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Abstract

Background: Abnormal proliferation and migration of human airway smooth muscle cells (HASMCs) play an
important role in the development of childhood asthma. Long non-coding RNAs (IncRNAs) have been
demonstrated to participate in HASMC proliferation and migration. We aimed to explore more effects and
molecular mechanism of taurine upregulated gene 1 (TUGT1) in childhood asthma.

Results: TUG1T and SMURF2 were overexpressed and miR-216a-3p was downregulated in childhood asthma patients
and PDGF-BB-stimulated HASMCs. TUG1 knockdown attenuated PDGF-BB-triggered proliferation and migration of
HASMCs. MiR-216a-3p was targeted by TUGT1, and miR-216a-3p suppression counteracted the repressive effects of
TUGT interference on proliferation and migration in PDGF-BB-treated HASMCs. SMURF2 was a downstream target of
miR-216a-3p, and SMURF2 upregulation abated the inhibiting effects of miR-216a-3p on migration and proliferation in
PDGF-BB-exposed HASMCs. TUGT sponged miR-216a-3p to positively regulate SMURF2 expression.

Conclusion: TUG1 downregulation inhibited PDGF-BB-induced HASMC proliferation and migration by regulating miR-
216a-3p/SMURF2 axis, offering novel insight into the potential application of TUG1 for childhood asthma treatment.
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Background

Childhood asthma is a group of multifactorial diseases
characterized by wheezing, coughing, chest tightness,
dyspnoea, inflammation, airway remodeling, and airway
hyper-responsiveness [10, 21]. The prevalence of child-
hood asthma is increasing worldwide [22]. Although
enormous efforts have been made to improve the treat-
ment of childhood asthma, it is still difficult to effect-
ively control childhood asthma due to the heterogenicity
and complexity of childhood asthma [3]. Human airway
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smooth muscle cells (HASMCs) play a pivotal role in
the multiple biological processes, and excessive prolifera-
tion and migration of HASMCs directly accelerate the
development of childhood asthma [15, 20]. Thus, it is
critical to explore the underlying mechanisms that regu-
late the proliferation and migration of HASMCs.

Long non-coding RNAs (IncRNAs) are a type of non-
coding RNA (ncRNAs) and involved in diverse physiopa-
thology processes [8, 16, 34]. In recent years, many re-
ports have indicated that IncRNAs are pivotal regulators
in cell behaviors and the progression of many diseases,
including asthma [23]. For example, IncRNA TCF7 ac-
celerated the migration and proliferation of airway
smooth muscle cells (ASMCs) by regulating TIMMDC1/
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Akt axis in asthma [7]. In addition, IncRNA GAS5 con-
tributed to the proliferation of ASMCs via targeting
miR-10a/BDNF signaling pathway [35]. TUG1, a 6.7
kilobase (kb) RNA sequence, played critical roles in
asthma [18]. Nevertheless, the precise mechanism by
which TUGLI influences childhood asthma is not com-
pletely understood.

Th competitive endogenous RNA (ceRNA) networks
hypothesis has been proposed in a variety of diseases,
which indicates IncRNA can serve as microRNA
(miRNA) sponge or decoy to modulate the expression of
miRNA targets [25]. MiRNAs are usually small ncRNAs
that can modulate target gene expression [1, 13]. A pre-
vious report demonstrated that miR-216a level was con-
siderably increased in ASMCs of asthmatic patients [29].
Nevertheless, the biological functions and regulatory
mechanism of miR-216a-3p in childhood asthma are still
poorly defined.

SMURF2 (Smad ubiquitin protein ligase 2) is an ubi-
quitin ligase for Smads that regulates TGF-f signaling
pathway via ubiquitin-proteasome pathway (UPP) [28].
A previous study declared that SMURF2 knockdown re-
pressed ASMCs proliferation and increased apoptosis in
mice with chronic asthma [27]. However, the regulatory
mechanisms of SMUREF?2 in childhood asthma pathogen-
esis have not been thoroughly elucidated.

In this study, PDGF-BB was applied to induce
HASMC proliferation and migration. Moreover, we ex-
amined TUG1, miR-216a-3p and SMURF2 expression in
blood samples of patients with childhood asthma and
PDGEF-BB-stimulated HASMCs. Additionally, the bio-
logical roles of TUGI1, miR-216a-3p and SMURF2 on
the proliferation and migration of HASMCs were ex-
plored. The TUG1/miR-216a-3p/SMURF2 axis was pro-
posed to provide a novel theoretical basis for childhood
asthma treatment.

Methods

Blood collection and RNA isolation

The whole blood samples were obtained from Hangzhou
First People’s Hospital Affiliated to Zhejiang University
between March 2019 and October 2019. All participants
did not receive chemotherapy or radiotherapy. Child-
hood asthma blood samples were obtained from 32 pa-
tients with childhood asthma. The patients were
diagnosed according to Global Initiative for Asthma
(GINA) guideline [9]. Control subjects were from 32
age- and sex-matched healthy volunteers. Participants
with abnormal liver function, chronic bronchitis, tuber-
culosis, pulmonary embolism, coinfection, and blood
system diseases were excluded. This study was approved
by the ethics committee of Hangzhou First People’s Hos-
pital Affiliated to Zhejiang University, and written in-
formed consent was acquired from every participant.

Page 2 of 11

Cell culture and transfection

HASMC s were purchased from American Tissue Culture
Collection (Manassas, VA, USA) and cultured in DMEM
(Invitrogen, Carlsbad, CA, USA) containing 10% FBS
(Gibco, Carlsbad, CA, USA) at 37 °C under a humidified
air with 5% CO,. To construct childhood asthma model
in vitro, HASMCs were exposed to PDGF-BB (20 ng/mL)
(Peprotech, Rocky Hill, NJ) for 12 h.

The siRNA against TUG1 (si-TUG1) and matched control
(si-NC), miR-216a-3p mimic or inhibitor (miR-216a-3p or
anti-miR-216a-3p) and matched control (miR-NC or anti-
miR-NC), SMURF2-overexpressing plasmid (SMURF2) and
matched control (pcDNA) were commercially acquired from
Genecreat (Wuhan, China). The sequences were as follows:
si-TUGL (sense, 5'-UACUGUUUCUUUAAAUGGCGG-3,
antisense, 5'-GCCAUUUAAAGAAACAGUACC-3"); si-NC
(sense, 5'- UUCUCCGAACGUGUCACGUTT-3’, antisense,
5'-ACGUGACACGUUCGGAGAATT-3"); miR-216a-3p
mimic (5'- UCACAGUGGUCUCUGGGAUUAU-3'); miR-
NC (5"-UUCUCCGAACGUGUCACGUTT-3’); miR-216a-
3p inhibitor (5'-AUAAUCCCAGAGACCACUGUGA-3');
anti-miR-NC  (5'-CAGUACUUUUGUGUAGUACAA-3").
For cell transfection, HASMCs were introduced with the
above oligonucleotide or/and vector using HiPerFect trans-
fection reagent (Qiagen, Valencia, CA, USA).

Quantitative real-time PCR (qRT-PCR)

TRIzol reagent (Invitrogen) was employed to isolate the
total RNA from HASMCs. The first strand of cDNA was
synthesized using the Prime Script RT reagent Kit
(TaKaRa, Kusatsu, Japan) for analysis TUG1 and
SMUREF2, or using miScript II RT Kit (Qiagen) for detec-
tion of miR-216a-3p. Next, the diluted cDNA was sub-
jected to qRT-PCR using SYBR Green PCR Kit (Takara)
on ABI 7500 Real-time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA). The RNA levels were cal-
culated via 22" method. GAPDH and U6 were acted as
the internal references for TUG1, SMURF2 and miR-
216a-3p, respectively. The following primers were used for
qRT-PCR: TUGI (forward 5'-3": CTGAAGAAAGGCAA
CATC; reverse 5'-3": GTAGGCTACTACAGGATTTG)
miR-216a-3p (forward 5'-3": GCCGAGTCACAGTGGT
CTCT; reverse 5'-3: CAGTGCGTGTCGTGGAGT),
SMURF2 (forward 5'-3": TCCTCGGCTGTCTGCTAA
CTTG; reverse 5'-3": CAGGCATTCTGTGTCATCAG
GAC), GAPDH (forward 5'-3": ACCCACTCCTCCACCT
TTGAC; reverse 5'-3": TGTTGCTGTAGCCAAATTCG
TT), U6 (forward 5'-3": CTCGCTTCGGCAGCACATAT
ACT; reverse 5'-3": ACGCTTCACGAATTTGCGTGTCQ).

Cell viability assay

HASMCs were inoculated into 96-well plates. Following
treatment, 10 pL. of Cell Counting Kit-8 (CCK-8; Boster,
Wuhan, China) solution was placed into per well for 2—
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3h at 37°C, followed by detection of the absorbance
using a microplate reader (Thermo Fisher Scientific) at
450 nm wavelength .

Cell cycle assay

HASMCs were collected after treatment for 48 h, and
fixed using ice-cold 70% ethanol at —20°C for 12h.
Afterwards, HASMCs were collected and washed with
PBS, and suspended in PBS that contained propidium
iodide (PL; 25 pg/mL) solution, 0.2% (v/v) Triton X-100
and 20 pg/mL DNase-free RNase. At last, cell cycle dis-
tribution was detected using flow cytometry (Partec AG,
Arlesheim, Switzerland).

Transwell assay

Migration of HASMCs was evaluated using transwell
chamber. Briefly, HASMCs were resuspended in serum-
free medium (100 uL) and added into the top chamber.
The medium containing 10% FBS (500 uL) was placed
into the lower part of the chamber. 24 h later, HASMCs
remaining on the top membrane surface were gently re-
moved, and HASMCs migrated to the lower chamber
were fixed in 95% ethanol, followed by staining with
0.1% crystal violet solution. At last, the migrated cells
were photographed and counted using a microscope
(100x magnification).

Bioinformatics analysis and dual-luciferase reporter assay
The relationship between miR-216a-3p and TUG1 or
SMUREF2 was predicted using starBase v2.0 (http://
starbase.sysu.edu.cn/). TUG1 or 3’'UTR of SMURF2 in-
cluding putative miR-216a-3p target binding sequence
was amplified and respectively cloned into the pmirGlO
luciferase reporter vector (Promega, Madison, WI, USA)
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to create WT-TUG1 and SMURF2 3'UTR-WT. Mean-
while, the binding sequence for miR-216a-3p was mu-
tated and inserted into the same vector to construct
MUT-TUG1 and SMURF2 3'UTR-MUT. Next,
HASMCs were co-introduced with miR-216a-3p/miR-
NC and WT/MUT luciferase reporter plasmid for 48 h.
At last, the luciferase activity was measured by dual-
Luciferase Reporter Assay System (Promega).

Western blot assay

RIPA lysis buffer (Thermo Fisher Scientific) was used for
isolating total protein. After measurement of protein
concentration, approximately 40 pg of extracted protein
was separated by SDS-PAGE, and then transferred
(semi-dry method) onto PVDF membrane. The mem-
branes were blocked and then probed with primary anti-
bodies against SMURF2 (ab94483, 1:1000, Abcam,
Cambridge, UK) or GAPDH (ab37168, 1:1000, Abcam)
at 4°Cfor 12—-14 h. After incubation with secondary anti-
body (D110058, 1:4000, Sangon Biotech, Shanghai,
China), the combined signals were visualized using ECL
reagent (Tanon, Shanghai, China). The band density was
assessed by Image] software.

Statistical analysis

All data were shown as mean + standard deviation and
all experiments were repeated at least three times. For
comparison within different groups, two-tailed Student’s
t-test and a one-way analysis of variance (ANOVA) were
performed. The correlation analysis between miR-216a-
3p and TUG1 or SMURF2 was performed by Spearman
rank correlation. Statistical analyses were performed
using GraphPad Prism 7.0. Statistical significance was
considered when P < 0.05.
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Fig. 1 TUGT1 level was increased in childhood asthma patients and PDGF-BB-stimulated HASMCs. A TUGT expression was measured by gRT-PCR
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Results

TUG1 was overexpressed in patients with childhood
asthma and PDGF-BB-stimulated HASMCs

To assess whether TUG1 was involved in the patho-
genesis of asthma, the expression of TUG1 was de-
tected. The level of TUG1 was enhanced 3.34-fold in
whole blood samples of childhood asthma patients
relative to healthy controls (Fig. 1A). Similarly, TUG1
expression was dose-dependently increased in
HASMCs treated with PDGF-BB (Fig. 1B). Moreover,
we found the concentrations of IL-4, IL-5, and IL-13
were increased 4.71-fold, 3.58-fold and 3.42-fold in
serum samples of asthma patients compared to
healthy controls, respectively (Additional file 1). Our
data indicated that TUG1 might play a critical role in
childhood asthma.
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Knockdown of TUGT1 inhibited PDGF-BB-induced HASMC
cell proliferation and migration

To explore the impact of TUG1 on HASMC proliferation
and migration in under stimulation with PDGEF-BB,
knockdown of TUGI1 was constructed using the siRNA.
TUG1 expression was increased 3.35-fold by treatment
with PDGF-BB, which was reversed by knockdown of
TUG1 (Fig. 2A). Moreover, HASMC viability was in-
creased 1.55-fold by PDGF-BB stimulation, whereas inter-
ference of TUGL inhibited PDGF-BB-induced cell viability
(Fig. 2B). The ratio of HASMCs in GO/G1 phase was de-
creased 19.71% by treatment with PDGF-BB and the ratio
of HASMCs in S phase was elevated 2.16-fold (Fig. 2C),
suggesting PDGF-BB-induced HASMCs to enter the syn-
thesis phase (S phase) for proliferation. However, down-
regulation of TUGLI abated the effect of PDGF-BB on cell
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Fig. 2 TUG] interference attenuated PDGF-BB-caused HASMCs cell proliferation and migration. HASMCs were divided into four groups: Control,
PDGF-BB (20 ng/mL), PDGF-BB + si-NC, and PDGF-BB + si-TUG1. A TUGT expression was examined (ANOVA). (B) CCK-8 assay was used for
measuring cell viability (ANOVA). C Cell cycle distribution was examined via flow cytometry (ANOVA). D Cell migration was evaluated using
transwell assay (100x) (ANOVA). *P < 0.05
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cycle progression via increasing the ratio of HASMCs in
GO/G1 phase and reducing the ratio of HASMCs in S
phase (Fig. 2C). Transwell assay indicated that migration
of HASMCs was increased after exposure to PDGF-BB,
which was abolished by downregulating TUG1 (Fig. 2D).
Collectively, these data suggested that TUG1 might be in-
volved in childhood asthma progression.

TUG1 could bind to miR-216a-3p

To elucidate the underlying mechanism by which TUG1
regulated the HASMC proliferation and migration, star-
Base v2.0 was used. There were binding sites between
miR-216a-3p and TUG1 (Fig. 3A). For confirming the
interaction between TUGI and miR-216a-3p, dual-
luciferase reporter analysis was performed. WT-TUG1
luciferase activity was decreased 61% by transfection
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with miR-216a-3p, (Fig. 3B). However, the luciferase ac-
tivity of MUT-TUG1 was unaffected after introduction
with miR-216a-3p (Fig. 3B). Subsequently, miR-216a-3p
expression in childhood asthma patients and PDGF-BB-
stimulated HASMCs was analyzed. MiR-216a-3p expres-
sion was reduced 52.55% in whole blood samples of
childhood asthma patients compared to healthy controls
(Fig. 3C). Likewise, miR-216a-3p level was also dose-
dependently decreased in HASMCs exposed to PDGEF-
BB (Fig. 3D). And we observed that there was inversive
correlation between miR-216a-3p level and TUG1 ex-
pression in whole blood samples of childhood asthma
patients (Fig. 3E). TUG1 was overexpressed in PDGF-
BB-stimulated HASMCs transfected with TUG1 (Fig.
3F). TUGI deficiency increased miR-216a-3p expression,
whereas upregulation of TUG1 decreased miR-216a-3p
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D MiR-216a-3p expression was examined in HASMCs stimulated with different concentrations of PDGF-BB (ANOVA). E The correlation between TUGI1
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expression (Fig. 3G). All these findings manifested that
miR-216a-3p was targeted by TUGI.

MiR-216a-3p knockdown reversed the inhibitory impact
of si-TUGT1 on the proliferation and migration of HASMCs
under stimulation with PDGF-BB

To clarify whether TUG1 exerted its roles through spon-
ging miR-216a-3p, rescued experiments were performed
in PDGF-BB-exposed HASMCs. Knockdown of TUG1
increased miR-216a-3p abundance, which was inhibited
by downregulating miR-216a-3p in PDGF-BB-stimulated
HASMC:s (Fig. 4A). Additionally, miR-216a-3p inhibition
expression neutralized the suppressive impact of TUG1
silencing on cell viability (Fig. 4B). Furthermore, the en-
hanced GO/G1 phase cells and reduced S phase cells
caused by TUG1 knockdown were reversed after down-
regulating miR-216a-3p (Fig. 4C). Besides, the
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suppressive influence of si-TUG1 on cell migration was
also abolished after interference of miR-216a-3p in
PDGF-BB-induced HASMCs (Fig. 4D). Taken together,
TUGI1 regulated HASMC proliferation and migration
under treatment with PDGF-BB by sponging miR-216a-

3p.

SMURF2 was a direct target of miR-216a-3p

To probe the regulatory mechanism of miR-216a-3p, we
screened the target mRNAs of miR-216a-3p using star-
Base v2.0. The results presented that miR-216a-3p and
SMURF2 3'UTR had complementary binding sites
(Fig. 5A), implying that SMURF2 might be targeted by
miR-216a-3p. SMURF2 3'UTR-WT luciferase activity
was declined 69% in HASMCs transfected with miR-
216a-3p, but luciferase activity of SMURF2 3’'UTR-MUT
was not affected after introduction with miR-216a-3p
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(Fig. 5B). The mRNA expression of SMURF2 was in-
creased 2.71-fold in whole blood samples of childhood
asthma patients relative to healthy controls (Fig. 5C).
Likewise, SMURF2 protein expression was also dose-
dependently enhanced in HASMCs exposed to PDGE-
BB (Fig. 5D). Moreover, miR-216a-3p abundance was
negatively correlated with SMURF2 mRNA expression
in childhood asthma patients (Fig. 5E). Furthermore,
miR-216a-3p expression was enhanced by transfection of
miR-216a-3p and decreased by transfection of anti-miR-
216a-3 (Fig. 5F), suggesting miR-216a-3p and anti-miR-
216a-3p were successfully introduced into PDGF-BB-
stimulated HASMCs. Enforced expression of miR-216a-

3p reduced the level of SMURF2 protein, while knock-
down of miR-216a-3p promoted SMURF2 protein ex-
pression in HASMCs exposed to PDGEF-BB (Fig. 5QG).
Altogether, these data implicated that miR-216a-3p
could bind to SMUREF2 and negatively regulated
SMURE2 expression.

MiR-216a-3p overexpression inhibited cell proliferation
and migration in HASMCs stimulated with PDGF-BB via
reducing SMURF2 expression

To investigate whether SMURF2 participated in miR-
216a-3p-mediated functions, HASMCs were introduced
with miR-NC, miR-216a-3p, miR-216a-3p + pcDNA, or
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miR-216a-3p + SMURF2, followed by treatment with
PDGF-BB. Restoration of miR-216a-3p led to a decrease
in the protein expression of SMURF2, which was res-
cued by addition of SMURF2 (Fig. 6A). CCK-8 analysis
revealed that miR-216a-3p overexpression reduced cell
viability in PDGF-BB-stimulated HASMCs, while upreg-
ulation of SMURF?2 abated this effect (Fig. 6B). Upregu-
lation of miR-216a-3p could increase the ratio of
HASMCs in GO0/G1 phase and decrease the ratio of
HASMC:s in S phase, whereas this effect was reversed by
upregulating SMURF2 (Fig. 6C). Moreover, the anti-
migration effect caused by miR-216a-3p was also re-
stored by co-transfection of SMURF in HASMCs ex-
posed to PDGF-BB (Fig. 6D). Our findings indicated that
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miR-216a-3p exerted its biological functions by targeting
SMUREF2 in PDGF-BB-stimulated HASMC:s.

TUG1 regulated SMURF2 expression by sponging miR-
216a-3p

To detect whether TUGI sponged miR-216a-3p to regu-
late SMURF2 expression, HASMCs were introduced
with si-NC, si-TUGI1, si-TUGL + anti-miR-NC, or si-
AGAP2-AS1 + anti-miR-216a-3p, followed by stimula-
tion with PDGF-BB. Transfection with si-TUG1 reduced
SMURF2 mRNA and protein abundance in HASMCs
stimulated with PDGF-BB, which was restored by co-
introduction with miR-216a-3p inhibitor (Fig. 7A and
B). Collectively, these data strongly supported the
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hypothesis that TUG1 could regulate HASMC prolifera-  migration [2]. It has been reported that TUG1 is dysreg-
tion and migration through modulating miR-216a-3p  ulated in many diseases and implicated in diverse cellu-

and SMUREF2 expression (Fig. 7C). lar processes, including differentiation, proliferation,
migration, and apoptosis [33]. Moreover, TUG1 acts as a
Discussion tumor-promoting IncRNA in multiple tumors, such as

Childhood asthma is one of the most common chronic  colorectal cancer [33], breast cancer [17], ovarian cancer
diseases in childhood [12]. Accumulating evidence sug-  [14], and cervical cancer [11]. In addition, TUGI1 plays
gests that abnormal migration and proliferation of critical roles in regulating progression of multiple dis-
HASMCs play critical roles in the development of eases, such as diabetic nephropathy [6], atherosclerosis
asthma [36]. PDGF-BB-caused the proliferation and mi- [32], and myocardial infarction [32]. Besides, Lin et al.
gration of HASMC:s is considered the main cause of air-  revealed that TUG1 expression was enhanced in the
way wall thickening in asthma [24]. HASMCs stimulated  asthma rat model, and TUG] facilitated ASMC prolifer-
with PDGF-BB were usually served as asthma model ation and migration through regulation of miR-590-5p/
in vitro [5]. Therefore, blocking PDGF-BB-triggered the FGF1 axis in asthma [18]. Agreement with this report,
proliferation and migration of HASMCs represents a we observed that TUG1 expression was enhanced in
promising therapeutic strategy for treatment of child- whole blood samples of childhood asthma patients and
hood asthma. HASMCs stimulated with PDGF-BB. Moreover, we un-

Growing evidence has indicated that IncRNAs play covered that TUG1 knockdown limited the migration
pivotal roles in modulating HASMC proliferation and and proliferation of HASMCs under stimulation with
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PDGEF-BB. These data disclosed that inhibition of TUG1
might be a promising strategy for treatment of child-
hood asthma.

LncRNAs have been elaborated to serve as ceRNAs or
molecular sponges through binding to miRNAs to
modulate the expression and function of downstream
target mRNAs [30]. Bioinformatics analysis was per-
formed to investigate whether TUGI functioned as a
miRNA sponge. We demonstrated that miR-216a-3p
could bind with TUGI. It has been reported that some
miRNAs, inducing miR-23b, miR-638 and miR-138, are
aberrantly expressed and modulated HASMC prolifera-
tion and migration via targeting the 3’UTR of mRNAs
[4, 19, 26]. As for miR-2164, it was identified to be lowly
expressed in HASMCs from asthmatic patients and its
overexpression limited cell growth and facilitated cell
apoptosis [29], suggesting that miR-216a acted as a sup-
pressor in asthma. Consistently, in our research, miR-
216a-3p level was also declined in whole blood samples
of childhood asthma patients and PDGF-BB-stimulated
HASMCs. Moreover, our study revealed that miR-216a-
3p inhibition abated the inhibiting impact of si-TUG1
on cell proliferation and migration in HASMCs stimu-
lated with PDGEF-BB. These results suggested that TUG1
exerted its functions in childhood asthma by sponging
miR-216a-3p.

To clarify how miR-216a-3p affected the progression
of childhood asthma, possible targets were predicted by
starBase v2.0. We chose SMURF2 as a candidate target
of miR-216a-3p for further investigation because it was
associated with asthma progression. SMURF2 plays a
vital role in modulation of allergic airway inflammation
[31]. Wang et al. demonstrated that SMURF2 could
interact with miR-485, and SMURF2 interference inhib-
ited cell proliferation and increased apoptosis in ASMCs
[27]. Herein, we uncovered that SMURF2 level was in-
creased in whole blood samples of childhood asthma pa-
tients and PDGF-BB-stimulated HASMCs. Moreover,
rescue experiments revealed that enforced expression of
SMURF2 could abolish the suppressive impact of miR-
216a-3p on proliferation and migration in HASMCs
stimulated with PDGF-BB, suggesting that miR-216a-3p
exerted its roles in childhood asthma through targeting
SMURF2. Additionally, TUGI1 positively regulated
SMUREF2 expression via sponging miR-216a-3p. Collect-
ively, we found that TUG1 knockdown weakened
HASMC proliferation and migration caused by PDGEF-
BB via regulation of miR-216a-3p/SMURF2 axis.

Conclusions

Our study proved that TUG1 knockdown inhibited
PDGEF-BB-triggered HASMC cell proliferation and mi-
gration via regulating miR-216a-3p and SMURF2. The
TUG1/miR-216a-3p/SMURF2 regulatory axis played a
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crucial role in HASMC proliferation and migration.
These results might provide a new direction for child-
hood asthma treatment.
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