though the
absolute level of UCP1 is low relative to BAT. Examining the contribution of beige cells to whole organism
thermogenesis and metabolism is more relevant than focussing on UCP1 induction alone [234,237].
Despite its prominent role in BAT and beige thermogenesis, the loss of UCP1 whilst detrimental in acute

cold exposure, is compensated for if gradual cold-acclimatisation is afforded [132,235,238], demonstrating the
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existence of other, UCP1-independent, thermogenic pathways. A quantitative proteomic study of isolated mito-
chondria from adipose tissue of cold-expose mice, identified an arginine/creatine metabolic pathway as a beige
adipocyte signature [115] . Based on these initial findings, further studies revealed the existence of a creatine-
driven futile cycling mechanism contributing to thermogenesis in beige adipocytes [116–118]. The translational
significance of these findings is yet to be explored, although cultured human brown adipocytes show sensitivity
to creatine-cycling inhibition, and a subset of white adipocytes in abdominal adipose tissue appear to use this
mechanism preferentially for thermogenesis [115,116,239–242]. Using a different approach, another study
showed that adipose-specific transgenic expression of PRDM16 in UCP1 KO mice led to the enrichment of
genes associated with glycolysis, the tricarboxylic acid cycle cycle and strikingly, cardiac muscle contraction,
notably the Ca2+ cycling components SERCA2b and RyR2 [114]. Increased expression of SERCA2b and RyR2
is suggestive of the futile Ca2+ cycling mechanism used for thermogenesis in skeletal muscle, described earlier
in this article. It is noteworthy, however, that the cardiac isoforms (SERCA2b and RyR2), rather than the skel-
etal muscle isoforms (SERCA1 and RyR1), were found to be up-regulated. Based on these gene expression
changes, the authors showed that inhibition of SERCA by thapsigargin decreased the β-adrenergic-induced
increase in respiration [114]. Intriguingly, forced expression of PRDM16 in pig adipocytes, which lack func-
tional UCP1, increased expression of a subset of genes associated with beige adipocytes. Moreover, down-
regulation of SERCA2b in these cells reduced basal and β-adrenergic-induced respiration. These findings
suggest that a futile Ca2+ cycling mechanism can operate in beige adipocytes, at least in the absence of UCP1.
Whilst extensive efforts have been made to explore the potential for exploiting BAT in treating obesity, to

date direct evidence supporting this as a viable approach in humans is lacking. One problem is that activation
of thermogenic adipocytes is thought to rely on β-adrenergic signalling, and so would be inherently non-
specific. This lack of specificity includes serious negative consequences such as hypertension and increased risk
of cardiovascular disease [243]. To identify alternative approaches to inducing thermogenic adipocyte response,
Kajimura and colleagues set out to investigate the origin of beige adipocytes in mice lacking β-adrenergic sig-
nalling [133]. Consistent with previous findings [244,245]), either pharmacological blockage of β-AR signalling
by propranolol, or genetic ablation in β-AR KO mice [246] had little effect on the adaptive thermogenic
response to mild cold exposure [133,145,152]. Transcriptomic analysis showed that genes involved in skeletal
muscle development, as well as those associated with beiging, were enriched in WAT isolated from β-AR KO
mice compared with wild-type mice. Isolated stromal-vascular fraction (SVF) from mice treated with β-blocker
contained a subset of cells expressing myogenic differentiation protein 1 (MYOD1) [133]. These cells, capable
of forming MHC+ myotubes in culture, were later shown, using MYOD1-CreERT2 GFP-reporter mice, to form
UCP1+ beige adipocytes in vivo, termed MYOD1+-derived beige fat [133]. Further analysis of beige adipocytes
isolated from the MYOD1+ lineage led to the adoption of the name ‘glycolytic beige’ (g-beige), with significant
enrichment of genes involved in glycolysis, glucose and carbohydrate metabolism distinct from both the clas-
sical beige and brown adipose signatures [133]. The proliferation of the smooth muscle actin (SMA)+; paired
box gene 3 (PAX3)+; PDGFRα+; CD34+; CD29+ progenitor cell was restricted to iWAT, reflective perhaps of
the increased heterogeneity and plasticity of this depot, and contributed substantially to whole organism
glucose homeostasis. Ablation of MYOD1+-progenitors with diphtheria toxin substantially reduced g-beige for-
mation, leading to reduced glucose uptake and oxygen consumption in WAT and impaired adaptive thermo-
genesis in response to cold exposure. This study also identified GA-binding protein α (GABPα) as a potent
promotor of the differentiation of both MYOD1+ progenitors and C2C12 myoblasts (a mouse skeletal muscle
cell line) to an adipocyte lineage. Moreover, GABPα was shown to be required for g-beige formation in vivo
[133]. This implies that cold stress can recruit different progenitors, or induce a different differentiation
pathway, depending on the level of β-adrenergic signalling. The beneficial effect of g-beige on glucose homeo-
stasis has significant therapeutic potential, but it will be essential to first determine whether g-beige cells are
present in humans.
Work from our group identified another type of beige-like adipocyte that we dubbed Skeletal-Muscle like

AMP-activated protein kinase (AMPK) Reprogrammed Thermogenic (SMART) cells [134]. Widespread tissue
expression of a gain-of-function AMPK mutant in mice led to the induction of SMART cells within the iWAT
depot and this was associated with protection against high-fat diet-induced obesity through increased thermo-
genesis. Importantly, protection against diet-induced obesity was maintained when the mice were housed
under thermoneutral conditions (for mice this is ∼30°C), implying that the effect was not reliant on
UCP1-dependent thermogenesis. The SMART cells contain small, multilocular lipid droplets and are rich in
mitochondria, similar to brown adipocytes. However, SMART cells do not express UCP1, distinguishing them
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from brown, canonical beige and glycolytic beige adipocytes. In response to a high-fat diet, there was a striking
change in gene expression profiles between iWAT isolated from the AMPK gain-of-function mice compared
with control mice. Expression of genes associated with striated muscle contraction, including SERCA1a, RyR1
and RyR3, was significantly increased in the gain-of-function mice. These results share obvious parallels with
the findings from an earlier study that identified an increase in components of the Ca2+ cycling machinery in
WAT of mice expressing PRDM16 in the absence of UCP1 [114]. It is worth noting that the two studies dif-
fered in the nature of the isoforms of SERCA and RyR that were up-regulated, with the cardiac isoforms
increased in the PRDM16/UCP1 model and the skeletal muscle isoforms increased in the AMPK
gain-of-function model.
An important finding in the AMPK gain-of-function model is the apparent bypass of UCP1 as a thermo-

genic pathway in WAT. Instead, thermogenesis is supported by increased mitochondrial ATP synthesis driving
futile Ca2+ cycling mediated by SERCA1/RyR [134]. A previous study reported that pharmacological activation
of AMPK promotes beiging in iWAT, with a concomitant increase in UCP1 protein expression, and a modest
protection against high-fat diet-induced obesity [247]. In contrast with the genetic gain-of-function model, no
evidence was presented to indicate that pharmacological activation of AMPK induced the expression of
SMART cells. One possibility for the divergent phenotypes between the two studies could be differences in the
degree and/or site of AMPK activation. Relevant to this point, selective expression of the gain-of-function
AMPK mutant in mature adipocytes (using adiponectin-Cre) or classical white adipocyte progenitors (using
PDGFRα-Cre) did not recapitulate the phenotype seen in the mice crossed with β-actin-Cre (to achieve wide-
spread tissue expression) [134]. These findings suggest that induction of SMART cells requires AMPK activa-
tion in a specific, as yet unidentified, progenitor population. Further studies will be needed to identify these
progenitor cells and to determine whether pharmacological activation of AMPK in these cells mimics the effect
of genetic activation.
The gene signature of SMART cells includes increased expression of three of the four known myogenic regu-

latory factors (MYF5, MYF6 (also known as MRF4) and myogenin) suggesting that these cells also undergo a
myogenic transition. This bears similarity with the g-beige cells, although it seems likely that the SMART cells
have a lineage that is distinct from g-beige. This could also account for the difference in isoform expression of
SERCA and RyR between SMART cells and UCP1 KO beige adipocytes as described by Ikeda et al. Finally, it
is possible that AMPK activation drives the formation of bona fide brown adipocytes, rather than a ‘myogenic
beige’, with suppression of UCP1 an independent action leading to the expression of compensatory thermo-
genic pathways.
As discussed above, several independent studies have identified novel adipocyte subtypes, with diverse func-

tions and all of potential therapeutic benefit. The heterogeneity of adipose tissue, particularly with respect to
lineage, is now the subject of intense scrutiny, as it would appear that recruitment of these cells is orchestrated
primarily by pre-programmed responses. In vitro studies of these cells in culture provides a valuable approach
to characterising their properties, but it will also be important to determine the contribution of the microenvir-
onment in which they reside on their function. Many immune cells are known to modulate adipocyte function,
and these processes are often disrupted in pathophysiological conditions [47,178,248,249]. Several reactive
stromal populations have been identified which may contribute to adipocyte differentiation both during devel-
opment and in cancer, providing a key link between tumour development and obesity [49,50]. To evaluate all
aspects of adipocyte biology, new technologies, including refined lineage tracing and single-cell RNA sequen-
cing, are being exploited to better characterise precursors and to identify fluctuations potentially linked to
disease state [6,34,158,163,168,169,250,251].

Understanding adipocyte lineage in vivo: new technology
and future perspectives
Extensive studies using lineage tracing have revealed the complexity and heterogeneity of pathways leading to
the generation of adipocytes. The data generated from these studies, though often conflicting, have created a
map of adipocyte lineage that is far more intricate than originally appreciated (Figure 3). Several reviews have
consolidated these studies, with reference to the model used, the expression patterns observed and the inference
of hierarchy within the stem cell niche [6,34,35,158,163,213]. However, the functional significance of lineage
remains a key unanswered question. Given that functional differences exist between adipocytes of the same
lineage, most notably beige and white, and even between neighbouring cells within a depot [34,158,163], it is
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unclear as to whether the origin of an adipocyte truly defines its function in vivo. Initial observations suggested
that beige adipocytes were derived from transdifferentiation of pre-existing white adipocytes [252,253].
However, other studies indicated that most beige adipocytes stem from differentiation of precursor cells, rather
than through transdifferentiation [129,254]. One example of where adipocyte transdifferentiation appears to
play an important role is during lactation. The adipose tissue in mammary glands of female mice undergoes
significant remodelling, with the generation of milk-producing alveolar cells containing mitochondria and large
cytoplasmic lipid droplets, formed without proliferation of a progenitor, but instead derived from pre-existing
white adipocytes [197,198].
The acquisition of a beige phenotype however is less defined, with evidence for transdifferentiation limited

to the absence of proliferative events or the retention of a lineage-specific reporter in a morphologically distinct
cell. Since many thermogenic adipocytes retain their lineage, as is the case between beige and white, assessment
by common lineage markers such as PDGFRα/β does not distinguish a newly recruited cell from a pre-existing
one. This is also true of white adipocytes that trace to a MYF5+ lineage, with some also retaining their primitive
PAX3+ status in a mosaic-like fashion within one adipose depot [34]. At present no clear functional distinction
between MYF5+ white adipocytes and classical PDGFRα+ adipocytes has been observed in the unchallenged
state, with thermogenic gene expression similar to MYF5- cells. Though no differential response to prolonged
β3-AR stimulation was observed in these depots, deletion of PTEN led to a significant expansion of MYF5+

cells (BAT, retroperitoneal and interscapular WAT), with speculation that increased PI3K signalling, hyper
insulin sensitivity and lipid accumulation conferred a metabolic advantage [35,255]. It has been shown that
both transdifferentiation and de novo differentiation from precursor cells occurs in response to high fat diet
and cold stress. This was demonstrated using a ‘MuralChaser’ lineage tracing system in which zinc finger
protein 423 (ZFP423)+/PDGFRβ+ perivascular mural cells [181,182,256,257] were labelled with
doxycycline-inducible ZFP423-GFP [181]. De novo adipocyte differentiation from ZFP423-GFP labelled mural
cells was observed only after prolonged cold exposure, with the initial browning of the tissue independent of
mural cell recruitment. These findings suggest the initial transformation from white to beige adipocytes

Figure 3. The heterogeneity and plasticity of adipocyte lineages.

Key metabolic and thermogenic pathways operating in each cell type are shown together with predominant proteins involved in

these pathways. Refer to the text for further details.
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involves either transdifferentiation of existing white adipocytes, or the recruitment of ZFP423 negative precur-
sor cells. This multi-step process may explain the previously observed ‘harlequin’ patterning [34,211]. In this
case, new cells are interspersed with existing cells from different lineages. Understanding the relevance of cell-

Figure 4. Contribution of known stem cell niches to mature adipocyte development.

Adipose-stem cell (ASC) populations identified by single-cell RNA sequencing are shown with respect to proposed

nomenclature and existing hierarchies [168,251,258,261–265]. ASC1, known formerly as Adipose Progenitor Cells (APCs) and

committed pre-adipocytes, have been identified in all single-cell RNA sequencing studies reported, and give rise to mature

adipocytes in vivo. They are further classified as ASC1a and ASC1b, with respect to their progenitor population. ASC1a, also

known as APC and ICAM1/PREF-1 expressing pre-adipocytes are prevalent in most differentiated tissue, irrespective of depot.

They encompass both PDGFRβ+ mural cells and PDGFRα+/PDGFRβ− precursors, commonly associated with classical

adipogenesis and are SCA1+. ASC1b, previously identified as CD142+/AREG adipocyte precursors are a distinct population,

arising from a second master progenitor, ASC2. ASC2/DPP4+/FIP+ cells are of stromal origin, residing in the reticular

interstitium (RI) of iWAT and mesothelium of eWAT). ASC2 cells give rise to both ASC1a and 1b populations, with TGFβ a

potent lineage determinant between these cell fates. Immune cell populations contribute to the differentiation of ASC

populations, with CD9+ macrophages expressing SPP1 and TREM2 found in crown-like structures surrounding mature

adipocytes [251,265]. Functional differences identified between these populations suggest that all are adipogenic, with

stimulus-specific recruitment under inflammatory and adrenergic stimuli.
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type specific function and metabolism in these adipocyte lineages could help improve drug specificity and
reduce off-target and potentially hazardous side effects, such as those incurred with β3 agonists.
More recently, single-cell RNA sequencing was used to identify distinct cell types in the SVF of both mouse

and human adipose tissue [168,251,258–260]. A subset of these cells was found to reside in a new anatomically
distinct structure within WAT, termed the reticular interstitium. Present within the reticular interstitium are the
stromal cell precursors that are capable of differentiating into white adipocytes in vivo [168,258]. These findings
challenge the idea that adipocyte precursors reside solely in the vasculature and peri-vascular regions. Instead, it
is possible that adipocyte differentiation can stem from both a stromal (interstitial) mesenchymal dipeptidy pep-
tidase 4 (DPP4)+/Wnt family member 2 (WNT2)+ progenitor [168], and from a PDGFRβ+ cell of peri-vascular
origin [162,163,261]. The intermediary cells described by Merrick et al. [168] include the preadipocyte factor-1
(PREF-1)-expressing intercellular adhesion molecule 1 (ICAM1)+ pre-adipocytes, and the alternative CD142+/C-
type lectin domain containing 11 (CLEC11)+ cells promoted by transforming growth factor β (TGFβ)–inhibition
of ICAM1+ cells. Subsequently, additional populations of adipocytes were identified in humans with several clus-
ters positively correlated with high mitochondrial content, oxidative metabolism and inversely correlated with
disease state [258]. Though the attribution of function to these newly established hierarchies is not yet established,
several inferences can be made, based on pre-existing understanding of adipose derived stem cell proliferation in
vivo. Some of these links are shown in Figure 4 and have been reviewed recently [251].

Future perspectives
In this article we have explored the interconversion of white and brown adipocytes and the basic functional
consequences of adipocyte lineage. From the first identification of brown and beige adipose, researchers have
been fascinated by the heterogeneity and plasticity of this abundant source of stem cells, with many applica-
tions beyond the treatment of metabolic disease. Easily accessible and with a lower rejection rate, adipose
derived stem cells have been investigated for the treatment of ischemia [266] and stroke [267], to repair cartil-
age [268–270] and to generate stem cells for spinal injury and neurodegenerative disorder transplant therapy,
through the production of neuron- and glial-like cells [271–273]. Whilst our understanding of adipocyte func-
tion has advanced significantly, we are only just beginning to explore the links between developmental origins
and plasticity with respect to therapeutic potential. Future studies will undoubtedly build upon the large data-
sets generated by -omics and single-cell techniques using targeted reporter systems, better-informed cell culture
systems and refined imaging strategies to unpick the complex and diverse mechanisms governing adipose devel-
opment. Based on these studies, we expect to see exciting new therapeutic interventions emerge based not just
on small molecules, but perhaps on adipocyte stem cell therapy, for the treatment of metabolic disease.
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